
MATLAB®

External Interfaces

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® External Interfaces
© COPYRIGHT 1984–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

December 1996 First printing New for MATLAB 5 (release 8)
July 1997 Online only Revised for MATLAB 5.1 (Release 9)
January 1998 Second printing Revised for MATLAB 5.2 (Release 10)
October 1998 Third printing Revised for MATLAB 5.3 (Release 11)
November 2000 Fourth printing Revised and renamed for MATLAB 6.0

(Release 12)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
January 2003 Online only Revised for MATLAB 6.5.1 (Release 13SP1)
June 2004 Online only Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)
March 2008 Online only Revised for MATLAB 7.6 (Release 2008a)
October 2008 Online only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online only Revised for MATLAB 7.11 (Release 2010b)
April 2011 Online only Revised for MATLAB 7.12 (Release 2011a)
September 2011 Online only Revised for MATLAB 7.13 (Release 2011b)
March 2012 Online only Revised for MATLAB 7.14 (Release 2012a)
September 2012 Online only Revised for MATLAB 8.0 (Release 2012b)
March 2013 Online only Revised for MATLAB 8.1 (Release 2013a)
September 2013 Online only Revised for MATLAB 8.2 (Release 2013b)
March 2014 Online only Revised for MATLAB 8.3 (Release 2014a)
October 2014 Online only Revised for MATLAB 8.4 (Release 2014b)
March 2015 Online only Revised for MATLAB 8.5 (Release 2015a)
September 2015 Online only Revised for MATLAB 8.6 (Release 2015b)

v

Contents

Python Interface Topics
1

Install Supported Python Implementation 1-3
Install Python Version 2.7 . 1-3
Install Python Version 3.3 or 3.4 . 1-3

Call Python from MATLAB . 1-4

Call User-Defined Python Module . 1-10

Use Python Numeric Types in MATLAB 1-12

Call Python Methods with Numeric Arguments 1-13

Default Numeric Types . 1-14

Use Python array Types in MATLAB 1-15

Pass MATLAB String to Python Method 1-16

Use Python str Type in MATLAB . 1-17

Pass MATLAB Backslash Control Character 1-18

Create Python list Variable . 1-19

Use Python list Type in MATLAB . 1-20

Use Python List of Numeric Types in MATLAB 1-22

Pass Cell Array as Python Sequence Type 1-23

Read Element of Nested list Type . 1-25

vi Contents

Use Python tuple Type in MATLAB 1-26

Create Python tuple Variable . 1-27

Create Singleton Python tuple Variable 1-28

Create Python dict Variable . 1-29

Pass dict Argument to Python Method 1-30

Use Python dict Type in MATLAB . 1-31

Convert Python dict Type to MATLAB Structure 1-33

Pass Keyword Arguments . 1-34

Pass Python Function to Python map Function 1-35

Index into Python String . 1-36

Index into Python List . 1-37

Index into Python Tuple . 1-39

Index into Python dict . 1-40

Use Python List as Values in for Loop 1-41

Display Stepped Range of Elements 1-42

Access Elements in Python Container Types 1-43
Sequence Types . 1-43
Mapping Types . 1-44
Size and Dimensions . 1-44
Array Support . 1-45
Use Zero-Based Indexing for Python Functions 1-45

View Python Numeric Values . 1-46
Why Do I See Properties When I Display a Number? 1-46
What Is the L Character Attached to a Number? 1-46

Call Methods on Python Variables . 1-48

vii

Reload Modified User-Defined Python Module 1-50

System and Configuration Requirements 1-52
Python Version Support . 1-52
Set Python Version on Windows Platform 1-52
Set Python Version on Mac and Linux Platforms 1-53
64-bit/32-bit Versions of Python on Windows Platforms 1-53
Requirements for Building Python Executable 1-53

Create a Python Object . 1-54

Pass Data to Python . 1-57
MATLAB Type to Python Type Mapping 1-57
MATLAB Vector to Python Mapping 1-58
Unsupported MATLAB Types . 1-58

Handle Data Returned from Python 1-60
Automatic Python Type to MATLAB Type Mapping 1-60
Explicit Type Conversions . 1-60

How MATLAB Represents Python Operators 1-62

Execute Callable Python Object . 1-64

Python import and MATLAB import Commands 1-65
Do Not Type “import pythonmodule” 1-65
Use MATLAB import to Shorten Class or Function Names . 1-65

List, Tuple, and Dictionary Types . 1-67

Limitations to Python Support . 1-68

Limitations to Indexing into Python Objects 1-69

Undefined variable "py" or function "py.command" 1-70
Python Not Installed . 1-70
64-bit/32-bit Versions of Python on Windows Platforms 1-70
MATLAB Cannot Find Python . 1-71
Error in User-Defined Python Module 1-71
Python Module Not on Python Search Path 1-71
Module Name Conflicts . 1-72
Python Tries to Execute command in Wrong Module 1-72

viii Contents

Help for Python Functions . 1-73

Handle Python Exceptions . 1-74

Troubleshooting Error Messages . 1-75
Python Error: Python class: message 1-75
Python Module Errors . 1-75
Errors Converting Python Data . 1-76

Using Python Data in MATLAB . 1-77

Call Python eval Function . 1-78

Precedence Order of Methods and Functions 1-80

Python Function Arguments . 1-81
Positional Arguments . 1-81
Keyword Arguments . 1-81
Optional Arguments . 1-82

Read and Write MATLAB MAT-Files in C/C++ and
Fortran

2
Custom Applications to Access MAT-Files 2-2

Why Write Custom Applications? . 2-2
MAT-File Interface Library . 2-3
Exchanging Data Files Between Platforms 2-4

MAT-File Library and Include Files . 2-5
MAT-Function Include Files . 2-5
MAT-Function Libraries . 2-5
Example Files . 2-6

What You Need to Build Custom Applications 2-7

Copy External Data into MAT-File Format with Standalone
Programs . 2-8

Overview of matimport.c Example . 2-8
Declare Variables for External Data 2-9

ix

Create mxArray Variables . 2-9
Create MATLAB Variable Names . 2-10
Read External Data into mxArray Data 2-10
Create and Open MAT-File . 2-11
Write mxArray Data to File . 2-11
Clean Up . 2-11
Build the Application . 2-11
Create the MAT-File . 2-11
Import Data into MATLAB . 2-12

Create MAT-File in C or C++ . 2-13
Create MAT-File in C . 2-13
Create MAT-File in C++ . 2-13

Read MAT-File in C/C++ . 2-14

Create MAT-File in Fortran . 2-15

Read MAT-File in Fortran . 2-16

Work with mxArrays . 2-17
Read Structures from a MAT-File . 2-17
Read Cell Arrays from a MAT-File 2-18

Table of MAT-File Source Code Files 2-19

Build on Mac and Linux Operating Systems 2-21
Setting Run-Time Library Path . 2-21
Building the Application . 2-22

Build on Windows Operating Systems 2-23

Share MAT-File Applications . 2-24

Calling C Shared Library Functions from MATLAB
3

Call Functions in Shared Libraries . 3-2
What Is a Shared Library? . 3-2
Load and Unload Library . 3-3

x Contents

View Library Functions . 3-4
Invoke Library Functions . 3-6

Limitations to Shared Library Support 3-8
MATLAB Supports C Library Routines 3-8
Workarounds for Loading C++ Libraries 3-8
Limitations Using printf Function 3-9
Bit Fields . 3-9
Enum Declarations . 3-10
Unions Not Supported . 3-10
Compiler Dependencies . 3-11
Limitations Using Pointers . 3-11
Functions with Variable Number of Input Arguments Not

Supported . 3-12

Limitations Using Structures . 3-13
MATLAB Returns Pointers to Structures 3-13
Structure Cannot Contain Pointers to Other Structures . . . 3-13
Requirements for MATLAB Structure Arguments 3-13
Requirements for C struct Field Names 3-13

Module Not Found Error . 3-15

No Matching Signature Error . 3-16

MATLAB Terminates Unexpectedly When Calling Function in
Shared Library . 3-17

Pass Arguments to Shared Library Functions 3-18
C and MATLAB Equivalent Types 3-18
How MATLAB Displays Function Signatures 3-20
NULL Pointer . 3-21
Manually Convert Data Passed to Functions 3-21

Shared Library shrlibsample . 3-23

Pass String Arguments . 3-24
stringToUpper Function . 3-24
Convert MATLAB Character Array to Uppercase 3-24

Pass Structures . 3-26
addStructFields and addStructByRef Functions 3-26
Add Values of Fields in Structure . 3-27

xi

Preconvert MATLAB Structure Before Adding Values 3-28
Autoconvert Structure Arguments . 3-29
Pass Pointer to Structure . 3-30

Pass Enumerated Types . 3-32
readEnum Function . 3-32
Display Enumeration Values . 3-32

Pass Pointers . 3-34
multDoubleRef Function . 3-34
Pass Pointer of Type double . 3-34
Create Pointer Offset from Existing lib.pointer Object 3-35
Multilevel Pointers . 3-36
allocateStruct and deallocateStruct Functions 3-36
Pass Multilevel Pointer . 3-37
Return Array of Strings . 3-37

Pass Arrays . 3-39
print2darray Function . 3-39
Convert MATLAB Array to C-Style Dimensions 3-39
multDoubleArray Function . 3-40
Preserve 3-D MATLAB Array . 3-41

Iterate Through an Array . 3-43
Create Cell Array from lib.pointer Object 3-43
Perform Pointer Arithmetic on Structure Array 3-44

Pointer Arguments . 3-46
Pointer Arguments in C Functions 3-46
Put String into Void Pointer . 3-46
Memory Allocation for External Library 3-47

Structure Arguments . 3-49
Structure Argument Requirements 3-49
Find Structure Field Names . 3-49
Strategies for Passing Structures . 3-49

Explore libstruct Objects . 3-51

MATLAB Prototype Files . 3-52
When to Use Prototype Files . 3-52
How to Create Prototype Files . 3-52
How to Specify Thunk Files . 3-53

xii Contents

Deploy Applications That Use loadlibrary 3-53
loadlibrary in Parallel Computing Environment 3-53
Change Function Signature . 3-53
Rename Library Function . 3-53
Load Subset of Functions in Library 3-53
Call Function with Variable Number of Arguments 3-54

Intro to MEX-Files
4

Introducing MEX Files . 4-3

Using MEX Files . 4-4

MEX File Placement . 4-5
MEX Files on Windows Network Drives 4-5

Use Help Files with MEX Files . 4-6

MATLAB Data . 4-7
The MATLAB Array . 4-7
Lifecycle of mxArray . 4-7
Data Storage . 4-8
MATLAB Types . 4-10
Sparse Matrices . 4-11
Using Data Types . 4-12

Testing for Most-Derived Class . 4-15
Testing for a Category of Types . 4-15
Another Test for Built-In Types . 4-16

Build MEX File . 4-17

Linking Multiple Files . 4-18

What You Need to Build MEX Files . 4-19

Change Default Compiler . 4-20
Windows Systems . 4-20
Mac and Linux Systems . 4-21

xiii

Do Not Use mex -f optionsfile Syntax 4-21

Custom Build with MEX Script Options 4-23
Include Files . 4-23

Compiling MEX Files with the Microsoft Visual C++ IDE . . 4-24

Call LAPACK and BLAS Functions . 4-26
What You Need to Know . 4-26
Creating a MEX File Using LAPACK and BLAS Functions . 4-26
Preserving Input Values from Modification 4-28
Passing Arguments to Fortran Functions from C/C++

Programs . 4-29
Passing Arguments to Fortran Functions from Fortran

Programs . 4-30
Handling Complex Numbers in LAPACK and BLAS

Functions . 4-31
Modifying the Function Name on UNIX Systems 4-34

Running MEX Files with .DLL File Extensions on Windows
32-Bit Platforms . 4-35

Upgrade MEX-Files to Use 64-Bit API 4-36
MATLAB Support for 64-Bit Indexing 4-36
MEX Uses 32-Bit API by Default . 4-36
What If I Do Not Upgrade? . 4-38
How to Upgrade MEX-Files to Use the 64-Bit API 4-38

Upgrade MEX Files to Use Graphics Objects 4-47
Replace mexGet and mexSet Functions 4-47
mex Automatically Converts Handle Type 4-50
I Want to Rebuild MEX Source Code Files 4-50
I Do Not Have MEX Source Code File 4-50

Platform Compatibility . 4-52
Verify the MEX File Is Built for Your Platform 4-52
Verify Your Architecture on Windows Platforms 4-52

Invalid MEX File Error . 4-53

Run MEX File You Receive from Someone Else 4-54

MEX File Dependent Libraries . 4-55

xiv Contents

Document Build Information in the MEX File 4-56

Version Compatibility . 4-58

Getting Help When MEX Fails . 4-59
Errors Finding Supported Compiler 4-59
Errors Building MEX Function . 4-59
Preview mex Build Commands . 4-60

Understanding MEX File Problems . 4-61
Problem 1 — Compiling a Source MEX File Fails 4-63
Problem 2 — Compiling Your Own Program Fails 4-63
Problem 3 — Binary MEX File Load Errors 4-64
Problem 4 — Segmentation Fault . 4-65
Problem 5 — Program Generates Incorrect Results 4-65

Compiler- and Platform-Specific Issues 4-66
Linux gcc Compiler Version Error 4-66
Linux gcc -fPIC Errors . 4-66

Memory Management Issues . 4-67
Overview . 4-67
Improperly Destroying an mxArray 4-68
Incorrectly Constructing a Cell or Structure mxArray 4-68
Creating a Temporary mxArray with Improper Data 4-69
Creating Potential Memory Leaks . 4-70
Improperly Destroying a Structure 4-70
Destroying Memory in a C++ Class Destructor 4-71

Compiler Errors in Fortran MEX Files 4-73

C/C++ MEX-Files
5

Components of MEX File . 5-3
mexFunction Gateway Routine . 5-3
Naming the MEX File . 5-3
Required Parameters . 5-3
Managing Input and Output Parameters 5-4
Validating Inputs . 5-4

xv

Computational Routine . 5-5

MATLAB API Libraries . 5-6
Matrix Library . 5-6
MEX Library . 5-6
Preprocessor Macros . 5-6

User Messages . 5-8

Error Handling . 5-9

Data Flow in MEX Files . 5-10
Showing Data Input and Output . 5-10
Gateway Routine Data Flow Diagram 5-11

Creating C++ MEX Files . 5-13
Creating Your C++ Source File . 5-13
Compiling and Linking . 5-13
Memory Considerations for Class Destructors 5-13
Use mexPrintf to Print to MATLAB Command Window . . . 5-14

C++ Class in MEX Files . 5-15

Handle Files with C++ . 5-16
C++ Example . 5-16
C Example . 5-16

Create C Source MEX File . 5-18

Table of MEX File Source Code Files 5-24

Choose a C++ Compiler . 5-28
Select Microsoft Visual Studio Compiler 5-28
Select MinGW-w64 Compiler . 5-28

Set Up C/C++ Examples . 5-30

Pass Scalar Values . 5-31
Pass Scalar as Matrix . 5-31
Pass Scalar by Value . 5-32

Pass Strings . 5-34

xvi Contents

Handling Strings in C/C++ . 5-36
How MATLAB Represents Strings in MEX-Files 5-36
Character Encoding and Multibyte Encoding Schemes 5-36
Converting MATLAB String to C-Style String 5-37
Converting C-Style String to MATLAB String 5-37
Returning Modified Input String . 5-37
Memory Management . 5-37

Pass Multiple Inputs or Outputs . 5-39

Pass Structures and Cell Arrays . 5-41

Create 2-D Cell Array . 5-42

Fill mxArray . 5-43
Options . 5-43
Copying Data Directly into an mxArray 5-43
Pointing to Data . 5-43

Prompt User for Input . 5-45

Handle Complex Data . 5-46

Handle 8-, 16-, and 32-Bit Data . 5-47

Manipulate Multidimensional Numerical Arrays 5-48

Handle Sparse Arrays . 5-50

Call MATLAB Functions from C/C++ MEX Files 5-51

Debugging on Microsoft Windows Platforms 5-52
Notes on Debugging . 5-53

Debugging on Linux Platforms . 5-54

Debugging on Mac Platforms . 5-56
Using Xcode . 5-56
Using LLDB . 5-58

Handling Large mxArrays . 5-61
Using the 64-Bit API . 5-61
Building the Binary MEX File . 5-63

xvii

Example . 5-63
Caution Using Negative Values . 5-63
Building Cross-Platform Applications 5-64

Memory Management . 5-65
Automatic Cleanup of Temporary Arrays 5-65
Example . 5-66
Persistent Arrays . 5-66

Handling Large File I/O . 5-68
Prerequisites to Using 64-Bit I/O . 5-68
Specifying Constant Literal Values 5-70
Opening a File . 5-70
Printing Formatted Messages . 5-71
Replacing fseek and ftell with 64-Bit Functions 5-71
Determining the Size of an Open File 5-72
Determining the Size of a Closed File 5-73

Install MinGW-w64 Compiler . 5-74
Installing Compiler from Add-Ons Menu 5-74
Building yprime.c Example . 5-75
MinGW Installation Folder Cannot Contain Space 5-75
Updating MEX Files to Use MinGW Compiler 5-75

Troubleshooting and Limitations Compiling C/C++ MEX Files
with MinGW-w64 . 5-77

Do Not Link to Library Files Compiled with Non-MinGW
Compilers . 5-77

MinGW Compiler Not Setup for Use with MEX 5-77
MinGW Installation Folder Cannot Contain Space 5-78
MEX Command Does not Choose MinGW 5-78
Manually Configure MinGW for MATLAB 5-78
Potential Memory Leak Inside C++ MEX Files on Using MEX

Exceptions . 5-79
Unhandled Explicit Exceptions in C++ MEX Files Unexpectedly

Terminate MATLAB . 5-80
Out of Memory Error for Variables Containing Large Amounts

of Data . 5-81

xviii Contents

Fortran MEX-Files
6

Components of Fortran MEX File . 6-2
mexFunction Gateway Routine . 6-2
Naming the MEX File . 6-2
Difference Between .f and .F Files 6-2
Required Parameters . 6-3
Managing Input and Output Parameters 6-3
Validating Inputs . 6-4
Computational Routine . 6-4

MATLAB Fortran API Libraries . 6-5
Matrix Library . 6-5
MEX Library . 6-5
Preprocessor Macros . 6-5
Using the Fortran %val Construct . 6-6

Data Flow in Fortran MEX Files . 6-8
Showing Data Input and Output . 6-8
Gateway Routine Data Flow Diagram 6-9

User Messages . 6-11

Error Handling . 6-12

Build Fortran MEX File . 6-13

Create Fortran Source MEX File . 6-14

Set Up Fortran Examples . 6-19

Pass Scalar Values . 6-20

Pass Strings . 6-21

Pass Arrays of Strings . 6-22

Pass Matrices . 6-23

Pass Integers . 6-24

xix

Pass Multiple Inputs or Outputs . 6-25

Handle Complex Data . 6-26

Dynamically Allocate Memory . 6-27

Handle Sparse Matrices . 6-28

Call MATLAB Functions from Fortran MEX Files 6-29

Debug Fortran Source MEX-Files . 6-31
Notes on Debugging . 6-31
Debugging on Microsoft Windows Platforms 6-31
Debugging on Linux Platforms . 6-31

Handling Large mxArrays . 6-34
Using the 64-Bit API . 6-34
Building the Binary MEX File . 6-36
Caution Using Negative Values . 6-36
Building Cross-Platform Applications 6-36

Memory Management . 6-37

MATLAB Supports Fortran 77 . 6-38

Calling MATLAB Engine from C/C++ and Fortran
Programs

7
Introducing MATLAB Engine API for C/C++ and Fortran . . 7-2

Communicating with MATLAB Software 7-3

Callbacks in Applications . 7-4

Call MATLAB Functions from C/C++ Applications 7-5

Call MATLAB Functions from Fortran Applications 7-7

Attach to Existing MATLAB Sessions 7-9

xx Contents

Build Windows Engine Application . 7-11

Run Windows Engine Application . 7-13

Set Run-Time Library Path on Windows Systems 7-14
Change Path Each Time You Run the Application 7-14
Permanently Change Path . 7-14
Troubleshooting . 7-15

Register MATLAB as a COM Server 7-16

Build Linux Engine Application . 7-17

Run Linux Engine Application . 7-18

Set Run-Time Library Path on Mac and Linux Systems . . . 7-19
C Shell . 7-19
Bourne Shell . 7-20

Build Engine Applications with IDE 7-21
Configuring the IDE . 7-21
Engine Include Files . 7-21
Engine Libraries . 7-21
Library Files Required by libeng . 7-22

Can't Start MATLAB Engine . 7-24

Debug MATLAB Functions Used in Engine Applications . . 7-25

Multithreaded Applications . 7-26

User Input Not Supported . 7-27

Getting Started . 7-28

MATLAB Engine for Python Topics
8

Get Started with MATLAB Engine for Python 8-2

xxi

Install MATLAB Engine for Python . 8-5
Verify Python and MATLAB Installations 8-5
Install Engine . 8-5
Build Engine in Nondefault Folder . 8-6
Install Engine in Nondefault Folder 8-6
Install Engine in Your Home Folder 8-6
Set Run-Time Paths To Python Code 8-7

Start and Stop MATLAB Engine for Python 8-8
Start MATLAB Engine for Python . 8-8
Run Multiple Engines . 8-8
Stop MATLAB Engine . 8-8
Start Engine with Startup Options . 8-9

Connect Python to Running MATLAB Session 8-10
Connect to Shared MATLAB Session 8-10
Connect to Multiple Shared MATLAB Sessions 8-11
Start Shared MATLAB Sessions with Startup Options 8-11

Call MATLAB Functions from Python 8-13
Return Output Argument from MATLAB Function 8-13
Return Multiple Output Arguments from MATLAB Function 8-13
Return No Output Arguments from MATLAB Function 8-13
Stop Execution of Function . 8-14

Call MATLAB Functions Asynchronously from Python . . . 8-15

Call User Script and Function from Python 8-16

Redirect Standard Output and Error to Python 8-18

Use MATLAB Handle Objects in Python 8-19

Use MATLAB Engine Workspace in Python 8-21

Pass Data to MATLAB from Python 8-22
Python Type to MATLAB Scalar Type Mapping 8-22
Python Container to MATLAB Array Type Mapping 8-22
Unsupported Python Types . 8-23

Handle Data Returned from MATLAB to Python 8-24
MATLAB Scalar Type to Python Type Mapping 8-24
MATLAB Array Type to Python Type Mapping 8-25

xxii Contents

Unsupported MATLAB Types . 8-25

MATLAB Arrays as Python Variables 8-27
Create MATLAB Arrays in Python 8-27
MATLAB Array Attributes and Methods in Python 8-29
Multidimensional MATLAB Arrays in Python 8-29
Index Into MATLAB Arrays in Python 8-29
Slice MATLAB Arrays in Python . 8-30
Reshape MATLAB Arrays in Python 8-31

Use MATLAB Arrays in Python . 8-32

Sort and Plot MATLAB Data from Python 8-34

Get Help for MATLAB Functions from Python 8-38
How to Find MATLAB Help . 8-38
Open MATLAB Help Browser from Python 8-38
Display MATLAB Help at Python Prompt 8-39

Default Numeric Types in MATLAB and Python 8-40

System Requirements for MATLAB Engine for Python . . . 8-42
Python Version Support . 8-42
64-bit or 32-bit Versions of Python and MATLAB 8-43
Requirements for Building Python from Source 8-43

Limitations to MATLAB Engine for Python 8-44

Troubleshoot MATLAB Errors in Python 8-45
MATLAB Errors in Python . 8-45
MatlabExecutionError: Undefined Function 8-45
SyntaxError: Expression Not Valid Target 8-46
SyntaxError: Invalid Syntax . 8-46

Using Java Libraries from MATLAB
9

Call Method on Java Object . 9-2

xxiii

Java Libraries . 9-3
Java Software Is Integral to MATLAB 9-3
When to Use Java Libraries in MATLAB 9-3
To Learn More About Java Programming Language 9-4
Platform Support for JVM Software 9-4

Bring Java Classes into MATLAB Workspace 9-5
Introduction . 9-5
Defining New Java Classes . 9-5
Java Class Path . 9-5
Making Java Classes Available in MATLAB Workspace 9-7
Loading Java Class Definitions . 9-9
Simplifying Java Class Names Using import Function 9-9
Locating Native Method Libraries . 9-10

Convert Java String to Uppercase . 9-12

Use Class in Java JAR File on Static Class Path 9-13

Call User-Defined Java Class on Dynamic Class Path 9-14

Java Objects . 9-15
Overview . 9-15
Constructing Java Objects . 9-15
Concatenating Java Objects . 9-17
Saving and Loading Java Objects to MAT-Files 9-18
Finding the Public Data Fields of an Object 9-19
Accessing Private and Public Data 9-20
Determining the Class of an Object 9-21

Java Object Methods . 9-23
Calling Syntax . 9-23
Obtaining Method Information . 9-25
Java Methods That Affect MATLAB Commands 9-28
How MATLAB Handles Undefined Methods 9-29
Handling Java Exceptions . 9-30
Method Execution in MATLAB . 9-30

Java Arrays . 9-31
Introduction . 9-31
How MATLAB Represents the Java Array 9-31
Creating an Array of Objects in MATLAB 9-35
Accessing Elements of a Java Array 9-38

xxiv Contents

Assigning to a Java Array . 9-41
Concatenating Java Arrays . 9-44
Creating a New Array Reference . 9-45
Creating a Copy of a Java Array . 9-46

Pass Data to Java Methods . 9-48
Introduction . 9-48
Conversion of MATLAB Argument Data 9-48
Passing Built-In Types . 9-50
Converting Numbers to Integer Arguments 9-51
Passing String Arguments . 9-52
Passing Java Objects . 9-52
Other Data Conversion Topics . 9-55
Passing Data to Overloaded Methods 9-56

Handle Data Returned from Java Methods 9-58
Introduction . 9-58
Conversion of Java Return Types . 9-58
Conversion of Java Object Return Types 9-59
Built-In Types . 9-59
Converting Objects to MATLAB Types 9-60

Read URL . 9-64
Overview . 9-64
Description of URLdemo . 9-64
Running the Example . 9-65

Find Internet Protocol Address . 9-66
Overview . 9-66
Description of resolveip . 9-66
Running the Example . 9-67

Create and Use Phone Book . 9-68
Overview . 9-68
Description of Function phonebook 9-69
Description of Function pb_lookup 9-73
Description of Function pb_add . 9-73
Description of Function pb_remove 9-74
Description of Function pb_change 9-75
Description of Function pb_listall . 9-76
Description of Function pb_display 9-77
Description of Function pb_keyfilter 9-77
Running the phonebook Program . 9-78

xxv

Java Heap Memory Preferences . 9-80

Using .NET Libraries from MATLAB
10

Read Cell Arrays of Excel Spreadsheet Data 10-4

Access a Simple .NET Class . 10-6
System.DateTime Example . 10-6
Create .NET Object From Constructor 10-7
View Information About .NET Object 10-7
Introduction to .NET Data Types . 10-9

Load a Global .NET Assembly . 10-11

Work with Microsoft Excel Spreadsheets Using .NET 10-12

Work with Microsoft Word Documents Using .NET 10-14

Assembly is Library of .NET Classes 10-15

Limitations to .NET Support . 10-16

System Requirements for Using MATLAB Interface
to .NET . 10-18

MATLAB Configuration File . 10-18

Using .NET from MATLAB . 10-19
Benefits of the MATLAB .NET Interface 10-19
Why Use the MATLAB .NET Interface? 10-19
NET Assembly Integration Using MATLAB Compiler SDK 10-20
To Learn More About the .NET Framework 10-20

Using a .NET Object . 10-21
Creating a .NET Object . 10-21
What Classes Are in a .NET Assembly? 10-21
Using the delete Function on a .NET Object 10-22

Build a .NET Application for MATLAB Examples 10-23

xxvi Contents

Troubleshooting Security Policy Settings From Network
Drives . 10-24

.NET Terminology . 10-25
.NET Framework System Namespace 10-25
Reference Type Versus Value Type 10-25

Simplify .NET Class Names . 10-26

Use import in MATLAB Functions 10-27

Nested Classes . 10-28

Handle .NET Exceptions . 10-29

Pass Numeric Arguments . 10-30
Call .NET Methods with Numeric Arguments 10-30
Use .NET Numeric Types in MATLAB 10-30

Pass System.String Arguments . 10-31
Call .NET Methods with System.String Arguments 10-31
Use System.String in MATLAB . 10-31

Pass System.Enum Arguments . 10-33
Call .NET Methods with System.Enum Arguments 10-33
Use System.Enum in MATLAB . 10-34

Pass System.Nullable Arguments . 10-35

Pass Cell Arrays of .NET Data . 10-39
Example of Cell Arrays of .NET Data 10-39
Create a Cell Array for Each System.Object 10-40
Create MATLAB Variables from the .NET Data 10-40
Call MATLAB Functions with MATLAB Variables 10-40

Pass Jagged Arrays . 10-42
Create System.Double .NET Jagged Array 10-42
Call .NET Method with System.String Jagged Array

Arguments . 10-42
Call .NET Method with Multidimensional Jagged Array

Arguments . 10-43

Convert Nested System.Object Arrays 10-45

xxvii

Pass Data to .NET Objects . 10-46
Pass Primitive .NET Types . 10-46
Pass Cell Arrays . 10-47
Pass Nonprimitive .NET Objects . 10-48
Pass MATLAB Strings . 10-48
Pass System.Nullable Type . 10-48
Pass NULL Values . 10-49
Unsupported MATLAB Types . 10-49
Choosing Method Signatures . 10-49
Example — Choosing a Method Signature 10-50
Pass Arrays . 10-51
Pass MATLAB Arrays as Jagged Arrays 10-52

Handle Data Returned from .NET Objects 10-53
.NET Type to MATLAB Type Mapping 10-53
How MATLAB Handles System.String 10-54
How MATLAB Handles System.__ComObject 10-55
How MATLAB Handles System.Nullable 10-56
How MATLAB Handles dynamic Type 10-57
How MATLAB Handles Jagged Arrays 10-57

Use Arrays with .NET Applications 10-58
Passing MATLAB Arrays to .NET 10-58
Accessing .NET Array Elements in MATLAB 10-58
Converting .NET Jagged Arrays to MATLAB Arrays 10-59

Convert .NET Arrays to Cell Arrays 10-60
Convert Nested System.Object Arrays 10-60
cell Function Syntax for System.Object[,] Arrays 10-61

Limitations to Support of .NET Arrays 10-63

Set Static .NET Properties . 10-64
System.Environment.CurrentDirectory Example 10-64
Do Not Use ClassName.PropertyName Syntax for Static

Properties . 10-64

Using .NET Properties . 10-66
How MATLAB Represents .NET Properties 10-66
How MATLAB Maps C# Property and Field Access

Modifiers . 10-66

MATLAB Does Not Display Protected Properties 10-68

xxviii Contents

Work with .NET Methods Having Multiple Signatures . . . 10-69
Display Function Signature Example 10-70

Call .NET Methods With out Keyword 10-71

Call .NET Methods With ref Keyword 10-73

Call .NET Methods With params Keyword 10-75

Call .NET Methods with Optional Arguments 10-77
Setting Up the Examples . 10-77
Skip Optional Arguments . 10-77
Call Overloaded Methods . 10-78

Calling .NET Methods . 10-80
Calling Object Methods . 10-80
Getting Method Information . 10-80
C# Method Access Modifiers . 10-80
VB.NET Method Access Modifiers 10-81
Reading Method Signatures . 10-81

Calling .NET Methods with Optional Arguments 10-83
Skipping Optional Arguments . 10-83
Determining Which Overloaded Method Is Invoked 10-83
Support for ByRef Attribute in VB.NET 10-83

Calling .NET Extension Methods . 10-84

Call .NET Properties That Take an Argument 10-85

How MATLAB Represents .NET Operators 10-87

Limitations to Support of .NET Methods 10-88
Overloading MATLAB Functions . 10-88

Use .NET Events in MATLAB . 10-89
Monitor Changes to .TXT File . 10-89
Monitor Changes to Windows Form ComboBox 10-89

Call .NET Delegates in MATLAB . 10-92
Declare a Delegate in a C# Assembly 10-92
Load the Assembly Containing the Delegate into MATLAB 10-92
Select a MATLAB Function . 10-92

xxix

Create an Instance of the Delegate in MATLAB 10-93
Invoke the Delegate Instance in MATLAB 10-93

Create Delegates from .NET Object Methods 10-94

Create Delegate Instances Bound to .NET Methods 10-95
Example — Create a Delegate Instance Associated with a .NET

Object Instance Method . 10-95
Example — Create a Delegate Instance Associated with a

Static .NET Method . 10-96

Call Delegates With out and ref Type Arguments 10-97

Combine and Remove .NET Delegates 10-98

.NET Delegates . 10-100

Calling .NET Methods Asynchronously 10-101
How MATLAB Handles Asynchronous Method Calls

in .NET . 10-101
Calling a Method Asynchronously Using a Callback When an

Asynchronous Call Finishes . 10-101
Calling a Method Asynchronously Without a Callback . . . 10-103
Using EndInvoke With out and ref Type Arguments . . . 10-104
Using Polling to Detect When Asynchronous Call Finishes 10-104

Limitations to Support of .NET Events 10-105
MATLAB Support of Standard Signature of an Event Handler

Delegate . 10-105

Limitations to Support of .NET Delegates 10-106

Use Bit Flags with .NET Enumerations 10-107
How MATLAB Supports Bit-Wise Operations on
System.Enum . 10-107

Creating .NET Enumeration Bit Flags 10-107
Removing a Flag from a Variable 10-108
Replacing a Flag in a Variable . 10-108
Testing for Membership . 10-109

Read Special System Folder Path 10-111

.NET Enumerations in MATLAB . 10-112

xxx Contents

Default Methods for an Enumeration 10-113

NetDocEnum Example Assembly . 10-115

Work with Members of a .NET Enumeration 10-116

Refer to a .NET Enumeration Member 10-118
Using the Implicit Constructor . 10-118

Display .NET Enumeration Members as Character
Strings . 10-120

Convert .NET Enumeration Values to Type Double 10-121

Iterate Through a .NET Enumeration 10-122
Information About System.Enum Methods 10-122
Display Enumeration Member Names 10-123

Use .NET Enumerations to Test for Conditions 10-124
Using Switch Statements . 10-124
Using Relational Operations . 10-124

Underlying Enumeration Values . 10-126

Limitations to Support of .NET Enumerations 10-127

Create .NET Collections . 10-128

Convert .NET Collections to MATLAB Arrays 10-130

Create .NET Arrays of Generic Type 10-131

Display .NET Generic Methods Using Reflection 10-132
showGenericMethods Function . 10-132
Display Generic Methods in a Class 10-133
Display Generic Methods in a Generic Class 10-134

.NET Generic Classes . 10-135

Accessing Items in .NET Collections 10-136

Call .NET Generic Methods . 10-137
Using the NetDocGeneric Example 10-137

xxxi

Invoke Generic Class Member Function 10-138
Invoke Static Generic Functions 10-138
Invoke Static Generic Functions of a Generic Class 10-138
Invoke Generic Functions of a Generic Class 10-139

Using COM Objects from MATLAB
11

MATLAB COM Integration . 11-2
Concepts and Terminology . 11-2
COM Objects, Clients, and Servers 11-2
Interfaces . 11-3
The MATLAB COM Client . 11-3
The MATLAB COM Automation Server 11-4

Registering Controls and Servers . 11-5
Accessing COM Controls Created with .NET 11-5
Verifying the Registration . 11-5

Getting Started with COM . 11-7
Creating an Instance of a COM Object 11-7
Getting Information About a Particular COM Control 11-7
Getting an Object's ProgID . 11-8
Registering a Custom Control . 11-8

Use Internet Explorer in MATLAB Figure 11-10
Techniques Demonstrated . 11-10
Using the Figure to Access Properties 11-10
Complete Code Listing . 11-11
Creating the Figure . 11-12
Calculating the ActiveX Object Container Size 11-12
Automatic Resize . 11-13
Selecting Graphics Objects . 11-13

Add Grid ActiveX Control in a Figure 11-15
Techniques Demonstrated . 11-15
Using the Control . 11-15
Complete Code Listing . 11-16
Preparing to Use the Control . 11-17
Creating a Figure to Contain the Control 11-18

xxxii Contents

Creating an Instance of the Control 11-19
Using Mouse-Click Event to Plot Data 11-20
Managing Figure Resize . 11-21
Closing the Figure . 11-22

Read Spreadsheet Data Using Excel as Automation
Server . 11-23

Techniques Demonstrated . 11-23
Using the UI . 11-23
Complete Code Listing . 11-24
Excel Spreadsheet Format . 11-24
Excel Automation Server . 11-25
Manipulating the Data in the MATLAB Workspace 11-26
The Plotter UI . 11-26
Inserting MATLAB Graphs Into Excel Spreadsheets 11-28

Supported Client/Server Configurations 11-30
Introduction . 11-30
MATLAB Client and In-Process Server 11-30
MATLAB Client and Out-of-Process Server 11-31
COM Implementations Supported by MATLAB Software . . 11-32
Client Application and MATLAB Automation Server 11-32
Client Application and MATLAB Engine Server 11-33

MATLAB COM Client Support
12

Create COM Objects . 12-3
Creating the Server Process — An Overview 12-3
Creating an ActiveX Control . 12-4
Creating a COM Server . 12-10

Handle COM Data in MATLAB . 12-12
Passing Data to COM Objects . 12-12
Handling Data from COM Objects 12-14
Unsupported Types . 12-15
Passing MATLAB Data to ActiveX Objects 12-15
Passing MATLAB SAFEARRAY to COM Object 12-15
Reading SAFEARRAY from COM Objects in MATLAB

Applications . 12-17

xxxiii

Displaying MATLAB Syntax for COM Objects 12-18

COM Object Properties . 12-21
MATLAB Functions for Object Properties 12-21
Work with Multiple Objects . 12-21
Enumerated Values for Properties 12-22
Property Inspector . 12-22
Custom Properties . 12-23
Properties That Take Arguments 12-23

COM Methods . 12-24
Getting Method Information . 12-24
Calling Object Methods . 12-24
Specifying Enumerated Parameters 12-25
Skipping Optional Input Arguments 12-25
Returning Multiple Output Arguments 12-26

COM Events . 12-27

COM Event Handlers . 12-29
Overview of Event Handling . 12-29
Arguments Passed to Event Handlers 12-29
Event Structure . 12-30

COM Object Interfaces . 12-32
IUnknown and IDispatch Interfaces 12-32
Custom Interfaces . 12-33

Save and Delete COM Objects . 12-35
Functions for Saving and Restoring COM Objects 12-35
Releasing COM Interfaces and Objects 12-35

MATLAB Application as DCOM Client 12-37

Explore COM Objects . 12-38
Exploring Properties . 12-38
Exploring Methods . 12-39
Exploring Events . 12-39
Exploring Interfaces . 12-40
Identifying Objects and Interfaces 12-40

Change Row Height in Range of Spreadsheet Cells 12-42

xxxiv Contents

Write Data to Excel Spreadsheet Using ActiveX 12-44

Change Cursor in Spreadsheet . 12-46

Insert Spreadsheet After First Sheet 12-47

Redraw Circle in mwsamp Control . 12-48

Connect to Existing Excel Application 12-50

Display Message for Workbook OnClose Event 12-51

Run Macro in Excel Server Application 12-52

Combine Event Handlers as MATLAB Local Functions . . 12-53

MATLAB Sample ActiveX Control mwsamp 12-54

Display Event Messages from mwsamp Control 12-55

Add Position Property to mwsamp Control 12-58

Save mwsamp2 COM Control . 12-59

Deploy ActiveX Controls Requiring Run-Time Licenses . . 12-60
Create a Function to Build the Control 12-60
Build the Control and the License File 12-60
Build the Executable . 12-61
Deploy the Files . 12-61

Microsoft Forms 2.0 Controls . 12-62
Affected Controls . 12-62
Replacement Controls . 12-62

COM Collections . 12-64

MATLAB COM Support Limitations 12-65

Interpreting Argument Callouts in COM Error Messages . 12-66

xxxv

MATLAB COM Automation Server Support
13

Register MATLAB as Automation Server 13-2
When to Register MATLAB . 13-2
Register from System Prompt . 13-2
Register from MATLAB Command Prompt 13-3

MATLAB COM Automation Server Interface 13-4
COM Server Types . 13-4
Shared and Dedicated Servers . 13-4
Programmatic Identifiers . 13-4
In-Process and Out-of-Process Servers 13-5

Create MATLAB Server . 13-7
Getting Started . 13-7
Get or Set the Status of a MATLAB Automation Server . . . 13-8

Connect to Existing MATLAB Server 13-9
Using Visual Basic .NET Code . 13-9

MATLAB Application as DCOM Server 13-10

VT_DATE Data Type . 13-11

Data Types For Visual Basic .NET Clients 13-12

Visible Property . 13-13

Shared or Dedicated Server . 13-14
Starting a Shared Server . 13-14
Starting a Dedicated Server . 13-14

Manually Create Automation Server 13-15

Launch MATLAB as Automation Server in Desktop Mode 13-16

Call MATLAB Function from Visual Basic .NET Client . . . 13-17

Pass Complex Data to MATLAB from C# Client 13-18

Call MATLAB Function from C# Client 13-20

xxxvi Contents

View MATLAB Functions from Visual Basic .NET Object
Browser . 13-22

Waiting for MATLAB Application to Complete 13-23

Conversion of MATLAB Types to COM Types 13-24
Variant Data . 13-25
SAFEARRAY Data . 13-25

Conversion of COM Types to MATLAB Types 13-26

Using Web Services with MATLAB
14

Set Up WSDL Tools . 14-2

Display a World Map . 14-3

Using WSDL Web Service with MATLAB 14-8
What Are Web Services in MATLAB? 14-8
What are WSDL Documents? . 14-8
What You Need to Use WSDL with MATLAB 14-9

Access Services That Use WSDL Documents 14-10

Error Handling . 14-12
Considerations Using Web Services 14-12
Error Handling with try/catch Statements 14-12
Use a Local Copy of the WSDL Document 14-12
Java Errors Accessing Service . 14-13
Anonymous Types Not Supported 14-13

XML-MATLAB Data Type Conversion 14-14

Limitations to WSDL Document Support 14-16

xxxvii

System Commands
15

Shell Escape Functions . 15-2

Run External Commands, Scripts, and Programs 15-3
Run UNIX Programs off System Path 15-4

Change Environment Variable for Shell Command 15-6

Serial Port I/O
16

Capabilities and Supported Interfaces and Platforms 16-2
What Is the MATLAB Serial Port Interface? 16-2
Supported Serial Port Interface Standards 16-3
Supported Platforms . 16-3
Using the Examples with Your Device 16-3

Overview of the Serial Port . 16-4
Introduction . 16-4
What Is Serial Communication? . 16-4
The Serial Port Interface Standard 16-4
Connecting Two Devices with a Serial Cable 16-5
Serial Port Signals and Pin Assignments 16-6
Serial Data Format . 16-10
Finding Serial Port Information for Your Platform 16-13
Using Virtual USB Serial Ports . 16-15
Selected Bibliography . 16-15

Getting Started with Serial I/O . 16-16
Example: Getting Started . 16-16
The Serial Port Session . 16-16
Configuring and Returning Properties 16-17

Create a Serial Port Object . 16-22
Overview of a Serial Port Object . 16-22
Configuring Properties During Object Creation 16-23
The Serial Port Object Display . 16-24

xxxviii Contents

Creating an Array of Serial Port Objects 16-24

Connect to the Device . 16-26

Configure Communication Settings 16-27

Write and Read Data . 16-28
Before You Begin . 16-28
Example — Introduction to Writing and Reading Data . . . 16-28
Controlling Access to the MATLAB Command Line 16-29
Writing Data . 16-30
Reading Data . 16-35
Example — Writing and Reading Text Data 16-41
Example — Parsing Input Data Using textscan 16-42
Example — Reading Binary Data 16-43

Events and Callbacks . 16-46
Introduction . 16-46
Example — Introduction to Events and Callbacks 16-46
Event Types and Callback Properties 16-47
Respond To Event Information . 16-49
Create and Execute Callback Functions 16-51
Enable Callback Functions After They Error 16-52
Example — Using Events and Callbacks 16-52

Control Pins . 16-54
Properties of Serial Port Control Pins 16-54
Signaling the Presence of Connected Devices 16-54
Controlling the Flow of Data: Handshaking 16-57

Debugging: Recording Information to Disk 16-60
Introduction . 16-60
Recording Properties . 16-60
Example: Introduction to Recording Information 16-61
Creating Multiple Record Files . 16-61
Specifying a Filename . 16-61
The Record File Format . 16-62
Example: Recording Information to Disk 16-63

Save and Load . 16-66
Using save and load . 16-66
Using Serial Port Objects on Different Platforms 16-66

xxxix

Disconnect and Clean Up . 16-68
Disconnect a Serial Port Object . 16-68
Clean Up the MATLAB Environment 16-68

Property Reference . 16-70
The Property Reference Page Format 16-70
Serial Port Object Properties . 16-70

Properties — Alphabetical List . 16-74

Hardware Support
17

Support Package Installation . 17-2
What Is a Support Package? . 17-2
Install Support Packages . 17-2
Install Downloaded Support Package on Multiple

Computers . 17-3
Troubleshoot Timed Out Connections 17-4

Support Package Installer Help . 17-5
About Support Package Installer . 17-5
Select an Action . 17-6
Select Support Package to Install or Select Support Package to

Download . 17-7
Log In to MathWorks Account . 17-10
The MathWorks, Inc. Software License Agreement 17-12
Third-Party Software Licenses . 17-13
Confirm Installation, Confirm Download, Confirm

Uninstall . 17-14
Install or Update Complete, Download Complete, Uninstall

Complete . 17-15
Set Up Support Package . 17-16
Support Package Setup Complete 17-18
Special Instructions . 17-18

MATLAB Supported Hardware . 17-19

1

Python Interface Topics

• “Install Supported Python Implementation” on page 1-3
• “Call Python from MATLAB” on page 1-4
• “Call User-Defined Python Module” on page 1-10
• “Use Python Numeric Types in MATLAB” on page 1-12
• “Call Python Methods with Numeric Arguments” on page 1-13
• “Default Numeric Types” on page 1-14
• “Use Python array Types in MATLAB” on page 1-15
• “Pass MATLAB String to Python Method” on page 1-16
• “Use Python str Type in MATLAB” on page 1-17
• “Pass MATLAB Backslash Control Character” on page 1-18
• “Create Python list Variable” on page 1-19
• “Use Python list Type in MATLAB” on page 1-20
• “Use Python List of Numeric Types in MATLAB” on page 1-22
• “Pass Cell Array as Python Sequence Type” on page 1-23
• “Read Element of Nested list Type” on page 1-25
• “Use Python tuple Type in MATLAB” on page 1-26
• “Create Python tuple Variable” on page 1-27
• “Create Singleton Python tuple Variable” on page 1-28
• “Create Python dict Variable” on page 1-29
• “Pass dict Argument to Python Method” on page 1-30
• “Use Python dict Type in MATLAB” on page 1-31
• “Convert Python dict Type to MATLAB Structure” on page 1-33
• “Pass Keyword Arguments” on page 1-34
• “Pass Python Function to Python map Function” on page 1-35
• “Index into Python String” on page 1-36

1 Python Interface Topics

1-2

• “Index into Python List” on page 1-37
• “Index into Python Tuple” on page 1-39
• “Index into Python dict” on page 1-40
• “Use Python List as Values in for Loop” on page 1-41
• “Display Stepped Range of Elements” on page 1-42
• “Access Elements in Python Container Types” on page 1-43
• “View Python Numeric Values” on page 1-46
• “Call Methods on Python Variables” on page 1-48
• “Reload Modified User-Defined Python Module” on page 1-50
• “System and Configuration Requirements” on page 1-52
• “Create a Python Object” on page 1-54
• “Pass Data to Python” on page 1-57
• “Handle Data Returned from Python” on page 1-60
• “How MATLAB Represents Python Operators” on page 1-62
• “Execute Callable Python Object” on page 1-64
• “Python import and MATLAB import Commands” on page 1-65
• “List, Tuple, and Dictionary Types” on page 1-67
• “Limitations to Python Support” on page 1-68
• “Limitations to Indexing into Python Objects” on page 1-69
• “Undefined variable "py" or function "py.command"” on page 1-70
• “Help for Python Functions” on page 1-73
• “Handle Python Exceptions” on page 1-74
• “Troubleshooting Error Messages” on page 1-75
• “Using Python Data in MATLAB” on page 1-77
• “Call Python eval Function” on page 1-78
• “Precedence Order of Methods and Functions” on page 1-80
• “Python Function Arguments” on page 1-81

 Install Supported Python Implementation

1-3

Install Supported Python Implementation

In this section...

“Install Python Version 2.7” on page 1-3
“Install Python Version 3.3 or 3.4” on page 1-3

Install Python Version 2.7

• Access https://www.python.org/downloads and scroll down to the Looking for a
specific release section.

• Find the 2.7 version you want and click Download.
• Click the format you want, and follow the online instructions.

Note: For 64-bit MATLAB® on Microsoft® Windows® systems, select the 64-bit
Python® version, called <fo:inline keep-together.within-line="always">Windows
x86-64 MSI</fo:inline> installer.

Install Python Version 3.3 or 3.4

• Access https://www.python.org/downloads and scroll down to the Looking for a
specific release section.

• Find the 3.3/3.4 version you want and click Download.
• Click the format you want, and follow the online instructions.

Note: For 64-bit MATLAB on Windows systems, select the 64-bit Python version,
called Windows <fo:inline keep-together.within-line="always">x86-64</fo:inline> MSI
installer.

See Also
pyversion

More About
• “MATLAB Cannot Find Python” on page 1-71

https://www.python.org/downloads
https://www.python.org/downloads

1 Python Interface Topics

1-4

Call Python from MATLAB

These examples show how to use Python® language functions and modules within
MATLAB®. The first example calls a text-formatting module from the Python standard
library. The second example shows how to use a third-party module, Beautiful Soup. If
you want to run that example, follow the guidelines in the step for installing the module.

MATLAB supports the reference implementation of Python, often called CPython,
versions 2.7, 3.3, and 3.4. If you are on a Mac or Linux platform, you already have Python
installed. If you are on Windows, you need to install a distribution, such as those found at
https://www.python.org/download, if you have not already done so. For more information,
see “Install Supported Python Implementation”.

Call a Python Function to Wrap Text in a Paragraph

MATLAB has equivalencies for much of the Python standard library, but not everything.
For example, textwrap is a module for formatting blocks of text with carriage returns
and other conveniences. MATLAB also provides a textwrap function, but it only wraps
text to fit inside a UI control.

Create a paragraph of text to play with.

T = 'MATLAB(R) is a high-level language and interactive environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java(TM).';

Convert a Python String to a MATLAB String

Call the textwrap.wrap function by typing the characters py. in front of the function
name. Do not type import textwrap.

wrapped = py.textwrap.wrap(T);

whos wrapped

 Name Size Bytes Class Attributes

 wrapped 1x7 112 py.list

wrapped is a Python list, which is a list of Python strings. MATLAB shows this type as
py.list.

Convert py.list to a cell array of Python strings.

wrapped = cell(wrapped);

whos wrapped

http://www.crummy.com/software/BeautifulSoup/
https://www.python.org/download
http://docs.python.org/2/library/

 Call Python from MATLAB

1-5

 Name Size Bytes Class Attributes

 wrapped 1x7 1568 cell

Although wrapped is a MATLAB cell array, each cell element is a Python string.

wrapped{1}

ans =

 Python str with no properties.

 MATLAB(R) is a high-level language and interactive environment for

Convert the Python strings to MATLAB strings using the char function.

wrapped = cellfun(@char, wrapped, 'UniformOutput', false);

wrapped{1}

ans =

MATLAB(R) is a high-level language and interactive environment for

Now each cell element is a MATLAB string.

Customize the Paragraph

Customize the output of the paragraph using keyword arguments.

The previous code uses the wrap convenience function, but the module provides
many more options using the py.textwap.TextWrapper functionality. To use the
options, call py.textwap.TextWrapper with keyword arguments described at https://
docs.python.org/2/library/textwrap.html#textwrap.TextWrapper.

Create keyword arguments using the MATLAB pyargs function with a comma-
separated list of name/value pairs. width formats the text to be 30 characters wide.
The initial_indent and subsequent_indent keywords begin each line with the
comment character, %, used by MATLAB.

tw = py.textwrap.TextWrapper(pyargs(...

https://docs.python.org/2/library/textwrap.html#textwrap.TextWrapper
https://docs.python.org/2/library/textwrap.html#textwrap.TextWrapper

1 Python Interface Topics

1-6

 'initial_indent', '% ', ...

 'subsequent_indent', '% ', ...

 'width', int32(30)));

wrapped = wrap(tw,T);

Convert to a MATLAB argument and display the results.

wrapped = cellfun(@char, cell(wrapped), 'UniformOutput', false);

fprintf('%s\n', wrapped{:})

% MATLAB(R) is a high-level

% language and interactive

% environment for numerical

% computation, visualization,

% and programming. Using

% MATLAB, you can analyze

% data, develop algorithms,

% and create models and

% applications. The language,

% tools, and built-in math

% functions enable you to

% explore multiple approaches

% and reach a solution faster

% than with spreadsheets or

% traditional programming

% languages, such as C/C++ or

% Java(TM).

Use Beautiful Soup, a Third-Party Python Module

This example shows how to use a third-party module, Beautiful Soup, a tool for parsing
HTML. If you want to run the example, you need to install this module using apt-get,
pip, easy_install, or other tool you use to install Python modules.

First, find a Web page that includes a table of data. This example uses a table of the
population of the world from the following English-language Wikipedia site. This
example assumes the first table contains the population data, and assumes the country
name is in the second column and the third column contains the population.

html = webread('http://en.wikipedia.org/wiki/List_of_countries_by_population');

soup = py.bs4.BeautifulSoup(html);

Next, extract all of the table data from the HTML, creating a cell array. If you want a
deeper understanding of what is happening, refer to the documentation for Beautiful
Soup.

http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/

 Call Python from MATLAB

1-7

tables = soup.find_all('table');

t = cell(tables);

The first table is the one of interest; extract its rows.

c = cell(t{1}.find_all('tr'));

c = cell(c)';

Now loop over the cell array, extracting the country name and population from each row,
found in the second and third columns respectively.

countries = cell(size(c));

populations = nan(size(c));

for i = 1:numel(c)

 row = c{i};

 row = cell(row.find_all('td'));

 if ~isempty(row)

 countries{i} = char(row{2}.get_text());

 populations(i) = str2double(char(row{3}.get_text()));

 end

end

Finally, create a MATLAB table from the data, and eliminate any lingering nan values;
these NaNs represented invalid rows when importing the HTML.

data = table(countries, populations, ...

 'VariableNames', {'Country', 'Population'});

data = data(~isnan(data.Population), :);

Trim the tail end of the table and make a pie chart

restofWorldPopulation = sum(data.Population(11:end));

data = data(1:10, :);

data = [data;table({' Rest of World'}, restofWorldPopulation, ...

 'VariableNames', {'Country', 'Population'})]

pie(data.Population)

legend(data.Country, 'Location', 'EastOutside');

title('Distribution of World Population')

data =

 Country Population

1 Python Interface Topics

1-8

 ________________ __________

 ' China[8]' 1.3679e+09

 ' India' 1.2624e+09

 ' United States' 3.1908e+08

 ' Indonesia' 2.5216e+08

 ' Brazil' 2.0344e+08

 ' Pakistan' 1.8813e+08

 ' Nigeria' 1.7852e+08

 ' Bangladesh' 1.5731e+08

 ' Russia[9]' 1.4615e+08

 ' Japan' 1.2709e+08

 ' Rest of World' 2.9697e+09

 Call Python from MATLAB

1-9

Learn More

It is sufficient to remember that Python is yet another potential source of libraries for the
MATLAB user. If you want to learn about moving data between MATLAB and Python,
including Python data types such as tuples and dictionaries, see “Call Python Libraries”.

1 Python Interface Topics

1-10

Call User-Defined Python Module

This example shows how to call methods from the following Python module. This module
contains functions used by examples in this documentation.

Change your current folder to a writable folder.

Open a new file in MATLAB Editor.

Copy these commands and save the file as mymod.py.

mymod.py

"""Python module demonstrates passing MATLAB types to Python functions"""

def search(words):

 """Return list of words containing 'son'"""

 newlist = [w for w in words if 'son' in w]

 return newlist

def theend(words):

 """Append 'The End' to list of words"""

 words.append('The End')

 return words

From the MATLAB command prompt, add the current folder to the Python search path.

if count(py.sys.path,'') == 0

 insert(py.sys.path,int32(0),'');

end

In the mymod.py source file, read the function signature for the search function. The
function takes one input argument, words.

def search(words):

Read the function help in the mymod.py source file. According to the Python website
documentation, help is in “a string literal that occurs as the first statement in a module,
function, class, or method definition.” The help for search is:

"""Return list of words containing 'son'"""

The function returns a list.

Create an input argument, a list of names, in MATLAB.

 Call User-Defined Python Module

1-11

N = py.list({'Jones','Johnson','James'})

N =

 Python list with no properties.

 ['Jones', 'Johnson', 'James']

Call the search function. Type py. in front of the module name and function name.

names = py.mymod.search(N)

names =

 Python list with no properties.

 ['Johnson']

The function returns a py.list value.

The original input, N is unchanged.

N

N =

 Python list with no properties.

 ['Jones', 'Johnson', 'James']

Related Examples
• “Reload Modified User-Defined Python Module” on page 1-50

External Websites
• PEP 257 -- Docstring Conventions

http://legacy.python.org/dev/peps/pep-0257/

1 Python Interface Topics

1-12

Use Python Numeric Types in MATLAB

This example shows how to use Python numbers in MATLAB. The trigonometry
functions in the math module return Python float types. MATLAB automatically
converts this type to double.

pynum = py.math.radians(90)

class(pynum)

pynum =

 1.5708

ans =

double

More About
• “Pass Data to Python” on page 1-57

 Call Python Methods with Numeric Arguments

1-13

Call Python Methods with Numeric Arguments

This example shows how to call the Python math.fsum function, which sums the
floating-point values in an interable input argument.

Open the MATLAB patients.mat sample data file and read the numeric array,
Height.

load patients.mat

class(Height)

ans =

double

MATLAB automatically converts the numeric values to Python numeric values. However,
Height is a 100-by-1 array, and MATLAB must pass a 1-by-N array to a Python
iterable argument.

size(Height)

ans =

 100 1

Transform Height to a 1-by-N matrix before calling fsum.

py.math.fsum(Height')

ans =

 6707

More About
• “Pass Data to Python” on page 1-57

1 Python Interface Topics

1-14

Default Numeric Types

By default, a number in MATLAB is a double type. By default, a number (without a
fractional part) in Python is an integer type. This difference can cause confusion when
passing numbers to Python functions.

For example, when you pass the following MATLAB numbers to the Python datetime
function, Python reads them as float types.

d = py.datetime.date(2014,12,31)

Python Error: TypeError: integer argument expected, got float

Explicitly convert each number to an integer type:

d = py.datetime.date(int32(2014),int32(12),int32(31))

d =

 Python date with properties:

 day: 31

 month: 12

 year: 2014

 2014-12-31

 Use Python array Types in MATLAB

1-15

Use Python array Types in MATLAB

This example shows how to sum the elements of a Python array.array of type double.

Suppose that you have a Python function that returns the following array, P.

P =

 Python array with properties:

 itemsize: 8

 typecode: [1x1 py.str]

 array('d', [1.0, 2.0, 3.0, 4.0, 5.0])

Convert P to a MATLAB array of type double.

A = double(P);

Sum the elements of A.

sum(A)

ans =

 15

1 Python Interface Topics

1-16

Pass MATLAB String to Python Method

This example shows how to display the contents of a folder using the Python
os.listdir method. The listdir method returns a list containing the names of the
entries in the folder given by the path input argument.

Create a MATLAB string representing a valid folder.

folder = fullfile(matlabroot,'help','examples');

Pass the string to the os.listdir function. MATLAB automatically converts folder to
the Python str type.

F = py.os.listdir(folder)

F =

 Python list with no properties.

 ['graphics', 'graphics2', 'matlab']

MATLAB displays a list of folders, based on your product.

More About
• “Pass Data to Python” on page 1-57

 Use Python str Type in MATLAB

1-17

Use Python str Type in MATLAB

This example shows how to use the Python path separator character (;).

p = py.os.path.pathsep

p =

 Python str with no properties.

 ;

In MATLAB, a Python character is a py.str variable.

MATLAB uses the same path separator character, ;.

c = pathsep

c =

;

Compare the MATLAB variable type to the Python type.

isequal(class(p),class(c))

ans =

 0

A py.str type is not equivalent to a MATLAB char type.

Convert p to a MATLAB type and append the character to a file name.

f = ['myfile' char(p)]

f =

myfile;

More About
• “Explicit Type Conversions” on page 1-60

1 Python Interface Topics

1-18

Pass MATLAB Backslash Control Character

This example shows how to pass the backslash control character (\) to a Python str
type.

Insert the new line control character, \n, by calling the MATLAB sprintf function.

py.str(sprintf('The rain\nin Spain.'))

ans =

 Python str with no properties.

 The rain

 in Spain.

Python replaces \n with a new line.

Without the sprintf function, both MATLAB and Python interpret \ as a literal
backslash.

py.str('The rain\nin Spain.')

ans =

 Python str with no properties.

 The rain\nin Spain.

Pass this string to a Python string method, split.

split(py.str('The rain\nin Spain.'))

ans =

 Python list with no properties.

 ['The', 'rain\\nin', 'Spain.']

Python treats the MATLAB string as a raw string and adds a \ character to preserve the
original backslash.

 Create Python list Variable

1-19

Create Python list Variable

This example shows how to create a list variable to pass to a Python function.

students = py.list({'Robert','Mary','Joseph'})

students =

 Python list with no properties.

 ['Robert', 'Mary', 'Joseph']

Display number of students in the list.

n = py.len(students)

n =

 3

More About
• “List, Tuple, and Dictionary Types” on page 1-67

1 Python Interface Topics

1-20

Use Python list Type in MATLAB

This example shows how to display folders on your system using the MATLAB disp
function on the Python sys.path variable. sys.path is a list type.

Create a Python list, P, of folders on the Python search path.

P = py.sys.path;

class(P)

ans =

py.list

Convert list P to a MATLAB type. The first step is to convert the list to a cell array of
folder names, cP.

cP = cell(P);

class(cP)

ans =

cell

Each folder name is a Python string.

class(cP{1})

ans =

py.str

Convert the Python strings in cP to MATLAB strings using the char function. Put the
values into a new cell array, cellP. Display the folder names.

cellP = cell(1, numel(cP));

for n=1:numel(cP)

 strP = char(cP{n});

 cellP(n) = {strP};

 disp(strP)

end

C:\Python27\lib\site-packages\protobuf-2.5.0-py2.7.egg

C:\windows\system32\python27.zip

C:\Python27\DLLs

 Use Python list Type in MATLAB

1-21

C:\Python27\lib

C:\Python27\lib\plat-win

C:\Python27\lib\lib-tk

C:\Python27

C:\Python27\lib\site-packages

MATLAB displays information specific to your Python installation.

Alternatively, create cellP using the cellfun function to combine the conversion
functions.

cellP = cellfun(@char,cell(P),'UniformOutput',false);

Display the folder names.

for n=1:py.len(P)

 disp(cellP{n})

end

See Also
cell | cellfun

More About
• “Handle Data Returned from Python” on page 1-60

1 Python Interface Topics

1-22

Use Python List of Numeric Types in MATLAB

This example shows how to convert a Python list of numeric values into a MATLAB
array of double.

A Python list contains elements of any type and can contain elements of mixed types. The
MATLAB double function used in this example assumes all elements of the Python list
are numeric.

Suppose that you have a Python function that returns the following list of integers, P.

P =

 Python list with no properties.

 [1, 2, 3, 4]

Display the numeric type of the values.

class(P{1})

ans =

int64

Convert P to a MATLAB cell array.

cP = cell(P);

Convert the cell array to a MATLAB array of double.

A = cellfun(@double,cP)

A =

 1 2 3 4

See Also
cell | cellfun

Related Examples
• “Use Python array Types in MATLAB” on page 1-15

 Pass Cell Array as Python Sequence Type

1-23

Pass Cell Array as Python Sequence Type

This example shows how to pass a MATLAB cell array to a Python function.

The following Python module contains the function theend, which appends a string
to the end of a list. Create a text file, copy this Python module, and save the file as
mymod.py in a writable folder, for example, your prefdir folder.

mymod.py

"""Python module demonstrates passing MATLAB types to Python functions"""

def search(words):

 """Return list of words containing 'son'"""

 newlist = [w for w in words if 'son' in w]

 return newlist

def theend(words):

 """Append 'The End' to list of words"""

 words.append('The End')

 return words

Add the folder containing mymod.py to the Python search path using the append method
of the list type.

P = py.sys.path;

append(P,prefdir);

Open the MATLAB sample data file, creating the cell array, LastName.

load patients.mat

Convert the cell array to a 1-by-N py.list array.

L = py.list(LastName');

class(L)

ans =

py.list

Call mymod.theend on the list.

py.mymod.theend(L);

The Python function does not return variable L as an output argument. Instead, the
function updates the value by reference.

1 Python Interface Topics

1-24

View the last item in the list.

L{end}

ans =

 Python str with no properties.

 The End

You can pass variable L to other Python functions.

Related Examples
• “Use Python list Type in MATLAB” on page 1-20

 Read Element of Nested list Type

1-25

Read Element of Nested list Type

This example shows how to access an element of a Python list containing list
elements.

matrix = py.list({{1, 2, 3, 4},{'hello','world'},{9, 10}});

Display element 'world', at index (2,2).

disp(char(matrix{2}{2}))

world

More About
• “Multilevel Indexing to Access Parts of Cells”

1 Python Interface Topics

1-26

Use Python tuple Type in MATLAB

This example shows how to use a Python tuple, returned by the os.path.split
function, in MATLAB.

pn = py.os.path.split('C:\Program Files\MATLAB\R2014a\help\examples')

pn =

 Python tuple with no properties.

 ('C:\\Program Files\\MATLAB\\R2014a\\help', 'examples')

Convert the parts of the folder to MATLAB strings and display the results.

head = char(pn{1})

tail = char(pn{end})

head =

C:\Program Files\MATLAB\R2014a\help

tail =

examples

 Create Python tuple Variable

1-27

Create Python tuple Variable

This example shows how to create a tuple variable to pass to a Python function.

student = py.tuple({'Robert',19,'Biology'})

student =

 Python tuple with no properties.

 ('Robert', 19.0, 'Biology')

More About
• “List, Tuple, and Dictionary Types” on page 1-67

1 Python Interface Topics

1-28

Create Singleton Python tuple Variable

This example shows how to create a tuple variable with a single element.

subject = py.tuple({'Biology'})

subject =

 Python tuple with no properties.

 ('Biology',)

A tuple with one element has a trailing comma.

 Create Python dict Variable

1-29

Create Python dict Variable

This example shows how to create a dict variable to pass to a Python function.

studentID = py.dict(pyargs('Robert',357,'Mary',229,'Jack',391))

studentID =

 Python dict with no properties.

 {'Robert': 357.0, 'Jack': 391.0, 'Mary': 229.0}

More About
• “List, Tuple, and Dictionary Types” on page 1-67

1 Python Interface Topics

1-30

Pass dict Argument to Python Method

This example shows how to change a value in a dict variable using the Python update
method.

Create a menu of items and prices.

menu = py.dict(pyargs('soup',3.57,'bread',2.29,'bacon',3.91,'salad',5.00));

Update the price for bread using the Python dict type update method.

update(menu,py.dict(pyargs('bread',2.50)))

menu

menu =

 Python dict with no properties.

 {'soup': 3.57, 'bacon': 3.91, 'bread': 2.5, 'salad': 5.0}

 Use Python dict Type in MATLAB

1-31

Use Python dict Type in MATLAB

This example shows how to convert numerical values of a Python dict variable into a
MATLAB array.

Suppose that you have a Python function, myfunc, that returns menu items and prices in
a dictionary, dict, type.

order = myfunc;

order =

 Python dict with no properties.

 {'soup': 3.57, 'bacon': 3.91, 'salad': 5.0, 'bread': 2.29}

A dictionary has pairs of keys and values. Use the Python keys function to display the
menu items.

keys(order)

ans =

 Python list with no properties.

 ['soup', 'bacon', 'salad', 'bread']

Use the Python values function to display the prices.

values(order)

ans =

 Python list with no properties.

 [3.57, 3.91, 5.0, 2.29]

Use the cell function to convert the Python list to a MATLAB variable.

p = cell(values(order))

p =

 [3.5700] [3.9100] [5] [2.2900]

1 Python Interface Topics

1-32

Convert the prices to a MATLAB array.

prices = cellfun(@double,p)

prices =

 3.57 3.91 5.00 2.29

Calculate the total.

total = sum(prices)

total =

 14.77

 Convert Python dict Type to MATLAB Structure

1-33

Convert Python dict Type to MATLAB Structure

This example shows how to plot numeric data from a Python dictionary.

Suppose a Python function returns a variable, patient, with the following values.

patient

patient =

 Python dict with no properties.

 {'test1': array('d', [79.0, 75.0, 73.0]),

 'test3': array('d', [220.0, 210.0, 205.0]),

 'test2': array('d', [180.0, 178.0, 177.5]),

 'name': 'John Doe'}

Convert patient to a MATLAB structure.

P = struct(patient)

P =

 test1: [1x1 py.array.array]

 test3: [1x1 py.array.array]

 test2: [1x1 py.array.array]

 name: [1x8 py.str]

The values of the fields remain as Python types.

Plot the test results after converting the numeric data to type double.

bar([double(P.test1);double(P.test2);double(P.test3)])

MATLAB displays a bar graph.

1 Python Interface Topics

1-34

Pass Keyword Arguments

The Python built-in print function has keyword arguments, sep, end, and file.

print(*objects, sep=' ', end='\n', file=sys.stdout)

The following examples use the default value for file.

Create some string variables.

x1 = py.str('c:');

x2 = py.os.curdir;

x3 = py.os.getenv('foo');

py.print(x1,x2,x3)

c: . None

To display the values on separate lines, use newline, \n, as a separator.

py.print(x1,x2,x3,pyargs('sep',sprintf('\n')))

c:

.

None

Use the following statement to change sep to an empty string and change the end value
to display THE END.

py.print(x1,x2,x3,pyargs('end', sprintf(' THE END\n'),'sep',py.str))

c:.None THE END

See Also
pyargs

External Websites
• python.org print function

https://docs.python.org/2/library/functions.html#print

 Pass Python Function to Python map Function

1-35

Pass Python Function to Python map Function

This example shows how to display the length of each word in a list.

Create a list of days of the work week.

days = py.list({'Monday','Tuesday','Wednesday','Thursday','Friday'});

Apply the Python len function to the py.map function to display the length of each word.
Use the MATLAB function handle notation, @, to indicate py.len is a function.

py.map(@py.len,days)

ans =

 Python list with no properties.

 [6, 7, 9, 8, 6]

Python version 2.7 returns a list.

Python versions 3.x return a map object. To display the contents, type:

py.list(py.map(@py.len,days))

ans =

 Python list with no properties.

 [6, 7, 9, 8, 6]

External Websites
• python.org map function

https://docs.python.org/2/library/functions.html#map

1 Python Interface Topics

1-36

Index into Python String

This example shows how to display the first character of a Python str variable. The
example compares indexing into a MATLAB string with indexing into the Python
variable.

Create a MATLAB string and display the first character.

str = 'myfile';

str(1)

ans =

m

Convert the string to a Python str type and display the first character.

pstr = py.str(str);

pstr(1)

ans =

 Python str with no properties.

 m

 Index into Python List

1-37

Index into Python List

This example shows how to display the last element in a Python list variable. The
example compares indexing into a MATLAB cell array with indexing into a Python list.

Create a MATLAB cell array and display the last element.

C = {1,2,3,4};

n = C(end)

n =

 [4]

MATLAB returns a cell array.

Display the contents of the last element.

n = C{end}

n =

 4

Convert the cell array to a Python list.

li = py.list(C)

li =

 Python list with no properties.

 [1.0, 2.0, 3.0, 4.0]

Display the last element.

n = li(end)

n =

 Python list with no properties.

 [4.0]

MATLAB returns a list.

1 Python Interface Topics

1-38

Display the contents of the last element.

n = li{end}

n =

 4

 Index into Python Tuple

1-39

Index into Python Tuple

This example shows how to display elements in a tuple.

Create a tuple and display the first two elements.

t = py.tuple({'a','bc',1,2,'def'});

t(1:2)

ans =

 Python tuple with no properties.

 ('a', 'bc')

MATLAB returns a tuple.

1 Python Interface Topics

1-40

Index into Python dict

This example shows how to display an element in a dictionary.

Create a dictionary variable.

customers = py.dict

customers =

 Python dict with no properties.

 {}

Populate the dict with customer names and account numbers.

customers{'Smith'} = int32(2112);

customers{'Anderson'} = int32(3010);

customers{'Audrey'} = int32(4444);

customers{'Megan'} = int32(5000);

customers =

 Python dict with no properties.

 {'Audrey': 4444, 'Anderson': 3010, 'Smith': 2112, 'Megan': 5000}

The output depends on your Python version.

Read the account number for customer Anderson.

acct = customers{'Anderson'}

acct =

 3010

The result is a double.

class(acct)

ans =

double

 Use Python List as Values in for Loop

1-41

Use Python List as Values in for Loop

This example shows how to display elements of a Python list.

li = py.list({1,2,3,4});

for n = li

 disp(n{1})

end

 1

 2

 3

 4

Variable n is a py.list with one element.

More About
• “Access Elements in Python Container Types” on page 1-43

1 Python Interface Topics

1-42

Display Stepped Range of Elements

This example shows how to use an incremental step in indexing.

If you use slicing to access elements of a Python object, the format in Python is
start:stop:step. In MATLAB, the syntax is of the form start:step:stop.

li = py.list({'a','bc',1,2,'def'});

li(1:2:end)

ans =

 Python list with no properties.

 ['a', 1.0, 'def']

 Access Elements in Python Container Types

1-43

Access Elements in Python Container Types

In this section...

“Sequence Types” on page 1-43
“Mapping Types” on page 1-44
“Size and Dimensions” on page 1-44
“Array Support” on page 1-45
“Use Zero-Based Indexing for Python Functions” on page 1-45

Typically, to work with a Python variable in MATLAB, you convert the Python object
to a MATLAB array, and then index into the array as needed. Sometimes, you want to
preserve the Python object.

A Python container is typically a sequence type (list or tuple) or a mapping type
(dict). In Python, use square brackets [] or the operator.getitem function to access
an element in the container.

Sequence Types

Python sequence types behave like MATLAB cell arrays.

Get a subsequence using smooth-parenthesis () indexing.

li = py.list({1,2,3,4});

res = li(2:3)

res =

 Python list with no properties.

 [2.0, 3.0]

Use curly braces {} to get the contents of the element.

res = li{1}

res =

 1

1 Python Interface Topics

1-44

Mapping Types

For mapping types, use curly braces with the Python key argument.

patient = py.dict(pyargs('name','John Doe','billing',127));

patient{'billing'}

ans =

 127

Size and Dimensions

MATLAB displays information for your system.

p = py.sys.path;

class(p)

ans =

py.list

Index into p.

p(1)

p{1}

ans =

 Python list with no properties.

 ['c:\\work']

ans =

 Python str with no properties.

 c:\work

Inspect dimensions.

len = length(p)

sz = size(p)

 Access Elements in Python Container Types

1-45

len =

 11

sz =

 1 11

Array Support

MATLAB converts a sequence type into a 1-by-N array.

Use Zero-Based Indexing for Python Functions

Python uses zero-based indexing; MATLAB uses one-based indexing. When you
call a Python function, such as py.sys.path, the index value of the first element
of a Python container, x, is int32(0). The index value for the last element is
int32(py.len(x)-1).

Related Examples
• “Index into Python String” on page 1-36
• “Index into Python List” on page 1-37
• “Index into Python Tuple” on page 1-39
• “Index into Python dict” on page 1-40

More About
• “Explicit Type Conversions” on page 1-60
• “Limitations to Indexing into Python Objects” on page 1-69
• “Pass MATLAB Backslash Control Character” on page 1-18

1 Python Interface Topics

1-46

View Python Numeric Values

In this section...

“Why Do I See Properties When I Display a Number?” on page 1-46
“What Is the L Character Attached to a Number?” on page 1-46

Why Do I See Properties When I Display a Number?

MATLAB displays all Python types as objects, including a list of properties of the object.

py.int(5)

ans =

 Python int with properties:

 denominator: 1

 imag: 0

 numerator: 5

 real: 5

 5

MATLAB displays the expected output value (5) on the last line.

What Is the L Character Attached to a Number?

Python appends an L character to the representation (display) of a long data type. For
example, using Python version 2.7, type:

py.repr(py.long(5))

ans =

 Python str with no properties.

 5L

MATLAB displays Python str and appends L for any Python function that uses the
repr function to display its output.

 View Python Numeric Values

1-47

You treat a long data type like any numeric type. For example, add two numbers:

py.long(5) + py.long(2)

ans =

 Python long with properties:

 denominator: [1x1 py.long]

 imag: [1x1 py.long]

 numerator: [1x1 py.long]

 real: [1x1 py.long]

 7

The answer is the number 7.

1 Python Interface Topics

1-48

Call Methods on Python Variables

This example shows how to update a Python list of folder names using the append
method.

Create a list of folders, P, using the Python sys.path variable.

P = py.sys.path;

Display the Python functions for a list type.

methods(P)

Methods for class py.list:

append count display ge insert lt plus reverse

cell details eq gt le mtimes pop sort

char disp extend index list ne remove

Methods of py.list inherited from handle.

Read the documentation for append.

py.help('list.append')

Help on method_descriptor in list:

list.append = append(...)

 L.append(object) -- append object to end

Add the current folder to the end of the path.

append(P,pwd)

Display number of folders on the path. The list has py.len elements.

py.len(P)

ans =

 Python int with properties:

 real: [1x1 py.int]

 denominator: [1x1 py.int]

 imag: [1x1 py.int]

 Call Methods on Python Variables

1-49

 numerator: [1x1 py.int]

 11

11 is the number of folders on this path. Your value might be different. The type of this
number is py.int.

Related Examples
• “Use Python list Type in MATLAB” on page 1-20

1 Python Interface Topics

1-50

Reload Modified User-Defined Python Module

This example shows how to reload a modified Python module.

When you use this workflow, MATLAB deletes all variables, scripts, and classes in the
workspace. For more information, see the clear classes function.

The Python calling syntax to reload the module depends on your Python version. To
verify your Python version, use the MATLAB pyversion function.

Create Python Module

Change your current folder to a writable folder. Open a new file in MATLAB Editor.

Copy these statements defining a myfunc function and save the file as mymod.py.

def myfunc():

 """Display message."""

 return 'version 1'

Call myfunc.

py.mymod.myfunc

ans =

 Python str with no properties.

 version 1

Modify Module

Modify the function, replacing the return statement with the following:

 return 'version 2'

Save the file.

Unload Module

clear classes

MATLAB deletes all variables, scripts, and classes in the workspace.

 Reload Modified User-Defined Python Module

1-51

Import Modified Module

mod = py.importlib.import_module('mymod');

Reload Module in Python Version 2.7

py.reload(mod);

Reload Module in Python Version 3.3

py.imp.reload(mod);

Reload Module in Python Version 3.4

py.importlib.reload(mod);

Call Function in Updated Module

Call the updated myfunc function.

py.mymod.myfunc

ans =

 Python str with no properties.

 version 2

See Also
clear | pyversion

Related Examples
• “Call User-Defined Python Module” on page 1-10

1 Python Interface Topics

1-52

System and Configuration Requirements

In this section...

“Python Version Support” on page 1-52
“Set Python Version on Windows Platform” on page 1-52
“Set Python Version on Mac and Linux Platforms” on page 1-53
“64-bit/32-bit Versions of Python on Windows Platforms” on page 1-53
“Requirements for Building Python Executable” on page 1-53

Python Version Support

To call Python modules in MATLAB you must have a supported version of the reference
implementation (CPython) installed on your system. MATLAB supports the following
versions:

• Version 2.7
• Version 3.3
• Version 3.4

To determine if your system has a supported version, use the pyversion function. The
value set by pyversion is persistent across MATLAB sessions.

You cannot switch between versions of Python in a single MATLAB session. MATLAB
automatically selects and loads a Python version when you type a Python command, such
as:

py.funcname

If you want to change versions, restart MATLAB and then run pyversion with the new
version information.

Set Python Version on Windows Platform

On Windows platforms, use either:

pyversion version

or

 System and Configuration Requirements

1-53

pyversion executable

Note: If you downloaded a Python interpreter, but did not register it in the Windows
registry, use:

pyversion executable

Set Python Version on Mac and Linux Platforms

To set the version, type:

pyversion executable

where executable is the full path to the Python executable file.

64-bit/32-bit Versions of Python on Windows Platforms

The architecture of Python must match the architecture of MATLAB. If you run a 64-bit
version of MATLAB, download a 64-bit version of Python. If you run a 32-bit version of
MATLAB, download a 32-bit version of Python.

Note: On the Python download website, downloads for Microsoft Windows platforms are
32-bit versions by default. To download the 64-bit version, choose options with the name
"Windows x86-64 MSI installer”.

Requirements for Building Python Executable

On Linux® and Mac systems, if you build the Python executable, configure the build with
the --enable-shared option.

See Also
pyversion

External Websites
• https://www.python.org/downloads

https://www.python.org/downloads

1 Python Interface Topics

1-54

Create a Python Object

The syntax to create a Python object pyObj is:

pyObj = py.modulename.ClassName(varargin)

where varargin is the list of constructor arguments specified by the __init__ method
in ClassName.

In MATLAB, Python objects are reference types (handle objects) and do not adhere to the
MATLAB copy-on-assignment and pass-by-value rules. When you copy a handle object,
only the handle is copied and both the old and new handles refer to the same data. When
you copy a MATLAB variable (a value object), the variable data is also copied. The new
variable is independent of changes to the original variable.

The following example creates an object of the TextWrapper class in the Python
standard library textwrap module.

Read the constructor signature, __init__.

py.help('textwrap.TextWrapper.__init__')

Help on method __init__ in textwrap.TextWrapper:

textwrap.TextWrapper.__init__ = __init__(self, width=70, initial_indent='', subsequent_indent='', expand_tabs=True, replace_whitespace=True, fix_sentence_endings=False, break_long_words=True, drop_whitespace=True, break_on_hyphens=True) unbound textwrap.TextWrapper method

Create a default TextWrapper object. You do not need to pass any input arguments
because each argument has a default value, identified by the equal sign (=) character.

tw = py.textwrap.TextWrapper;

tw =

 Python TextWrapper with properties:

 width: 70

 subsequent_indent: [1x1 py.str]

 wordsep_simple_re_uni: [1x1 py._sre.SRE_Pattern]

 fix_sentence_endings: 0

 break_on_hyphens: 1

 break_long_words: 1

 wordsep_re_uni: [1x1 py._sre.SRE_Pattern]

 initial_indent: [1x1 py.str]

 expand_tabs: 1

 Create a Python Object

1-55

 replace_whitespace: 1

 drop_whitespace: 1

 <textwrap.TextWrapper instance at 0x000000006D58F808>

To change a logical value, for example, the break_long_words property, type:

tw.break_long_words = 0;

To change a numeric value, for example, the width property, first determine the numeric
type.

class(tw.width)

ans =

int64

By default, when you pass a MATLAB number to a Python function, Python reads it
as a float. If the function expects an integer, Python might throw an error or produce
unexpected results. Explicitly convert the MATLAB number to an integer. For example,
type:

tw.width = int64(3);

Read the help for the wrap method.

py.help('textwrap.TextWrapper.wrap')

Help on method wrap in textwrap.TextWrapper:

textwrap.TextWrapper.wrap = wrap(self, text) unbound textwrap.TextWrapper method

 wrap(text : string) -> [string]

 Reformat the single paragraph in 'text' so it fits in lines of

 no more than 'self.width' columns, and return a list of wrapped

 lines. Tabs in 'text' are expanded with string.expandtabs(),

 and all other whitespace characters (including newline) are

 converted to space.

Create a list of wrapped lines, w, from input string, T.

T = 'MATLAB® is a high-level language and interactive environment for numerical computation, visualization, and programming.';

w = wrap(tw,T);

whos w

1 Python Interface Topics

1-56

 Name Size Bytes Class Attributes

 w 1x1 112 py.list

Convert the py.list to a cell array and display the results.

wrapped = cellfun(@char, cell(w), 'UniformOutput', false);

fprintf('%s\n', wrapped{:})

MATLAB®

is

a

high-

level

language

and

interactive

environment

for

numerical

computation,

visualization,

and

programming.

Although width is 3, setting the break_long_words property to false overrides the
width value in the display.

Related Examples
• “Call Python from MATLAB” on page 1-4
• “Pass Keyword Arguments” on page 1-34

More About
• “MATLAB Objects”

 Pass Data to Python

1-57

Pass Data to Python

In this section...

“MATLAB Type to Python Type Mapping” on page 1-57
“MATLAB Vector to Python Mapping” on page 1-58
“Unsupported MATLAB Types” on page 1-58

MATLAB Type to Python Type Mapping

When you pass MATLAB data as arguments to Python, MATLAB converts the data into
types that best represent the data to the Python language.

MATLAB Input Argument Type —
Scalar Values Only

Resulting Python Type

double

single

float

Complex single
Complex double

complex

int8

uint8

int16

uint16

int32

int

uint32

int64

uint64

int

long (version 2.7 only)

NaN float(nan)

Inf float(inf)

logical bool

Structure dict

Python object — py.type type

function handle @py.module.function, to
Python functions only

module.function

1 Python Interface Topics

1-58

MATLAB Vector to Python Mapping

MATLAB Input Argument Type —
1-by-N Vector

Resulting Python Type

double array.array('d')

single array.array('f')

int8 array.array('b')

uint8 array.array('B')

int16 array.array('h')

uint16 array.array('H')

int32 array.array('i')

uint32 array.array('I')

int64 (Not supported for Python 2.7 on
Windows)

array.array('q')

uint64 (Not supported for Python 2.7 on
Windows)

array.array('Q')

char array containing values greater than
intmax('uint8') (version 2.7 only)

unicode

char array str

cell vector tuple

Unsupported MATLAB Types

The following MATLAB types are not supported in Python.

Unsupported MATLAB Types

Multidimensional arrays (numeric, char, or cell)
Structure arrays
Complex, scalar integers or arrays
Sparse arrays
Logical vectors

 Pass Data to Python

1-59

Unsupported MATLAB Types

categorical,
table,
containers.Map,
datetime types
MATLAB objects
meta.class (py.class)

Related Examples
• “Pass dict Argument to Python Method” on page 1-30

More About
• “Handle Data Returned from Python” on page 1-60

1 Python Interface Topics

1-60

Handle Data Returned from Python

In this section...

“Automatic Python Type to MATLAB Type Mapping” on page 1-60
“Explicit Type Conversions” on page 1-60

Automatic Python Type to MATLAB Type Mapping

The following table shows how MATLAB converts data returned from Python into
MATLAB types.

Python Return Type, as Displayed in Python Resulting MATLAB Type — Scalar

bool logical

int (version 2.7 only). For Python versions
3.x int, you must convert explicitly.

int64

float double

complex Complex double
All other Python types — type Python object — py.type

Explicit Type Conversions

MATLAB provides the following functions to convert Python data types to MATLAB
types manually.

Python Return Type or Protocol, as Displayed
in MATLAB

MATLAB Conversion Function

py.str (version 2.7) char

uint8

py.str (version 3.x) char

py.unicode char

Object with __str__ method char

py.bytes uint8

 Handle Data Returned from Python

1-61

Python Return Type or Protocol, as Displayed
in MATLAB

MATLAB Conversion Function

py.int double

or
int64

py.long double

or
int64

py.array.arraya numeric

double

single

int8

uint8

int16

uint16

int32

uint32

int64

uint64

Sequence protocol; for example, py.list
and py.tuple

cell

Mapping protocol; for example, py.dict struct

a. You can convert py.array.array of any format to the MATLAB type you want.

More About
• “Pass Data to Python” on page 1-57

1 Python Interface Topics

1-62

How MATLAB Represents Python Operators

MATLAB supports the following overloaded operators.

Python Operator Symbol Python Methods MATLAB Methods

+ (binary) __add__, __radd__ plus, +
- (binary) __sub__, __rsub__ minus, -
* (binary) __mul__, __rmul__ mtimes, *
/ __truediv__,

__rtruediv__

mrdivide, /

== __eq__ eq, ==
> __gt__ gt, >
< __lt__ lt, <
!= __ne__ ne, ~=
>= __ge__ ge, >=
<= __le__ le, <=
- (unary) __neg__ uminus, -a
+ (unary) __pos__ uplus, +a

The following Python operators are not supported.

Python Operator Symbol Python Method

% __mod__, __rmod__
** __pow__, __rpow__
<< __lshift__, __rlshift__
>> __rshift__, __rrshift__
& __and__, __rand__
^ __xor__, __rxor__
| __or__, __ror__
// (binary) __floordiv__, __rfloordiv__
+= (unary) __iadd__

 How MATLAB Represents Python Operators

1-63

Python Operator Symbol Python Method

-= (unary) __isub__

*= (unary) __imul__

/= (unary) __itruediv__

//= (unary) __ifloordiv__

%= (unary) __imod__

**= (unary) __ipow__

<<= (unary) __ilshift__

>>= (unary) __irshift__

&= (unary) __iand__

^= (unary) __ixor__

!= (unary) __ior__

~ (unary) __invert__

1 Python Interface Topics

1-64

Execute Callable Python Object

To execute a callable Python object, use the feval function. For example, if instance obj
of a Python class is callable, replace the Python syntax obj(x1, ..., xn) with one of
the following MATLAB statement:

feval(obj,x1, ..., xn)

obj(x1, ..., xn)

See Also
feval

 Python import and MATLAB import Commands

1-65

Python import and MATLAB import Commands

In this section...

“Do Not Type “import pythonmodule”” on page 1-65
“Use MATLAB import to Shorten Class or Function Names” on page 1-65

Do Not Type “import pythonmodule”

MATLAB automatically loads Python when you type:

py.command

Do not type “import pythonmodule” in MATLAB.

The import statement does not have the same functionality in MATLAB as in Python.
Python uses the import statement to load and make code accessible. MATLAB uses the
import function to refer to a class or function without using the package name.

Use MATLAB import to Shorten Class or Function Names

The Python from...import statement lets you reference a module without using the
fully qualified name. Replace the following Python statement:

from x import y

with the MATLAB command

import x.y

where y is a class name or function name you want to use.

For example, the Python textwrap module formats blocks of text.

S = py.textwrap.wrap('This is a string');

Since wrap is not a MATLAB function, you can shorten the calling syntax using the
import function. After calling this command, you do not need to type the package (py)
and module (textwrap) names.

import py.textwrap.wrap

1 Python Interface Topics

1-66

S = wrap('This is a string');

Note: Do not call:

import py.*

If you do, MATLAB calls the Python function instead of the MATLAB function of the
same name.

If you call this command, you must call the MATLAB command:

clear import

See Also
import

 List, Tuple, and Dictionary Types

1-67

List, Tuple, and Dictionary Types

The following table shows the commands for creating list, tuple, and dict types. The
commands on the left are run from the Python interpreter. The commands on the right
are MATLAB commands.

Python list — [] MATLAB py.list

['Robert', 'Mary', 'Joseph'] py.list({'Robert','Mary','Joseph'})

[[1,2],[3,4]] py.list({py.list([1,2]),py.list([3,4])})

Python tuple — () MATLAB py.tuple

('Robert', 19, 'Biology') py.tuple({'Robert',19,'Biology'})

Python dict — {} MATLAB py.dict

{'Robert': 357, 'Joe': 391,

'Mary': 229}

py.dict(pyargs(...

'Robert',357,'Mary',229,'Joe',391))

See Also
pyargs

Related Examples
• “Use Python list Type in MATLAB” on page 1-20
• “Use Python tuple Type in MATLAB” on page 1-26
• “Use Python dict Type in MATLAB” on page 1-31

1 Python Interface Topics

1-68

Limitations to Python Support

Features Not Supported in MATLAB

Closing the Python interpreter while running MATLAB.
Saving (serializing) Python objects into a MAT-file.
Interactive Python help (calling py.help without input arguments).
py.input and py.raw_input (version 2.7).
Accessing static properties of a Python class.
MATLAB isa function does not recognize virtual inheritance.
MATLAB class inheritance from a Python class.
Overloaded attribute access.
Nested Python classes.
Modules that start MATLAB in a separate process, for example, the multiprocessing
module.
Modules that read sys.argv, the command-line arguments passed to a Python script,
for example, Tkinter.
Dynamically generated Python classes, for example, collections.namedtuple.
Dynamically attaching new object attributes. Instead, use py.setattr.
Class names or other identifiers starting with an underscore (_) character. Instead, use
the Python py.getattr and py.setattr functions.
Python modules generated by the MATLAB Compiler SDK™ product.

More About
• “Python import and MATLAB import Commands” on page 1-65
• “Unsupported MATLAB Types” on page 1-58

 Limitations to Indexing into Python Objects

1-69

Limitations to Indexing into Python Objects

You can access data in Python container objects, like lists and dictionaries, with index
values, similar to referencing an element in a MATLAB matrix. There are, however,
ways to index into matrices which are not supported for these Python types.

Indexing Features Not Supported in MATLAB

Use of square brackets, [].
Indexing into a container type that does not inherit from collections.Sequence or
collections.Mapping.
Logical indexing.
Accessing data in a container with an arbitrary array of indices. An index must be of the
form start:step:stop.
Comma-separated lists.
numel function does not return number of array elements. Returns 1.

More About
• “Matrix Indexing”

1 Python Interface Topics

1-70

Undefined variable "py" or function "py.command"

MATLAB automatically loads Python when you type py.command in the Command
Window. If MATLAB displays this message, a failure has occurred.

Undefined variable "py" or function "py.command"

Use this page to help troubleshoot the failure.

In this section...

“Python Not Installed” on page 1-70
“64-bit/32-bit Versions of Python on Windows Platforms” on page 1-70
“MATLAB Cannot Find Python” on page 1-71
“Error in User-Defined Python Module” on page 1-71
“Python Module Not on Python Search Path” on page 1-71
“Module Name Conflicts” on page 1-72
“Python Tries to Execute command in Wrong Module” on page 1-72

Python Not Installed

Python is not installed on your computer. Download and install Python from https://
www.python.org/downloads.

On Microsoft Windows, Python downloads the 32-bit version of Python by default. If you
run a 64-bit version of MATLAB, download a 64-bit version of Python, identified by the
name "Windows x86-64 MSI installer”. For more information, see “64-bit/32-bit Versions
of Python on Windows Platforms” on page 1-53.

On Linux and Mac systems, if you build Python from source files, configure the build
with the --enable-shared option.

64-bit/32-bit Versions of Python on Windows Platforms

You installed a 32-bit version of Python for a 64-bit version of MATLAB or a 64-bit
version of Python for a 32-bit version of MATLAB.

 Undefined variable "py" or function "py.command"

1-71

MATLAB Cannot Find Python

Python is in a nonstandard location. To provide the path to the Python executable, use
the pyversion function. For example:

pyversion C:\Users\uname\WinPython-64bit-3.3.2.1\python-3.3.2.amd64\python.exe

On Windows systems, Python is not found in the Windows registry. If you downloaded
a Python interpreter, but did not register it in the Windows registry, specify the Python
location using the command:

pyversion executable

Error in User-Defined Python Module

There is an error in the user-defined Python module. To test if your module, mymod,
contains errors, type:

py.importlib.import_module('mymod')

If Python detects an error in the module, MATLAB displays a Python error message.

Alternatively, execute the equivalent command at the Python command prompt to get
the Python error message.

After you fix the error, to access the updated module, restart MATLAB, and add it to the
search path.

Python Module Not on Python Search Path

If command is a valid Python command, make sure the Python module is on the Python
search path. To test if module mymod is on the path, type:

py.importlib.import_module('mymod')

If Python cannot find the module, MATLAB displays a Python error message.

To add mymod, in folder modpath, to the path, type:

P = py.sys.path;

if count(P,'modpath') == 0

 insert(P,int32(0),'modpath');

1 Python Interface Topics

1-72

end

The Python search path is associated with the Python interpreter loaded in the current
session of MATLAB. You can modify the search path in MATLAB, but the modifications
are not present if you run other instances of the interpreter outside of MATLAB.

Module Name Conflicts

If you call a Python module that has the same name as a module in the standard library
or any 3rd-party modules installed on your system, MATLAB might load the wrong
module.

Python Tries to Execute command in Wrong Module

If command is in a user-defined module, make sure that the module name does not
conflict with modules in the Python standard library, or any 3rd-party modules on your
system.

See Also
pyversion

More About
• “System and Configuration Requirements” on page 1-52

External Websites
• https://www.python.org/downloads

https://www.python.org/downloads

 Help for Python Functions

1-73

Help for Python Functions
For a complete description of Python functionality, consult outside resources, in
particular, python.org. There are different versions of the Python documentation, so be
sure to refer to the version corresponding to the version on your system. Many examples
in the MATLAB documentation refer to functions in the Python standard library.

To use functions in a third-party or user-defined Python module, refer to your vendor
product documentation for information about how to install the module and for details
about its functionality.

The py.help command displays the Python help found at www.python.org/doc. Help
for packages and classes can be extensive and might not be useful when displayed in the
MATLAB command window.

• Package

py.help('textwrap')

• Class

py.help('textwrap.TextWrapper')

• Method of a class

py.help('textwrap.TextWrapper.wrap')

• Function

py.help('textwrap.fill')

If MATLAB displays an error message beginning with Python Error:, refer to your
Python documentation for more information.

Note: You cannot use the interactive Python help, calling py.help without input
arguments, in MATLAB.

More About
• “Handle Python Exceptions” on page 1-74

External Websites
• www.python.org

https://www.python.org/

1 Python Interface Topics

1-74

Handle Python Exceptions

MATLAB catches exceptions thrown by Python and converts them into a
matlab.exception.PyException object, which is derived from the MException class.
For example:

try

 py.list('x','y',1)

catch e

 e.message

 if(isa(e,'matlab.exception.PyException'))

 e.ExceptionObject

 end

end

ans =

Python Error: TypeError: list() takes at most 1 argument (3 given)

ans =

 Python tuple with no properties.

 (<type 'exceptions.TypeError'>, TypeError('list() takes at most 1 argument (3 given)',), None)

If MATLAB displays an error message of the following format, refer to your Python
documentation for more information.

Python Error: Python class: message

See Also
matlab.exception.PyException

 Troubleshooting Error Messages

1-75

Troubleshooting Error Messages

Troubleshooting errors when using a MATLAB external interface is a challenge. Is the
error in the Python application or in your MATLAB code? Common errors include errors
reported by Python and errors from attempting to convert Python data to MATLAB and
conversely.

In this section...

“Python Error: Python class: message” on page 1-75
“Python Module Errors” on page 1-75
“Errors Converting Python Data” on page 1-76

Python Error: Python class: message

MATLAB displays an error message in the following format:

Python Error: Python class: message

MATLAB displays message only if there is a Python error message.

This error comes from Python and for information you must refer to your version of
Python documentation at www.python.org/doc or the product documentation from
third-party vendors. For example:

p = py.os.path.split(pwd);

py.operator.setitem(p,int32(1),py.str('temp'));

Python Error: TypeError: 'tuple' object does not support item assignment

Search for the term “tuple” on the Python documentation site for your version of Python.
Tuple is a built-in function described here: https://docs.python.org/2/library/
functions.html#tuple.

Python Module Errors

MATLAB reports some Python errors as a MATLAB error loading a module. For more
information, see “Undefined variable "py" or function "py.command"” on page 1-70.

If you write your own Python modules or modify the source code from an existing module,
test your MATLAB commands by writing the equivalent Python command in your

https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#tuple

1 Python Interface Topics

1-76

Python interpreter. This workflow is beyond the scope of MATLAB documentation and
product support.

Errors Converting Python Data

When the data is compatible, MATLAB automatically converts Python data to
MATLAB data. For the list of data types you must explicitly convert, see “Explicit Type
Conversions” on page 1-60.

For example, although MATLAB supports multidimensional arrays, you can only pass
vectors of data to Python.

x = py.len([2 3 4; 4 5 6])

Error using py.len

Conversion of MATLAB 'double' to Python is only supported for 1-N vectors.

More About
• “Data Types”
• “Limitations to Python Support” on page 1-68

External Websites
• www.python.org/doc

https://www.python.org/doc

 Using Python Data in MATLAB

1-77

Using Python Data in MATLAB

MATLAB automatically converts compatible Python data to MATLAB data.

For Python types that do not have compatible MATLAB types, such as list and dict,
use the MATLAB functions shown in the Explicit Type Conversion table. This table also
describes how to convert strings and certain numeric types explicitly.

More About
• “Automatic Python Type to MATLAB Type Mapping” on page 1-60
• “Explicit Type Conversions” on page 1-60

1 Python Interface Topics

1-78

Call Python eval Function

This example shows how to evaluate the expression, x+y, in Python. To evaluate an
expression, pass a Python dict value for the globals namespace parameter.

Read the help for eval.

py.help('eval')

Help on built-in function eval in module __builtin__:

eval(...)

 eval(source[, globals[, locals]]) -> value

 Evaluate the source in the context of globals and locals.

 The source may be a string representing a Python expression

 or a code object as returned by compile().

 The globals must be a dictionary and locals can be any mapping,

 defaulting to the current globals and locals.

 If only globals is given, locals defaults to it.

Create a Python dict variable for the x and y values.

workspace = py.dict(pyargs('x',1,'y',6))

workspace =

 Python dict with no properties.

 {'y': 6.0, 'x': 1.0}

Evaluate the expression.

res = py.eval('x+y',workspace)

res =

 7

Add two numbers without assigning variables. Pass an empty dict value for the
globals parameter.

res = py.eval('1+6',py.dict)

res =

 Call Python eval Function

1-79

 7

1 Python Interface Topics

1-80

Precedence Order of Methods and Functions

If a Python class defines a method with the same name as a MATLAB converter method
for Python types, MATLAB calls the Python method. This means you cannot call the
MATLAB converter method on an object of that class.

For example, if a Python class defines a char method, the following statement calls the
Python method.

char(obj)

To use the MATLAB char function, type:

char(py.str(obj))

 Python Function Arguments

1-81

Python Function Arguments

In this section...

“Positional Arguments” on page 1-81
“Keyword Arguments” on page 1-81
“Optional Arguments” on page 1-82

Your Python documentation shows you how to call a Python function. Python function
signatures look similar to MATLAB function signatures. However, Python has syntax
which might be unfamiliar to MATLAB users.

Positional Arguments

A positional argument is passed by position. These arguments appear at the beginning of
a function signature.

Python Signature MATLAB Usage

abs(X)

Argument X is required.

py.abs(-99)

Some functions accept an arbitrary sequence of positional arguments, including no
arguments. In Python, these arguments are defined by prepending the name with the *
character.

Python Signature MATLAB Usage

itertools.izip(*iterables)

The iterables argument is not
required, in which case, the function
returns a zero length iterator.

Aggregate elements from two lists.
py.itertools.izip(...

py.list({1:10}),py.list({'a','b'}));

Create zero length iterator.
py.itertools.izip;

Keyword Arguments

A keyword argument is preceded by an identifier. Keyword arguments, also called named
arguments, can be specified in any order.

1 Python Interface Topics

1-82

Keyword arguments are like name-value pairs in MATLAB. Use the MATLAB pyargs
function to create keyword arguments for Python functions.

Python Signature MATLAB Usage

print(*objects,sep='',end='\n',

file=sys.stdout)

sep, end, and file are keyword
arguments.

Change the value of end.
py.print('string',pyargs('end','--'))

Python defines an arbitrary number of keyword arguments by prepending the name with
** characters.

Python Signature MATLAB Usage

dict(**kwarg) D = py.dict(pyargs('Joe',100,'Jack',101))

Optional Arguments

An optional argument is a non-required argument.

Python Signature MATLAB Usage

random.randrange(start,stop[,step])

Argument step is optional.

py.random.randrange(1,100)

Optional arguments can have default values. A default value is indicated by an equal
sign = with the default value.

Python Signature MATLAB Usage

print(*objects,sep='',end='\n',

file=sys.stdout)

The default value for file is sys.stdout.

Print two values using default keyword
values.
py.print(2,'2')

See Also
pyargs

 Python Function Arguments

1-83

Related Examples
• “Pass Keyword Arguments” on page 1-34

2

Read and Write MATLAB MAT-Files in
C/C++ and Fortran

• “Custom Applications to Access MAT-Files” on page 2-2
• “MAT-File Library and Include Files” on page 2-5
• “What You Need to Build Custom Applications” on page 2-7
• “Copy External Data into MAT-File Format with Standalone Programs” on page

2-8
• “Create MAT-File in C or C++” on page 2-13
• “Read MAT-File in C/C++” on page 2-14
• “Create MAT-File in Fortran” on page 2-15
• “Read MAT-File in Fortran” on page 2-16
• “Work with mxArrays” on page 2-17
• “Table of MAT-File Source Code Files” on page 2-19
• “Build on Mac and Linux Operating Systems” on page 2-21
• “Build on Windows Operating Systems” on page 2-23
• “Share MAT-File Applications” on page 2-24

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-2

Custom Applications to Access MAT-Files

In this section...

“Why Write Custom Applications?” on page 2-2
“MAT-File Interface Library” on page 2-3
“Exchanging Data Files Between Platforms” on page 2-4

Why Write Custom Applications?

To bring data into a MATLAB application, see “Methods for Importing Data”. To save
data to a MAT-file, see “Save, Load, and Delete Workspace Variables”. Use these
procedures when you program your entire application in MATLAB, or if you share data
with other MATLAB users. There are situations, however, when you must write a custom
program to interact with data. For example:

• Your data has a custom format.
• You create applications for users who do not run MATLAB, and you want to provide

them with MATLAB data.
• You want to read data from an external application, but you do not have access to the

source code.

Before writing a custom application, determine if MATLAB meets your data exchange
needs by reviewing the following topics:

• The save and load functions.
• “Supported File Formats for Import and Export”.
• The importdata function and “Import Images, Audio, and Video Interactively”.
• “Methods for Importing Data”.

If these features are not sufficient, you can create custom C/C++ or Fortran programs to
read and write data files in the format required by your application. There are two types
of custom programs:

• Standalone program — Run from a system prompt or execute in MATLAB (see “Run
External Commands, Scripts, and Programs” on page 15-3). Requires MATLAB
libraries to build the application.

• MEX-file — Built and executed from the MATLAB command prompt. For information
about creating and building MEX-files, see “MEX File Creation API”.

 Custom Applications to Access MAT-Files

2-3

MAT-File Interface Library

The MAT-File Library contains routines for reading and writing MAT-files. Call these
routines from your own C/C++ and Fortran programs. Use these routines, rather than
attempt to write your own code, to perform these operations, since using the library
insulates your applications from future changes to the MAT-file structure.

MATLAB provides the MATFile type for representing a MAT-file.

MAT-File Routines

MAT-Function Purpose

matOpen Open a MAT-file.
matClose Close a MAT-file.
matGetDir Get a list of MATLAB arrays from a MAT-file.
matGetVariable Read a MATLAB array from a MAT-file.
matPutVariable Write a MATLAB array to a MAT-file.
matGetNextVariable Read the next MATLAB array from a MAT-file.
matDeleteVariable Remove a MATLAB array from a MAT-file.
matPutVariableAsGlobal Put a MATLAB array into a MAT-file such that

the load command places it into the global
workspace.

matGetVariableInfo Load a MATLAB array header from a MAT-file (no
data).

matGetNextVariableInfo Load the next MATLAB array header from a
MAT-file (no data).

MAT-File C-Only Routines

matGetFp Get an ANSI® C file pointer to a MAT-file.

The MAT-File Interface Library does not support MATLAB objects created by user-
defined classes.

Do not create different MATLAB sessions on different threads using MAT-File Library
functions. MATLAB libraries are not multithread safe so you can use these functions
only on a single thread at a time.

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-4

Exchanging Data Files Between Platforms

You can work with MATLAB software on different computer systems and send MATLAB
applications to users on other systems. MATLAB applications consist of MATLAB code
containing functions and scripts, and MAT-files containing binary data.

Both types of files can be transported directly between machines: MATLAB source files
because they are platform independent, and MAT-files because they contain a machine
signature in the file header. MATLAB checks the signature when it loads a file and, if a
signature indicates that a file is foreign, performs the necessary conversion.

Using MATLAB across different machine architectures requires a facility for exchanging
both binary and ASCII data between the machines. Examples of this type of facility
include FTP, NFS, and Kermit. When using these programs, be careful to transmit MAT-
files in binary file mode and MATLAB source files in ASCII file mode. Failure to set these
modes correctly corrupts the data.

 MAT-File Library and Include Files

2-5

MAT-File Library and Include Files

MATLAB provides the include and library files needed to write programs to read and
write MAT-files. The following table lists the path names to these files. The term
matlabroot refers to the root folder of your MATLAB installation. The term arch is a
unique string identifying the platform.

MAT-Function Folders

Platform Contents Folder

Include files matlabroot\extern\include

Libraries matlabroot\bin\win32 or matlabroot\bin
\win64

Microsoft
Windows

Examples matlabroot\extern\examples\eng_mat

Include files matlabroot/extern/include

Libraries matlabroot/bin/arch

Mac
Linux

Examples matlabroot/extern/examples/eng_mat

MAT-Function Include Files

The matlabroot\extern\include folder holds header files containing function
declarations with prototypes for the routines that you can access in the API Library.
These files are the same for Windows, Mac, and Linux systems. The folder contains:

• The matrix.h header file that contains a definition of the mxArray structure and
function prototypes for matrix access routines.

• The mat.h header file that contains function prototypes for mat routines.

MAT-Function Libraries

The name of the libraries folder, which contains the shared (dynamically linkable)
libraries, is platform-dependent.

Shared Libraries on Windows Systems

The bin folder contains the run-time version of the shared libraries:

• The libmat.dll library of MAT-file routines (C/C++ and Fortran)

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-6

• The libmx.dll library of array access and creation routines

Shared Libraries on Mac and Linux Systems

The bin/arch folder, where arch is your machine's architecture, contains the shared
libraries. For example, on Apple Macintosh 64-bit systems, the folder is bin/maci64:

• The libmat.dylib library of MAT-file routines (C/C++ and Fortran)
• The libmx.dylib library of array access and creation routines

Example Files

The examples/eng_mat folder contains C/C++ and Fortran source code for examples
demonstrating how to use the MAT-file routines.

 What You Need to Build Custom Applications

2-7

What You Need to Build Custom Applications

To create a custom application, you need the tools and knowledge to modify and build
source code. In particular, you need a compiler supported by MATLAB.

To exchange custom data with MATLAB data, use a MAT-file, a MATLAB format binary
file. You do not need the MAT-file format specifications because the MAT-File Interface
Library provides the API to the data. You need to know the details of your data to map it
into MATLAB data. Get this information from your product documentation, then use the
mxArray type in the Matrix Library to declare the data in your program.

In your custom program, use functions in the MATLAB C/C++ and Fortran API:

• MAT-File Interface Library
• Matrix Library

To build the application, use the mex build script with the -client engine option.

See Also
mex | mxArray

More About
• “MAT-File Library and Include Files” on page 2-5
• “Build Engine Applications with IDE” on page 7-21

External Websites
• Supported and Compatible Compilers

http://www.mathworks.com/support/compilers/current_release/

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-8

Copy External Data into MAT-File Format with Standalone
Programs

In this section...

“Overview of matimport.c Example” on page 2-8
“Declare Variables for External Data” on page 2-9
“Create mxArray Variables” on page 2-9
“Create MATLAB Variable Names” on page 2-10
“Read External Data into mxArray Data” on page 2-10
“Create and Open MAT-File” on page 2-11
“Write mxArray Data to File” on page 2-11
“Clean Up” on page 2-11
“Build the Application” on page 2-11
“Create the MAT-File” on page 2-11
“Import Data into MATLAB” on page 2-12

Overview of matimport.c Example

This topic shows how to create a standalone program, matimport, to copy data from an
external source into a MAT-file. The format of the data is custom, that is, it is not one of
the file formats supported by MATLAB.

The matimport.c example:

• Creates variables to read the external data.
• Copies the data into mxArray variables.
• Assigns a variable name to each mxArray. This is the variable name to use in the

MATLAB workspace.
• Writes the mxArray variables and associated variable names to the MAT-file.

To use the data in MATLAB:

• Build the standalone program matimport.
• Run matimport to create the MAT-file matimport.mat.

 Copy External Data into MAT-File Format with Standalone Programs

2-9

• Open MATLAB.
• Use one of the techniques described in “Save, Load, and Delete Workspace Variables”.

The following topics describe these steps in detail. To see the code, open the file in the
MATLAB Editor. The C statements in these topics are code snippets shown to illustrate a
task. The statements in the topics are not necessarily sequential in the source file.

Declare Variables for External Data

There are two external data values, a string and an array of type double. The following
table shows the relationship between the variables in this example.

External Data Variable to Read
External Data

mxArray Variable MATLAB Variable
Name

Array of type
double

extData pVarNum inputArray

String extString pVarChar titleString

The following statements declare the type and size for variables extString and
extData:

#define BUFSIZE 256

char extString[BUFSIZE];

double extData[9];

Use these variables to read values from a file or a subroutine available from your
product. This example uses initialization to create the external data:

const char *extString = "Data from External Device";

double extData[9] = { 1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0 };

Create mxArray Variables

The MAT-File Library uses pointers of type mxArray to reference MATLAB data. The
following statements declare pVarNum and pVarChar as pointers to an array of any size
or type:

/*Pointer to the mxArray to read variable extData */

mxArray *pVarNum;

/*Pointer to the mxArray to read variable extString */

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-10

mxArray *pVarChar;

To create a variable of the proper size and type, select one of the mxCreate* functions
from the MX Matrix Library.

The size of extData is 9, which the example copies into a 3-by-3 matrix. Use the
mxCreateDoubleMatrix function to create a two-dimensional, double-precision,
floating-point mxArray initialized to 0.

pVarNum = mxCreateDoubleMatrix(3,3,mxREAL);

Use the mxCreateString function to create an mxArray variable for extString:

pVarChar = mxCreateString(extString);

Create MATLAB Variable Names

matimport.c assigns variable names inputArray and titleString to the mxArray
data. Use these names in the MATLAB workspace. For more information, see “View
Contents of MAT-File”.

const char *myDouble = "inputArray";

const char *myString = "titleString";

Read External Data into mxArray Data

Copy data from the external source into each mxArray.

The C memcpy function copies blocks of memory. This function requires pointers to the
variables extData and pVarNum. The pointer to extData is (void *)extData. To
get a pointer to pVarNum, use one of the mxGet* functions from the MX Matrix Library.
Since the data contains only real values of type double, this example uses the mxGetPr
function:

memcpy((void *)(mxGetPr(pVarNum)), (void *)extData, sizeof(extData));

The following statement initializes the pVarChar variable with the contents of
extString:

pVarChar = mxCreateString(extString);

Variables pVarNum and pVarChar now contain the external data.

 Copy External Data into MAT-File Format with Standalone Programs

2-11

Create and Open MAT-File

The matOpen function creates a handle to a file of type MATFile. The following
statements create a file pointer pmat, name the file matimport.mat, and open it for
writing:

 MATFile *pmat;

 const char *myFile = "matimport.mat";

 pmat = matOpen(myFile, "w");

Write mxArray Data to File

The matPutVariable function writes the mxArray and variable name into the file:

 status = matPutVariable(pmat, myDouble, pVarNum);

 status = matPutVariable(pmat, myString, pVarChar);

Clean Up

To close the file:

matClose(pmat);

To free memory:

mxDestroyArray(pVarNum);

mxDestroyArray(pVarChar);

Build the Application

To build the application, use the mex function with the -client engine option.

copyfile(fullfile(matlabroot,'extern','examples','eng_mat',matimport.c'),'.','f')

mex -v -client engine matimport.c

Create the MAT-File

Run matimport to create the file matimport.mat. Either invoke the program from the
system command prompt, or at the MATLAB command prompt, type:

!matimport

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-12

Import Data into MATLAB

Any user with a compatible version of MATLAB can read the matimport.mat file. Start
MATLAB and use the load command to import the data into the workspace:

load matimport.mat

To see the variables, type whos; MATLAB displays:

 Name Size Bytes Class

 inputArray 3x3 72 double

 titleString 1x43 86 char

Related Examples
• “Table of MAT-File Source Code Files” on page 2-19

 Create MAT-File in C or C++

2-13

Create MAT-File in C or C++

In this section...

“Create MAT-File in C” on page 2-13
“Create MAT-File in C++” on page 2-13

Create MAT-File in C

The matcreat.c example illustrates how to use the library routines to create a MAT-file
that you can load into the MATLAB workspace. The program also demonstrates how to
check the return values of MAT-function calls for read or write failures. To see the code,
open the file in MATLAB Editor.

After building the program, run the application. This program creates mattest.mat,
a MAT-file that you can load into MATLAB. To run the application, depending on your
platform, either double-click its icon or enter matcreat at the system prompt:

matcreat

Creating file mattest.mat...

To verify the MAT-file, at the command prompt, type:

whos -file mattest.mat

 Name Size Bytes Class

 GlobalDouble 3x3 72 double array (global)

 LocalDouble 3x3 72 double array

 LocalString 1x43 86 char array

Grand total is 61 elements using 230 bytes

Create MAT-File in C++

The C++ version of matcreat.c is matcreat.cpp. Open the file in MATLAB Editor.

Related Examples
• “Table of MAT-File Source Code Files” on page 2-19

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-14

Read MAT-File in C/C++

The matdgns.c example illustrates how to use the library routines to read and diagnose
a MAT-file. To see the code, open the file in MATLAB Editor.

After building the program, run the application. This program reads the mattest.mat
MAT-file created by the “Create MAT-File in C or C++” on page 2-13 example. To run the
application, depending on your platform, either double-click its icon or enter matdgns at
the system prompt.

matdgns mattest.mat

Reading file mattest.mat...

Directory of mattest.mat:

GlobalDouble

LocalString

LocalDouble

Examining the header for each variable:

According to its header, array GlobalDouble has 2 dimensions

 and was a global variable when saved

According to its header, array LocalString has 2 dimensions

 and was a local variable when saved

According to its header, array LocalDouble has 2 dimensions

 and was a local variable when saved

Reading in the actual array contents:

According to its contents, array GlobalDouble has 2 dimensions

 and was a global variable when saved

According to its contents, array LocalString has 2 dimensions

 and was a local variable when saved

According to its contents, array LocalDouble has 2 dimensions

 and was a local variable when saved

Done

Related Examples
• “Create MAT-File in Fortran” on page 2-15
• “Table of MAT-File Source Code Files” on page 2-19

 Create MAT-File in Fortran

2-15

Create MAT-File in Fortran

The matdemo1.F example creates the MAT-file, matdemo.mat. To see the code, you can
open the file in MATLAB Editor.

After building the program, run the application. This program creates a MAT-file,
matdemo.mat, that you can load into MATLAB. To run the application, depending on
your platform, either double-click its icon or type matdemo1 at the system prompt:

matdemo1

Creating MAT-file matdemo.mat ...

Done creating MAT-file

To verify the MAT-file, at the command prompt, type:

whos -file matdemo.mat

 Name Size Bytes Class Attributes

 Numeric 3x3 72 double

 NumericGlobal 3x3 72 double global

 String 1x33 66 char

Note: For an example of a Microsoft Windows standalone program (not MAT-file
specific), see engwindemo.c in the matlabroot\extern\examples\eng_mat folder.

Related Examples
• “Read MAT-File in C/C++” on page 2-14
• “Table of MAT-File Source Code Files” on page 2-19

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-16

Read MAT-File in Fortran

The matdemo2.F example illustrates how to use the library routines to read the MAT-
file created by matdemo1.F and describe its contents. To see the code, open the file in
MATLAB Editor.

After building the program, view the results:

 matdemo2

 Directory of Mat-file:

 String

 Numeric

 Getting full array contents:

 1

 Retrieved String

 With size 1-by- 33

 3

 Retrieved Numeric

 With size 3-by- 3

Related Examples
• “Table of MAT-File Source Code Files” on page 2-19

 Work with mxArrays

2-17

Work with mxArrays

In this section...

“Read Structures from a MAT-File” on page 2-17
“Read Cell Arrays from a MAT-File” on page 2-18

The MAT-File Interface Library lets you access MATLAB arrays (type mxArray) in a
MAT-file. To work directly with an mxArray in a C/C++ application, use functions in the
Matrix Library.

You can find examples for working with the mxArray type in the matlabroot/extern/
examples/mex and matlabroot/extern/examples/mx folders. The following
topics show C code examples, based on these MEX examples, for working with cells
and structures. The examples show how to read cell and structure arrays and display
information based on the type of the mxArray within each array element.

If you create an application from one of the MEX examples, here are some tips for
adapting the code to a standalone application.

• The MAT-file example, matdgns.c, shows how to open and read a MAT-file. For more
information about the example, see “Read MAT-File in C/C++” on page 2-14.

• The MEX example, explore.c, has functions to read any MATLAB type using the
mxClassID function. For more information about the example, see “Using Data
Types” on page 4-12.

• Some MEX examples use functions, such as mexPrintf, from the “MEX Library
API” libmex. You do not need to use these functions to work with an mxArray, but
if your program calls any of them, you must link to the MEX Library. To do this, add
libmex.lib to the link statement.

Read Structures from a MAT-File

The matreadstructarray.c example is based on the analyze_structure function
in explore.c. For simplicity this example only processes real elements of type double;
refer to the explore.c example for error checking and processing other types.

To see the code, open the file in the MATLAB Editor.

After building the program, run the application on the MAT-file, testpatient.mat.

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-18

First, create a structure, patient, and save it:

patient(1).name = 'John Doe';

patient(1).billing = 127.00;

patient(1).test = [79 75 73; 180 178 177.5; 172 170 169];

patient(2).name = 'Ann Lane';

patient(2).billing = 28.50;

patient(2).test = [68 70 68; 118 118 119; 172 170 169];

save testpatient.mat

To calculate the total of the billing field, type:

!matreadstruct testpatient.mat patient billing

Total for billing: 155.50

Read Cell Arrays from a MAT-File

The matreadcellarray.c example is based on the analyze_cell function in
explore.c.

To see the code, open the file in the MATLAB Editor.

After building the program, run the application on the MAT-file, testcells.mat.

First, create 3 cell variables and save:

cellvar = {'hello'; [2 3 4 6 8 9]; [2; 4; 5]};

structvar = {'cell with a structure'; patient; [2; 4; 5]};

multicellvar = {'cell with a cell'; cellvar; patient};

save testcells.mat cellvar structvar multicellvar

To display the mxArray type for the contents of cell cellvar, type:

!matreadcell testcells.mat cellvar

0: string

1: numeric class

2: numeric class

Related Examples
• “Table of MAT-File Source Code Files” on page 2-19

 Table of MAT-File Source Code Files

2-19

Table of MAT-File Source Code Files
The matlabroot/extern/examples/eng_mat folder contains C/C++ and Fortran
source code for examples demonstrating how to use the MAT-file routines. These
examples create standalone programs. The source code is the same for both Windows,
Mac, and Linux systems.

To build a code example, first copy the file to a writable folder, such as c:\work on your
Windows path:

copyfile(fullfile(matlabroot,'extern','examples','eng_mat',...

'filename'), fullfile('c:','work'))

where filename is the name of the source code file.

For build information, see:

• “MAT-File Library and Include Files” on page 2-5
• “Build on Mac and Linux Operating Systems” on page 2-21
• “Build on Windows Operating Systems” on page 2-23

Example Description

matcreat.c C program that demonstrates how to use the library routines
to create a MAT-file that you can load into MATLAB.

matcreat.cpp C++ version of the matcreat.c program.
matdgns.c C program that demonstrates how to use the library routines

to read and diagnose a MAT-file.
matdemo1.F Fortran program that demonstrates how to call the MATLAB

MAT-file functions from a Fortran program.
matdemo2.F Fortran program that demonstrates how to use the library

routines to read the MAT-file created by matdemo1.F and
describe its contents.

matimport.c C program based on matcreat.c used in the example for
writing standalone applications.

matreadstructarray.cC program based on explore.c to read contents of a
structure array.

matreadcellarray.c C program based on explore.c to read contents of a cell
array.

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-20

Example Description

matcreat.c C program that demonstrates how to use the library routines
to create a MAT-file that you can load into MATLAB.

matcreat.cpp C++ version of the matcreat.c program.
matdgns.c C program that demonstrates how to use the library routines

to read and diagnose a MAT-file.
matdemo1.F Fortran program that demonstrates how to call the MATLAB

MAT-file functions from a Fortran program.
matdemo2.F Fortran program that demonstrates how to use the library

routines to read the MAT-file created by matdemo1.F and
describe its contents.

matimport.c C program based on matcreat.c used in the example for
writing standalone applications.

matreadstructarray.cC program based on explore.c to read contents of a
structure array.

matreadcellarray.c C program based on explore.c to read contents of a cell
array.

For examples using the Matrix Library, see:

• “Table of MEX File Source Code Files” on page 5-24.
• The explore.c example described in “Using Data Types” on page 4-12.

 Build on Mac and Linux Operating Systems

2-21

Build on Mac and Linux Operating Systems

In this section...

“Setting Run-Time Library Path” on page 2-21
“Building the Application” on page 2-22

Setting Run-Time Library Path

At run time, you must tell the Mac and Linux operating system where the API shared
libraries reside by setting an environment variable. The Mac or Linux command you use
and the values you provide depend on your shell and system architecture. The following
table lists the name of the environment variable (envvar) and the value (pathspec) to
assign to it. The term matlabroot refers to the root folder of your MATLAB installation.

Operating System envvar pathspec

64-bit Apple Mac DYLD_LIBRARY_PATH matlabroot/bin/

maci64:matlabroot/sys/os/

maci64

64-bit Linux LD_LIBRARY_PATH matlabroot/bin/

glnxa64:matlabroot/sys/os/

glnxa64

Using the C Shell

Set the library path using the command:

setenv envvar pathspec

Replace the terms envvar and pathspec with the appropriate values from the table.
For example, on a Macintosh system use:

setenv DYLD_LIBRARY_PATH

matlabroot/bin/maci64:matlabroot/sys/os/maci64

You can place these commands in a startup script, such as ~/.cshrc.

Using the Bourne Shell

Set the library path using the command:

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-22

envvar = pathspec:envvar

export envvar

Replace the terms envvar and pathspec with the appropriate values from the table.
For example, on a Macintosh system use:
DYLD_LIBRARY_PATH=matlabroot/bin/maci64:matlabroot/sys/os/maci64:$DYLD_LIBRARY_PATH

export DYLD_LIBRARY_PATH

You can place these commands in a startup script such as ~/.profile.

Building the Application

To compile and link the matcreat.c example, use the mex script with the -client
engine option.

copyfile(fullfile(matlabroot,'extern','examples','eng_mat','matcreat.c'),'.','f')

Use the following command to build it:

mex -v -client engine matcreat.c

If you need to modify the build instructions for your particular compiler, use the -v -n
options to view the current compiler and linker settings. Then, modify the settings using
the mex varname=varvalue option.

See Also
mex

 Build on Windows Operating Systems

2-23

Build on Windows Operating Systems

To compile and link MAT-file programs, use the mex script with the -client engine
option.

copyfile(fullfile(matlabroot,'extern','examples','eng_mat','matcreat.c'),'.','f')

Use the following command to build it:

mex -v -client engine matcreat.c

If you need to modify the build instructions for your particular compiler, use the -v -n
options to view the current compiler and linker settings. Then, modify the settings using
the mex varname=varvalue option.

See Also
mex

Related Examples
• “Build Windows Engine Application” on page 7-11

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-24

Share MAT-File Applications

MATLAB requires shared library files for building any MAT-file application. You must
also distribute the run-time versions of these files along with any MAT-file application
that you deploy to another system. Install the appropriate libraries in the matlabroot/
bin/arch folder.

Library File Names by Operating System

Windows Linux Mac

libmat.dll libmat.so libmat.dylib

libmx.dll libmx.so libmx.dylib

In addition to these libraries, you must have all third-party library files that libmat
requires. MATLAB uses these additional libraries to support Unicode® character
encoding and data compression in MAT-files. These library files must reside in the same
folder as libmx. Determine the libraries using the platform-specific methods described in
the following table.

Library Dependency Commands

Windows Linux Mac

See the following
instructions for Dependency
Walker

ldd -d libmat.so otool -L libmat.dylib

On Windows systems, to find library dependencies, use the third-party product
Dependency Walker. Dependency Walker is a free utility that scans any 32-bit or 64-bit
Windows module and builds a hierarchical tree diagram of all dependent modules. For
each module found, it lists all the functions exported by that module, and which of those
functions are called by other modules. Download the Dependency Walker utility from the
website http://www.dependencywalker.com/. See http://www.mathworks.com/
matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-

mex-file-or-stand-alone-application-requires for information on using the
Dependency Walker.

Drag and drop the file matlabroot/bin/win32/libmat.dll or matlabroot/bin/
win64/libmat.dll into Depends window.

http://www.dependencywalker.com/
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires

3

Calling C Shared Library Functions
from MATLAB

• “Call Functions in Shared Libraries” on page 3-2
• “Limitations to Shared Library Support” on page 3-8
• “Limitations Using Structures” on page 3-13
• “Module Not Found Error” on page 3-15
• “No Matching Signature Error” on page 3-16
• “MATLAB Terminates Unexpectedly When Calling Function in Shared Library” on

page 3-17
• “Pass Arguments to Shared Library Functions” on page 3-18
• “Shared Library shrlibsample” on page 3-23
• “Pass String Arguments” on page 3-24
• “Pass Structures” on page 3-26
• “Pass Enumerated Types” on page 3-32
• “Pass Pointers” on page 3-34
• “Pass Arrays” on page 3-39
• “Iterate Through an Array” on page 3-43
• “Pointer Arguments” on page 3-46
• “Structure Arguments” on page 3-49
• “Explore libstruct Objects” on page 3-51
• “MATLAB Prototype Files” on page 3-52

3 Calling C Shared Library Functions from MATLAB

3-2

Call Functions in Shared Libraries

In this section...

“What Is a Shared Library?” on page 3-2
“Load and Unload Library” on page 3-3
“View Library Functions” on page 3-4
“Invoke Library Functions” on page 3-6

What Is a Shared Library?

A shared library is a collection of functions dynamically loaded by an application at run
time. This MATLAB interface supports libraries containing functions programmed in any
language, provided the functions have a C interface. MATLAB supports dynamic linking
on all supported platforms.

Platform Shared Library File Extension

Microsoft Windows dynamic link library file .dll

UNIX® and Linux shared object file .so

Apple Macintosh dynamic shared library .dylib

A shared library needs a header file, which provides signatures for the functions in the
library. A function signature, or prototype, establishes the name of the function and the
number and types of its parameters. Specify the full path of the shared library and its
header file.

You need an installed MATLAB-supported C compiler. For an up-to-date list of supported
compilers, see the Supported and Compatible Compilers website.

MATLAB accesses C routines built into external, shared libraries through a command-
line interface. This interface lets you load an external library into MATLAB memory
and access functions in the library. Although types differ between the two language
environments, usually you can pass types to the C functions without converting.
MATLAB converts for you.

Details about using a shared library are in the topics:

http://www.mathworks.com/support/compilers/current_release/

 Call Functions in Shared Libraries

3-3

• “Load and Unload Library” on page 3-3
• “View Library Functions” on page 3-4
• “Invoke Library Functions” on page 3-6

If the library function passes arguments, you need to determine the data type passed to
and from the function. For information about data, see:

• “Pass Arguments to Shared Library Functions” on page 3-18
• “Manually Convert Data Passed to Functions” on page 3-21
• “Pointer Arguments” on page 3-46
• “Structure Arguments” on page 3-49

When you are finished working with the shared library, it is important to unload the
library to free memory.

For more information, see “Limitations to Shared Library Support” on page 3-8

Load and Unload Library

To give MATLAB access to functions in a shared library, first load the library into
memory. After you load the library, you can request information about library functions
and call them directly from the MATLAB command line. When you no longer need the
library, unload it from memory to conserve memory usage.

To load a shared library into MATLAB, use the loadlibrary function. The most
common syntax is:

loadlibrary('shrlib','hfile')

where shrlib is the shared library file name, and hfile is the name of the header file
containing the function prototypes.

Note: The header file provides signatures for the functions in the library and is a
required argument for loadlibrary.

For example, load the libmx library that defines the MATLAB Matrix Library routines.
The following command creates the full path for the library header file, matrix.h:

3 Calling C Shared Library Functions from MATLAB

3-4

hfile = fullfile(matlabroot,'extern','include','matrix.h');

To load the library, type:

loadlibrary('libmx',hfile)

Use the unloadlibrary function to unload the library and free up memory.

Note: If you call loadlibrary on a library that is already loaded, MATLAB displays
a message, but does not reload the library. To determine if a library is loaded, use the
libisloaded function.

View Library Functions

View Functions in Command Window

To display information about library functions in the MATLAB Command Window, use
the libfunctions command. For example, to see what functions are available in the
libmx library, type:

if not(libisloaded('libmx'))

 hfile = [matlabroot '\extern\include\matrix.h'];

 loadlibrary('libmx',hfile)

end

libfunctions libmx

MATLAB displays (in part):

Functions in library libmx:

mxAddField mxGetScalar

mxArrayToString mxGetString_730

mxCalcSingleSubscript_730 mxGetUserBits

mxCalloc mxIsCell

mxCreateCellArray_730 mxIsChar

mxCreateCellMatrix_730 mxIsClass

 . .

 . .

 . .

To view function signatures, use the -full switch. This option shows the MATLAB
syntax for calling functions written in C. The types used in the parameter lists and

 Call Functions in Shared Libraries

3-5

return values are MATLAB types, not C types. For more information on types, see “C and
MATLAB Equivalent Types” on page 3-18. For example, at the command line enter:

list = libfunctions('libmx','-full')

MATLAB displays (in part):

list =

'[int32, MATLAB array, cstring] mxAddField(MATLAB array, cstring)'

'[cstring, MATLAB array] mxArrayToString(MATLAB array)'

'[uint64, MATLAB array, uint64Ptr] mxCalcSingleSubscript_730(

 MATLAB array, uint64, uint64Ptr)'

'lib.pointer mxCalloc(uint64, uint64)'

'[MATLAB array, uint64Ptr] mxCreateCellArray_730(uint64, uint64Ptr)'

'MATLAB array mxCreateCellMatrix_730(uint64, uint64)'

 .

 .

 .

View Functions in Window

To get information about functions in a library, use the libfunctionsview function.
MATLAB opens a window to display the following information:

Heading Description

Return Type Types the method returns
Name Function name
Arguments Valid types for input arguments

To see the functions in the libmx library, type:

if not(libisloaded('libmx'))

 hfile = [matlabroot '\extern\include\matrix.h'];

 loadlibrary('libmx',hfile)

end

libfunctionsview libmx

MATLAB displays the following window:

3 Calling C Shared Library Functions from MATLAB

3-6

The types used in the argument lists and return values are MATLAB types, not C types.
For more information on types, see “C and MATLAB Equivalent Types” on page 3-18.

Invoke Library Functions

After loading a shared library into the MATLAB workspace, use the calllib function to
call functions in the library. The syntax for calllib is:

calllib('libname','funcname',arg1,...,argN)

Specify the library name, function name, and, if required, any arguments that get passed
to the function.

The following example calls functions from the libmx library. To load the library, type:

if not(libisloaded('libmx'))

 hfile = [matlabroot '\extern\include\matrix.h'];

 loadlibrary('libmx',hfile)

end

To create an array y, type:

y = rand(4,7,2);

To get information about y, type:

 Call Functions in Shared Libraries

3-7

calllib('libmx','mxGetNumberOfElements',y)

ans =

 56

MATLAB displays the number of elements in the array.

Type:

calllib('libmx','mxGetClassID',y)

ans =

 mxDOUBLE_CLASS

MATLAB displays the class of the array.

For information on how to define the parameter types, see “Pass Arguments to Shared
Library Functions” on page 3-18.

3 Calling C Shared Library Functions from MATLAB

3-8

Limitations to Shared Library Support

In this section...

“MATLAB Supports C Library Routines” on page 3-8
“Workarounds for Loading C++ Libraries” on page 3-8
“Limitations Using printf Function” on page 3-9
“Bit Fields” on page 3-9
“Enum Declarations” on page 3-10
“Unions Not Supported” on page 3-10
“Compiler Dependencies” on page 3-11
“Limitations Using Pointers” on page 3-11
“Functions with Variable Number of Input Arguments Not Supported” on page 3-12

MATLAB Supports C Library Routines

The MATLAB shared library interface supports C library routines only. Most
professionally written libraries designed to be used by multiple languages and platforms
work fine. Many homegrown libraries or libraries that have only been tested from C++
have interfaces that are not usable and require modification or an interface layer. In this
case, we recommend using MEX-files.

Workarounds for Loading C++ Libraries

The shared library interface does not support C++ classes or overloaded functions
elements. However, if you have source code for the library, you can apply one of the
following strategies to load a C++ library using loadlibrary. After editing the source
code, rebuild the library.

Declare Functions as extern “C”

For example, the following function prototype from the file shrlibsample.h shows the
syntax to use for each function:

#ifdef __cplusplus

extern "C" {

#endif

 Limitations to Shared Library Support

3-9

void addMixedTypes(

 short x,

 int y,

 double z

);

/* other prototypes may be here */

#ifdef __cplusplus

}

#endif

The following C++ code is not legal C code for the header file:

extern "C" void addMixedTypes(short x,int y,double z);

Add Module Definition File in Visual Studio

While building the DLL from C++ code in Microsoft Visual Studio®, add a Module
Definition File (.DEF) in the project. At a minimum, the DEF file must contain the
following module-definition statements:

• The first statement in the file must be the LIBRARY statement.
• The EXPORTS statement lists the names and, optionally, the ordinal values of the

functions exported by the DLL.

For example, if a DLL exports functions multDoubleArray and addMixedTypes,
module.def contains:

LIBRARY

EXPORTS

multDoubleArray

addMixedTypes

Limitations Using printf Function

MATLAB does not display the output of the C printf function to the command window.

Bit Fields

You can modify a bit field declaration by using type int or an equivalent. For example, if
your library has the following declared in its header file:

3 Calling C Shared Library Functions from MATLAB

3-10

int myfunction();

struct mystructure

{

 /* note the sum of fields bits */

 unsigned field1 :4;

 unsigned field2 :4;

};

edit the header file and replace it with:

int myfunction();

struct mystructure

{

 /* field 8 bits wide to be manipulated in MATLAB */

 /* A char is 8 bits on all supported platforms */

 char allfields;

};

After editing the source code, rebuild the library. It is then possible to access the data in
the two fields using bit masking in MATLAB.

Enum Declarations

char definitions for enum are not supported. In C, a char constant, for example 'A',
is automatically converted to its numeric equivalent (65). MATLAB does not convert
constants. To use this type of enum, edit the header file by replacing 'A' with the
number 65 (int8(‘A’) == 65). For example, replace:

enum Enum1 {ValA='A',ValB='B'};

with:

enum Enum1 {ValA=65,ValB=66};

then rebuild the library.

Unions Not Supported

Unions are not supported. As a workaround, modify the source code taking out the
union declaration and replacing it with the largest alternative. Then, to interpret the

 Limitations to Shared Library Support

3-11

results, write MATLAB code as needed. For example, edit the source code and replace the
following union:

struct mystruct

{

 union

 {

 struct {char byte1,byte2;};

 short word;

 };

};

with:

struct mystruct

{

 short word;

};

where on a little-endian based machine, byte1 is mod(f,256), byte2 is f/256, and
word=byte2*256+byte1. After editing the source code, rebuild the library.

Compiler Dependencies

Header files must be compatible with the supported compilers on a platform. For an up-
to-date list of supported compilers, see the Supported and Compatible Compilers website.
You cannot load external libraries with explicit dependencies on other compilers.

Limitations Using Pointers

Function Pointers

The shared library interface does not support library functions that work with function
pointers.

Multilevel Pointers

Limited support for multilevel pointers and structures containing pointers. Using inputs
and outputs and structure members declared with more than two levels of indirection is
unsupported. For example, double ***outp translated to doublePtrPtrPtr is not
supported.

http://www.mathworks.com/support/compilers/current_release/

3 Calling C Shared Library Functions from MATLAB

3-12

Functions with Variable Number of Input Arguments Not Supported

The shared library interface does not support library functions with variable number of
arguments, represented by an ellipsis (...).

You can create multiple alias functions in a prototype file, one for each set of arguments
used to call the function. For more information, see “MATLAB Prototype Files” on page
3-52.

More About
• “Limitations Using Structures” on page 3-13

 Limitations Using Structures

3-13

Limitations Using Structures

MATLAB Returns Pointers to Structures

MATLAB returns pointers to structures. Return by value is not supported.

Structure Cannot Contain Pointers to Other Structures

Nested structures or structures containing a pointer to a structure are not supported.
However, MATLAB can access an array of structures created in an external library.

Requirements for MATLAB Structure Arguments

When you pass a MATLAB structure to an external library function, the field names
must meet the following requirements.

• Every MATLAB field name must match a field name in the library structure
definition.

• MATLAB structures cannot contain fields that are not in the library structure
definition.

• If a MATLAB structure contains fewer fields than defined in the library structure,
MATLAB sets undefined fields to zero.

• Field names are case-sensitive. For example, suppose that library mylib contains
function myfunc with the following structure definition.

struct S {

 double len;

};

The field name is len. If you pass a structure to myfunc with the field name Len,
MATLAB displays an error.

S.Len = 100;

calllib('mylib','myfunc',S)

Requirements for C struct Field Names

When MATLAB loads a C struct definition, the field names in MATLAB are not case-
sensitive. For example, when you load a library containing the following definition,
MATLAB does not create two fields.

3 Calling C Shared Library Functions from MATLAB

3-14

struct S {

 double Num;

 double num;

};

More About
• “Limitations to Shared Library Support” on page 3-8

 Module Not Found Error

3-15

Module Not Found Error

This error occurs when the shared library has dependencies which MATLAB cannot find.

On Windows systems, to find library dependencies, use the third-party product
Dependency Walker. Dependency Walker is a free utility that scans any 32-bit or 64-bit
Windows module and builds a hierarchical tree diagram of all dependent modules. For
each module found, it lists all the functions exported by that module, and which of those
functions are called by other modules. Download the Dependency Walker utility from the
website http://www.dependencywalker.com/. See http://www.mathworks.com/
matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-

mex-file-or-stand-alone-application-requires for information on using the
Dependency Walker.

http://www.dependencywalker.com/
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires

3 Calling C Shared Library Functions from MATLAB

3-16

No Matching Signature Error

This error occurs when you call a function without the correct input arguments, or if
there is an error in the function signature in the header file.

For example, the function signature for the addStructByRef function in
shrlibsample is:

[double, c_structPtr] addStructByRef(c_structPtr)

Load the library.

addpath(fullfile(matlabroot,'extern','examples','shrlib'))

loadlibrary('shrlibsample')

Create a structure, and call addStructByRef.

struct.p1 = 4;

struct.p2 = 7.3;

struct.p3 = -290;

If you call the function without the input argument, MATLAB displays the error
message.

[res,st] = calllib('shrlibsample','addStructByRef')

Error using calllib

No method with matching signature.

The correct call is:

[res,st] = calllib('shrlibsample','addStructByRef',struct)

 MATLAB Terminates Unexpectedly When Calling Function in Shared Library

3-17

MATLAB Terminates Unexpectedly When Calling Function in
Shared Library

Some shared libraries, compiled as Microsoft Windows 32-bit libraries, use a calling
convention that is incompatible with the default MATLAB calling convention. The
default calling convention for MATLAB and for Microsoft C and C++ compilers is cdecl.
For more information, see the MSDN® Calling Conventions article.

If your library uses a different calling convention, create a loadlibrary prototype file
and modify it with the correct settings, as described in http://www.mathworks.com/
matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-

function-call-on-a-dll-in-matlab-7-6-r2008a.

See Also
loadlibrary

Related Examples
• Why does MATLAB crash when I make a function call on a DLL in MATLAB 7.6

(R2008a)?

More About
• “MATLAB Prototype Files” on page 3-52

External Websites
• Calling Conventions

http://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx
http://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
http://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
http://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
http://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
http://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
http://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx

3 Calling C Shared Library Functions from MATLAB

3-18

Pass Arguments to Shared Library Functions
In this section...

“C and MATLAB Equivalent Types” on page 3-18
“How MATLAB Displays Function Signatures” on page 3-20
“NULL Pointer” on page 3-21
“Manually Convert Data Passed to Functions” on page 3-21

C and MATLAB Equivalent Types

The shared library interface supports all standard scalar C types. The following table
shows these C types with their equivalent MATLAB types. MATLAB uses the type from
the right column for arguments having the C type shown in the left column.

Note: All scalar values returned by MATLAB are of type double.

MATLAB Primitive Types

C Type Equivalent MATLAB Type

char, byte int8

unsigned char, byte uint8

short int16

unsigned short uint16

int int32

long (Windows) int32,
long

long (Linux) int64,
long

unsigned int uint32

unsigned long (Windows) uint32,
long

unsigned long (Linux) uint64,
long

 Pass Arguments to Shared Library Functions

3-19

C Type Equivalent MATLAB Type

float single

double double

char * char array (1xn)
*char[] cell array of strings

The following table shows how MATLAB maps C pointers (column 1) to the equivalent
MATLAB function signature (column 2). Usually, you can pass a variable from the
Equivalent MATLAB Type column to functions with the corresponding Argument Data
Type. See “Pointer Arguments in C Functions” on page 3-46 for information about
when to use a lib.pointer object instead.

MATLAB Extended Types

C Pointer Type Argument
Data Type

Equivalent
MATLAB Type

Example Function in
“Shared Library
shrlibsample” on
page 3-23

double * doublePtr double addDoubleRef

float * singlePtr single
intsize * (integer
pointer types)

(u)int(size)Ptr

For example,
int64 * becomes
int64Ptr.

(u)int(size) multiplyShort

byte[] int8Ptr int8
char[] (null-
terminated string
passed by value)

cstring char array (1xn) stringToUpper

char ** (array of
pointers to strings)

stringPtrPtr cell array of strings

enum enumPtr
type ** typePtrPtr

For example,
double **

becomes
doublePtrPtr.

lib.pointer

object
allocateStruct

3 Calling C Shared Library Functions from MATLAB

3-20

C Pointer Type Argument
Data Type

Equivalent
MATLAB Type

Example Function in
“Shared Library
shrlibsample” on
page 3-23

void * voidPtr deallocateStruct

void ** voidPtrPtr lib.pointer

object

struct (C-style
structure)

structure MATLAB struct addStructFields

mxArray * MATLAB array MATLAB array
mxArray ** MATLAB arrayPtr lib.pointer

object

How MATLAB Displays Function Signatures

Here are things to note about the input and output arguments shown in MATLAB
function signatures.

• Many arguments (like int32 and double) are similar to their C counterparts. In
these cases, pass in the MATLAB types shown for these arguments.

• Some C arguments (for example, **double, or predefined structures), are different
from standard MATLAB types. In these cases, either pass a standard MATLAB type
and let MATLAB convert it for you, or convert the data yourself using the MATLAB
functions libstruct and libpointer. For more information, see “Manually Convert
Data Passed to Functions” on page 3-21.

• C functions often return data in input arguments passed by reference. MATLAB
creates additional output arguments to return these values. Input arguments ending
in Ptr or PtrPtr are also listed as outputs.

For an example of MATLAB function signatures, see “Shared Library shrlibsample” on
page 3-23.

Guidelines for Passing Arguments

• Nonscalar arguments must be declared as passed by reference in the library
functions.

• If the library function uses single subscript indexing to reference a two-dimensional
matrix, keep in mind that C programs process matrices row by row. MATLAB

 Pass Arguments to Shared Library Functions

3-21

processes matrices by column. To get C behavior from the function, transpose the
input matrix before calling the function, and then transpose the function output.

• Use an empty array, [], to pass a NULL parameter to a library function that supports
optional input arguments. This notation is valid only when the argument is declared
as a Ptr or PtrPtr as shown by libfunctions or libfunctionsview.

NULL Pointer

You can create a NULL pointer to pass to library functions in the following ways:

• Pass an empty array [] as the argument.
• Use the libpointer function:

p = libpointer; % no arguments

p = libpointer('string') % string argument

p = libpointer('cstring') % pointer to a string argument

• Use the libstruct function:

p = libstruct('structtype'); % structure type

Empty libstruct Object

To create an empty libstruct object, call libstruct with only the structtype
argument. For example:

sci = libstruct('c_struct')

get(sci)

 p1: 0

 p2: 0

 p3: 0

MATLAB displays the initialized values.

Manually Convert Data Passed to Functions

Under most conditions, MATLAB software automatically converts data passed to and
from external library functions to the type expected by the external function. However,
you might choose to convert your argument data manually. For example:

3 Calling C Shared Library Functions from MATLAB

3-22

• When passing the same data to a series of library functions, convert it once manually
before calling the first function rather than having MATLAB convert it automatically
on every call. This strategy reduces the number of unnecessary copy and conversion
operations.

• When passing large structures, save memory by creating MATLAB structures that
match the shape of the C structures used in the function instead of using generic
MATLAB structures. The libstruct function creates a MATLAB structure modeled
from a C structure taken from the library.

• When an argument to an external function uses more than one level of referencing
(for example, double **), pass a pointer created using the libpointer function
rather than relying on MATLAB to convert the type automatically.

See Also
libfunctions | libfunctionsview | libpointer | libstruct

Related Examples
• “Shared Library shrlibsample” on page 3-23

More About
• “Structure Arguments” on page 3-49

 Shared Library shrlibsample

3-23

Shared Library shrlibsample

MATLAB includes a sample external library called shrlibsample. The library is in the
folder matlabroot\extern\examples\shrlib.

View the source code in MATLAB.

edit([matlabroot '/extern/examples/shrlib/shrlibsample.c']);

edit([matlabroot '/extern/examples/shrlib/shrlibsample.h']);

To use the shrlibsample library, choose one of the following.

• Add the folder to your MATLAB path:

addpath(fullfile(matlabroot,'extern','examples','shrlib'))

• Make the folder your current working folder:

cd(fullfile(matlabroot,'extern','examples','shrlib'))

Load the library and display the MATLAB signatures for the functions in the library.

loadlibrary('shrlibsample')

libfunctions shrlibsample -full

Functions in library shrlibsample:

[double, doublePtr] addDoubleRef(double, doublePtr, double)

double addMixedTypes(int16, int32, double)

[double, c_structPtr] addStructByRef(c_structPtr)

double addStructFields(c_struct)

c_structPtrPtr allocateStruct(c_structPtrPtr)

voidPtr deallocateStruct(voidPtr)

lib.pointer exportedDoubleValue

lib.pointer getListOfStrings

doublePtr multDoubleArray(doublePtr, int32)

[lib.pointer, doublePtr] multDoubleRef(doublePtr)

int16Ptr multiplyShort(int16Ptr, int32)

doublePtr print2darray(doublePtr, int32)

printExportedDoubleValue

cstring readEnum(Enum1)

[cstring, cstring] stringToUpper(cstring)

3 Calling C Shared Library Functions from MATLAB

3-24

Pass String Arguments

In this section...

“stringToUpper Function” on page 3-24
“Convert MATLAB Character Array to Uppercase” on page 3-24

stringToUpper Function

The stringToUpper function in the shrlibsample library converts the characters
in the input argument to uppercase. The input parameter, char *, is a C pointer to a
string.

EXPORTED_FUNCTION char* stringToUpper(char *input)

{

 char *p = input;

 if (p != NULL)

 while (*p!=0)

 *p++ = toupper(*p);

 return input;

}

The function signature for stringToUpper is shown in the following table. MATLAB
maps the C pointer type (char *) into cstring so you can pass a MATLAB character
array to the function.

Return Type Name Arguments

[cstring,

cstring]

stringToUpper (cstring)

Convert MATLAB Character Array to Uppercase

This example shows how to pass a MATLAB character array str to a C function,
stringToUpper.

str = 'This was a Mixed Case string';

Load the library containing the stringToUpper function.

if not(libisloaded('shrlibsample'))

 Pass String Arguments

3-25

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

Pass str to the function.

res = calllib('shrlibsample','stringToUpper',str)

res =

THIS WAS A MIXED CASE STRING

The input parameter is a pointer to type char. However, a MATLAB character array is
not a pointer, so the stringToUpper function does not modify the input argument, str.

str

str =

This was a Mixed Case string

Related Examples
• “Shared Library shrlibsample” on page 3-23
• “Iterate Through an Array” on page 3-43

3 Calling C Shared Library Functions from MATLAB

3-26

Pass Structures

In this section...

“addStructFields and addStructByRef Functions” on page 3-26
“Add Values of Fields in Structure” on page 3-27
“Preconvert MATLAB Structure Before Adding Values” on page 3-28
“Autoconvert Structure Arguments” on page 3-29
“Pass Pointer to Structure” on page 3-30

addStructFields and addStructByRef Functions

The shrlibsample example library contains two functions with c_struct structure
input parameters. c_struct is defined in the shrlibsample.h header file.

struct c_struct {

 double p1;

 short p2;

 long p3;

};

Both functions sum the values of the fields in the structure. The input to
addStructFields is c_struct. The input to addStructByRef is a pointer to
c_struct. This function also modifies the fields after summing the values.

addStructFields Function

The addStructFields function sums the values of the fields in a c_struct structure.

EXPORTED_FUNCTION double addStructFields(struct c_struct st)

{

 double t = st.p1 + st.p2 + st.p3;

 return t;

}

The MATLAB function signature is:

Return Type Name Arguments

double addStructFields (struct c_struct)

 Pass Structures

3-27

addStructByRef Function

The addStructByRef function sums the values of the fields in a c_struct structure,
then modifies the fields. The function returns the sum calculated before modifying the
fields.

EXPORTED_FUNCTION double addStructByRef(struct c_struct *st) {

 double t = st->p1 + st->p2 + st->p3;

 st->p1 = 5.5;

 st->p2 = 1234;

 st->p3 = 12345678;

 return t;

}

Since the function modifies the input argument, MATLAB also returns the input as an
output argument of type c_structPtr. The MATLAB function signature is:

Return Type Name Arguments

[double,

c_structPtr]

addStructByRef (c_structPtr)

You can pass a MATLAB structure to the function and let MATLAB autoconvert the
argument. Or you can pass a pointer to a structure, which avoids creating a copy of the
structure.

Add Values of Fields in Structure

This example shows how to pass a MATLAB structure to the function,
addStructFields.

Create and initialize structure sm. Each field is of type double.

sm.p1 = 476;

sm.p2 = -299;

sm.p3 = 1000;

Load the library containing the addStructFields function.

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

3 Calling C Shared Library Functions from MATLAB

3-28

Call the function. MATLAB automatically converts the fields of structure sm to the
library definition for c_struct.

calllib('shrlibsample','addStructFields',sm)

ans =

 1177

Preconvert MATLAB Structure Before Adding Values

This example shows how to preconvert structure sm to c_struct before calling
addStructFields. If you repeatedly pass sm to functions, preconverting eliminates the
processing time required by MATLAB to autoconvert the structure for each function call.

Create and initialize a MATLAB structure.

sm.p1 = 476;

sm.p2 = -299;

sm.p3 = 1000;

Load the library containing the addStructFields function.

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

Convert the fields, which are of type double, to match the c_struct structure types,
double, short, and long.

sc = libstruct('c_struct',sm);

Display the field names and values.

get(sc)

 p1: 476

 p2: -299

 p3: 1000

Add the field values.

 Pass Structures

3-29

calllib('shrlibsample','addStructFields',sc)

ans =

 1177

Autoconvert Structure Arguments

This example shows how to pass a MATLAB structure to a C library function,
addStructByRef. When you pass the structure, MATLAB automatically converts the
field types, but MATLAB also makes a copy of the fields.

Load the library.

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

Create a structure.

S.p1 = 476;

S.p2 = -299;

S.p3 = 1000;

Call addStructByRef.

res = calllib('shrlibsample','addStructByRef',S)

res =

 1177

MATLAB does not modify the contents of structure S, since it is not a pointer.

S

S =

 p1: 476

3 Calling C Shared Library Functions from MATLAB

3-30

 p2: -299

 p3: 1000

Pass Pointer to Structure

This example shows how calling the addStructByRef function with a pointer modifies
the fields in the input argument.

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

Create a structure of type c_struct.

S.p1 = 20;

S.p2 = 99;

S.p3 = 3;

Create a pointer sp to the structure.

sp = libpointer('c_struct',S);

sp.Value

ans =

 p1: 20

 p2: 99

 p3: 3

Pass the pointer to the function.

res = calllib('shrlibsample','addStructByRef',sp)

res =

 122

When you pass a pointer, the function modifies the fields in the structure it points to.

 Pass Structures

3-31

sp.Value

ans =

 p1: 5.5000

 p2: 1234

 p3: 12345678

See Also
libpointer | libstruct

Related Examples
• “Shared Library shrlibsample” on page 3-23

More About
• “Strategies for Passing Structures” on page 3-49
• “Limitations Using Structures” on page 3-13

3 Calling C Shared Library Functions from MATLAB

3-32

Pass Enumerated Types
In this section...

“readEnum Function” on page 3-32
“Display Enumeration Values” on page 3-32

readEnum Function

The readEnum function in the shrlibsample library displays a string that matches the
input argument.

EXPORTED_FUNCTION char* readEnum(TEnum1 val)

{

 static char outputs[][20] = {

 {"You chose en1"},

 {"You chose en2"},

 {"You chose en4"},

 {"enum not defined"},

 {"ERROR"} };

 switch (val) {

 case en1: return outputs[0];

 case en2: return outputs[1];

 case en4: return outputs[2];

 default : return outputs[3];

 }

 return outputs[4];

}

The function signature is:

Return Type Name Arguments

cstring readEnum (Enum1)

The values for the Enum1 input are defined in the shrlibsample.h header file.

typedef enum Enum1 {en1 = 1, en2, en4 = 4} TEnum1;

Display Enumeration Values

This example shows how to pass enumeration values to the readEnum function in the
shrlibsample library. Load the library.

 Pass Enumerated Types

3-33

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

In MATLAB, you can express an enumerated type as either the enumeration string or its
equivalent numeric value. Call readEnum with a string argument.

calllib('shrlibsample','readEnum','en4')

ans =

You chose en4

Call readEnum with the equivalent numeric argument. The Enum1 definition declares
enumeration en4 equal to 4.

calllib('shrlibsample','readEnum',4)

ans =

You chose en4

Related Examples
• “Shared Library shrlibsample” on page 3-23

3 Calling C Shared Library Functions from MATLAB

3-34

Pass Pointers

In this section...

“multDoubleRef Function” on page 3-34
“Pass Pointer of Type double” on page 3-34
“Create Pointer Offset from Existing lib.pointer Object” on page 3-35
“Multilevel Pointers” on page 3-36
“allocateStruct and deallocateStruct Functions” on page 3-36
“Pass Multilevel Pointer” on page 3-37
“Return Array of Strings” on page 3-37

multDoubleRef Function

The multDoubleRef function in the shrlibsample library multiplies the input by 5.

EXPORTED_FUNCTION double *multDoubleRef(double *x)

{

 *x *= 5;

 return x;

}

The input is a pointer to a double, and the function returns a pointer to a double. The
MATLAB function signature is:

Return Type Name Arguments

[lib.pointer,

doublePtr]

multDoubleRef (doublePtr)

Pass Pointer of Type double

This example shows how to construct and pass a pointer to C function multDoubleRef.

Load the library containing the function.

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

 Pass Pointers

3-35

end

Construct a pointer, Xptr, to the input argument, X.

X = 13.3;

Xptr = libpointer('doublePtr',X);

Verify the contents of Xptr.

get(Xptr)

 Value: 13.3000

 DataType: 'doublePtr'

Call the function and check the results.

calllib('shrlibsample','multDoubleRef',Xptr);

Xptr.Value

ans =

 66.5000

Xptr is a handle object. Copies of this handle refer to the same underlying object and any
operations you perform on a handle object affect all copies of that object. However, Xptr
is not a C language pointer. Although it points to X, it does not contain the address of X.
The function modifies the Value property of Xptr but does not modify the value in the
underlying object X. The original value of X is unchanged.

X

X =

 13.3000

Create Pointer Offset from Existing lib.pointer Object

This example shows how to create a pointer to a subset of a MATLAB vector X. The new
pointer is valid only as long as the original pointer exists.

3 Calling C Shared Library Functions from MATLAB

3-36

Create a pointer to a vector.

X = 1:10;

xp = libpointer('doublePtr',X);

xp.Value

ans =

 1 2 3 4 5 6 7 8 9 10

Use the lib.pointer plus operator (+) to create a pointer to the last six elements of X.

xp2 = xp + 4;

xp2.Value

ans =

 5 6 7 8 9 10

Multilevel Pointers

Multilevel pointers are arguments that have more than one level of referencing.
A multilevel pointer type in MATLAB uses the suffix PtrPtr. For example, use
doublePtrPtr for the C argument double **.

When calling a function that takes a multilevel pointer argument, use a lib.pointer
object and let MATLAB convert it to the multilevel pointer.

allocateStruct and deallocateStruct Functions

The allocateStruct function in the shrlibsample library takes a c_structPtrPtr
argument.

EXPORTED_FUNCTION void allocateStruct(struct c_struct **val)

{

 val=(struct c_struct) malloc(sizeof(struct c_struct));

 (*val)->p1 = 12.4;

 (*val)->p2 = 222;

 (*val)->p3 = 333333;

 Pass Pointers

3-37

}

The MATLAB function signatures are:

Return Type Name Arguments

c_structPtrPtr allocateStruct (c_structPtrPtr)

voidPtr deallocateStruct (voidPtr)

Pass Multilevel Pointer

This example shows how to pass a multilevel pointer to a C function.

Load the library containing allocateStruct and deallocateStruct.

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

Create a c_structPtr pointer.

sp = libpointer('c_structPtr');

Call allocateStruct to allocate memory for the structure.

res = calllib('shrlibsample','allocateStruct',sp)

res =

 p1: 12.4000

 p2: 222

 p3: 333333

Free the memory created by the allocateStruct function.

calllib('shrlibsample','deallocateStruct',sp)

Return Array of Strings

Suppose that you have a library, myLib, with a function, acquireString, that reads an
array of strings. The function signature is:

3 Calling C Shared Library Functions from MATLAB

3-38

Return Type Name Arguments

char** acquireString (void)

char** acquireString(void)

The following pseudo-code shows how to manipulate the return value, an array of
pointers to strings.

ptr = calllib(myLib,'acquireString')

MATLAB creates a lib.pointer object ptr of type stringPtrPtr. This object points
to the first string. To view other strings, increment the pointer. For example, to display
the first three strings, type:

for index = 0:2

 tempPtr = ptr + index;

 tempPtr.Value

end

ans =

 'str1'

ans =

 'str2'

ans =

 'str3'

See Also
libpointer

 Pass Arrays

3-39

Pass Arrays

In this section...

“print2darray Function” on page 3-39
“Convert MATLAB Array to C-Style Dimensions” on page 3-39
“multDoubleArray Function” on page 3-40
“Preserve 3-D MATLAB Array” on page 3-41

print2darray Function

The print2darray function in the shrlibsample library displays the values of a 2-D
array with three columns and a variable number of rows. The my2d parameter is a two-
dimensional array of double. The len parameter is the number of rows.

EXPORTED_FUNCTION void print2darray(double my2d[][3],int len)

{

 int indxi,indxj;

 for(indxi=0;indxi<len;++indxi)

 {

 for(indxj=0;indxj<3;++indxj)

 {

 mexPrintf("%10g",my2d[indxi][indxj]);

 }

 mexPrintf("\n");

 }

}

Convert MATLAB Array to C-Style Dimensions

This example shows how to pass data stored columnwise in a MATLAB array to a C
function that assumes a row-by-column format.

Load the library containing the print2darray function.

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

Create a MATLAB array with 4 rows and 3 columns.

3 Calling C Shared Library Functions from MATLAB

3-40

m = reshape(1:12,4,3)

m =

 1 5 9

 2 6 10

 3 7 11

 4 8 12

Display the values. The first column is [1 4 7 10] instead of [1 2 3 4].

calllib('shrlibsample','print2darray',m,4)

 1 2 3

 4 5 6

 7 8 9

 10 11 12

Transpose m to get the desired result.

calllib('shrlibsample','print2darray',m',4)

 1 5 9

 2 6 10

 3 7 11

 4 8 12

multDoubleArray Function

The multDoubleArray function in the shrlibsample library multiplies each element
of an array by three. The function uses a single subscript (linear indexing) to navigate
the input array.

EXPORTED_FUNCTION void multDoubleArray(double *x,int size)

{

 /* Multiple each element of the array by 3 */

 int i;

 for (i=0;i<size;i++)

 *x++ *= 3;

}

The MATLAB function signature is:

 Pass Arrays

3-41

Return Type Name Arguments

doublePtr multDoubleArray (doublePtr,

int32)

Preserve 3-D MATLAB Array

This example shows how a C function changes the dimensions of a MATLAB array, and
how to restore its shape.

Load the library.

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

Create a 2-by-5-by-2 input array and display its dimensions.

vin = reshape(1:20,2,5,2);

vs = size(vin)

vs =

 2 5 2

Call multDoubleArray to multiply each element. Display the dimensions of the output.

vout = calllib('shrlibsample','multDoubleArray',vin,20);

size(vout)

ans =

 2 10

Restore the original shape.

vout = reshape(vout,vs);

size(vout)

3 Calling C Shared Library Functions from MATLAB

3-42

ans =

 2 5 2

 Iterate Through an Array

3-43

Iterate Through an Array

In this section...

“Create Cell Array from lib.pointer Object” on page 3-43
“Perform Pointer Arithmetic on Structure Array” on page 3-44

Create Cell Array from lib.pointer Object

This example shows how to create a MATLAB® cell array of strings, mlStringArray,
from the output of the getListOfStrings function.

Load the shrlibsample library.

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

Call the getListOfStrings function to create an array of strings. The function returns
a pointer to the array.

ptr = calllib('shrlibsample','getListOfStrings');

class(ptr)

ans =

lib.pointer

Create indexing variables to iterate through the arrays. Use ptrindex for the array
returned by the function and index for the MATLAB array.

ptrindex = ptr;

index = 1;

Create the cell array of strings mlStringArray. Copy the output of
getListOfStrings to the cell array.

% read until end of list (NULL)

while ischar(ptrindex.value{1})

 mlStringArray{index} = ptrindex.value{1};

3 Calling C Shared Library Functions from MATLAB

3-44

 % increment pointer

 ptrindex = ptrindex + 1;

 % increment array index

 index = index + 1;

end

View the contents of the cell array.

mlStringArray

mlStringArray =

 'String 1' 'String Two' '' 'Last string'

Perform Pointer Arithmetic on Structure Array

This example shows how to use pointer arithmetic to access elements of a structure.
The example creates a MATLAB structure, based on the c_struct definition in the
shrlibsample.h header file.

Load the definition.

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

Create the MATLAB structure.

s = struct('p1',{1,2,3},'p2',{1.1,2.2,3.3},'p3',{0});

Create a pointer to the structure.

sptr = libpointer('c_struct',s);

Read the values of the first element.

v1 = sptr.Value

v1 =

 Iterate Through an Array

3-45

 p1: 1

 p2: 1

 p3: 0

Read the values of the next element by incrementing the pointer.

sptr = sptr + 1;

v2 = sptr.Value

v2 =

 p1: 2

 p2: 2

 p3: 0

3 Calling C Shared Library Functions from MATLAB

3-46

Pointer Arguments

In this section...

“Pointer Arguments in C Functions” on page 3-46
“Put String into Void Pointer” on page 3-46
“Memory Allocation for External Library” on page 3-47

Pointer Arguments in C Functions

Many functions in external libraries pass arguments by reference. When you pass by
reference, you pass a pointer to the value. In the function signature, pointer arguments
have names ending in Ptr and PtrPtr. Although MATLAB does not support passing
by reference, you can create a MATLAB argument, called a lib.pointer object, that is
compatible with a C pointer. This object is an instance of the MATLAB class.

Often, you can simply pass a MATLAB variable (passing an argument by value), even
when the signature for that function declares the argument to be a pointer. There are
times, however, when it is useful to pass a lib.pointer.

• You want to modify the data in the input arguments.
• You are passing large amounts of data, and you want to control when MATLAB

makes copies of the data.
• The library stores and uses the pointer so you want the MATLAB function to control

the lifetime of the lib.pointer object.

Put String into Void Pointer

C represents characters as 8-bit integers. To use a MATLAB character array as an input
argument, convert the string to the proper type and create a voidPtr. For example:

str = 'string variable';

vp = libpointer('voidPtr',[int8(str) 0]);

The syntax [int8(str) 0] creates the null-terminated string required by the C
function. To read the string, and verify the pointer type, enter:

char(vp.Value)

vp.DataType

 Pointer Arguments

3-47

ans =

string variable

ans =

voidPtr

MATLAB automatically converts an argument passed by value into an argument
passed by reference when the external function prototype defines the argument as a
pointer. Call a function that takes a voidPtr to a string as an input argument using the
following syntax.

func_name([int8(str) 0])

Although MATLAB converts the argument from a value to a pointer, it must be of the
correct type.

Memory Allocation for External Library

In general, MATLAB passes a valid memory address each time you pass a variable to a
library function. Use a lib.pointer object in cases where the library stores the pointer
and accesses the buffer over time. In these cases, ensure that MATLAB has control over
the lifetime of the buffer and prevent copies of the data from being made. The following
pseudo-code is an example of asynchronous data acquisition that shows how to use a
lib.pointer in this situation.

Suppose an external library myLib has the following functions:

AcquireData(int points,short *buffer)

IsAquisitionDone(void)

where buffer is declared as follows:

short buffer[99]

First, create a lib.pointer to an array of 99 points:

BufferSize = 99;

pBuffer = libpointer('int16Ptr',zeros(BufferSize,1));

Then, begin acquiring data and wait in a loop until it is done:

calllib('myLib','AcquireData,BufferSize,pbuffer)

while (~calllib('myLib','IsAcquisitionDone')

 pause(0.1)

3 Calling C Shared Library Functions from MATLAB

3-48

end

The following statement reads the data in the buffer:

result = pBuffer.Value;

When the library is done with the buffer, clear the MATLAB variable:

clear pBuffer

See Also
lib.pointer

 Structure Arguments

3-49

Structure Arguments

Structure Argument Requirements

When you pass a MATLAB structure to an external library function:

• Every MATLAB field name must match a field name in the library structure
definition. Field names are case-sensitive.

• MATLAB structures cannot contain fields that are not in the library structure
definition.

• If a MATLAB structure contains fewer fields than defined in the library structure,
MATLAB sets undefined fields to zero.

You do not need to match the data types of numeric fields. The calllib function
converts to the correct numeric type.

Find Structure Field Names

To determine the name and data type of structure fields, you can:

• Consult the library documentation.
• Look at the structure definition in the library header file.
• Use the libstruct function.

Strategies for Passing Structures

MATLAB automatically converts a structure to the library definition for that structure
type. For most cases, such as working with small structures, this works fine.

However, when working with repeated calls that pass large structures, convert the
structure manually before making any calls to external functions. You save processing
time by converting the structure data only once at the start rather than at each function
call. You can also save memory if the fields of the converted structure take up less space
than the original MATLAB structure.

To convert manually, call the libstruct function to create a libstruct object. Although
it is an object, it behaves like a MATLAB structure. The fields of the object are derived
from an externally specified structure type.

3 Calling C Shared Library Functions from MATLAB

3-50

See Also
libstruct

Related Examples
• “Add Values of Fields in Structure” on page 3-27
• “Preconvert MATLAB Structure Before Adding Values” on page 3-28

More About
• “Limitations Using Structures” on page 3-13

 Explore libstruct Objects

3-51

Explore libstruct Objects

This example shows how to display information about and modify a libstruct object,
c_struct.

Load the shrlibsample library containing the c_struct definition.

if not(libisloaded('shrlibsample'))

 addpath(fullfile(matlabroot,'extern','examples','shrlib'))

 loadlibrary('shrlibsample')

end

Create the libstruct object. Object sc is an instance of a MATLAB class called
lib.c_struct.

sc = libstruct('c_struct')

sc =

 lib.c_struct

Set structure field values.

set(sc,'p1',100,'p2',150,'p3',200);

Display field values.

get(sc)

 p1: 100

 p2: 150

 p3: 200

Modify values using MATLAB field structure syntax.

sc.p1 = 23;

get(sc)

 p1: 23

 p2: 150

 p3: 200

3 Calling C Shared Library Functions from MATLAB

3-52

MATLAB Prototype Files

In this section...

“When to Use Prototype Files” on page 3-52
“How to Create Prototype Files” on page 3-52
“How to Specify Thunk Files” on page 3-53
“Deploy Applications That Use loadlibrary” on page 3-53
“loadlibrary in Parallel Computing Environment” on page 3-53
“Change Function Signature” on page 3-53
“Rename Library Function” on page 3-53
“Load Subset of Functions in Library” on page 3-53
“Call Function with Variable Number of Arguments” on page 3-54

When to Use Prototype Files

MATLAB provides a way to modify header file information by creating a prototype file, a
file of MATLAB commands.

Like a header file, the prototype file contains the function signatures for the library. Here
are some reasons for using a prototype file.

• To deploy applications that use loadlibrary (using MATLAB Compiler™).
• To use loadlibrary in a parallel computing environment (using Parallel Computing

Toolbox™).
• To change signatures of the library functions.
• To rename some of the library functions.
• To use only a small percentage of the functions in the library you are loading.
• To use functions with a variable number of arguments.

You can change the prototypes by editing the prototype file and reloading the library.

How to Create Prototype Files

To create a prototype file, use the mfilename option of the loadlibrary function.

 MATLAB Prototype Files

3-53

How to Specify Thunk Files

For information about default thunk file names, see loadlibrary. To change the name,
use the thunkfilename option.

Deploy Applications That Use loadlibrary

To deploy a MATLAB application that uses loadlibrary, using MATLAB Compiler:

• Create a prototype file.
• For 64-bit applications, specify a thunk file.
• Include all the relevant files when creating the project with mcc.

loadlibrary in Parallel Computing Environment

To use loadlibrary in a parallel computing environment (using Parallel Computing
Toolbox):

• Create a prototype file.
• For 64-bit applications, specify a thunk file.
• Make sure that all relevant files are accessible to all workers.

Change Function Signature

Edit the prototype file, changing the fcns.LHS or fcns.RHS field for that function. This
edit changes the types of arguments on the left-hand side or right-hand side, respectively.

Rename Library Function

Edit the prototype file, defining the fcns.alias field for that function.

Load Subset of Functions in Library

Edit the prototype file, commenting out the unused functions. This edit reduces the
amount of memory required for the library.

3 Calling C Shared Library Functions from MATLAB

3-54

Call Function with Variable Number of Arguments

Create an alias function in a prototype file for each set of arguments you use to call the
function.

4

Intro to MEX-Files

• “Introducing MEX Files” on page 4-3
• “Using MEX Files” on page 4-4
• “MEX File Placement” on page 4-5
• “Use Help Files with MEX Files” on page 4-6
• “MATLAB Data” on page 4-7
• “Testing for Most-Derived Class” on page 4-15
• “Build MEX File” on page 4-17
• “Linking Multiple Files” on page 4-18
• “What You Need to Build MEX Files” on page 4-19
• “Change Default Compiler” on page 4-20
• “Custom Build with MEX Script Options” on page 4-23
• “Compiling MEX Files with the Microsoft Visual C++ IDE” on page 4-24
• “Call LAPACK and BLAS Functions” on page 4-26
• “Running MEX Files with .DLL File Extensions on Windows 32-Bit Platforms” on

page 4-35
• “Upgrade MEX-Files to Use 64-Bit API” on page 4-36
• “Upgrade MEX Files to Use Graphics Objects” on page 4-47
• “Platform Compatibility” on page 4-52
• “Invalid MEX File Error” on page 4-53
• “Run MEX File You Receive from Someone Else” on page 4-54
• “MEX File Dependent Libraries” on page 4-55
• “Document Build Information in the MEX File” on page 4-56
• “Version Compatibility” on page 4-58
• “Getting Help When MEX Fails” on page 4-59
• “Understanding MEX File Problems” on page 4-61

4 Intro to MEX-Files

4-2

• “Compiler- and Platform-Specific Issues” on page 4-66
• “Memory Management Issues” on page 4-67
• “Compiler Errors in Fortran MEX Files” on page 4-73

 Introducing MEX Files

4-3

Introducing MEX Files

You can call your own C, C++, or Fortran subroutines from the MATLAB command
line as if they were built-in functions. These programs, called binary MEX files, are
dynamically linked subroutines that the MATLAB interpreter loads and executes. The
MEX file contains only one function or subroutine, and its name is the MEX file name. To
call a MEX file, use the name of the file, without the file extension.

For information about using a MEX file that someone else created, see “Call MEX File
Functions”.

The term mex stands for “MATLAB executable” and has different meanings, as shown in
the following table.

MEX Term Definition

source MEX file C, C++, or Fortran source code file.
binary MEX file Dynamically linked subroutine executed in the MATLAB

environment.
MEX function library MATLAB C/C++ and Fortran API Reference library to perform

operations in the MATLAB environment.
mex build script MATLAB function to create a binary file from a source file.

Related Examples
• “Create C Source MEX File” on page 5-18

More About
• “Creating C++ MEX Files” on page 5-13
• “What You Need to Build MEX Files” on page 4-19

4 Intro to MEX-Files

4-4

Using MEX Files

Binary MEX files are subroutines produced from C/C++ or Fortran source code. They
behave just like MATLAB scripts and built-in functions. While scripts have a platform-
independent extension .m, MATLAB identifies MEX files by platform-specific extensions.
The following table lists the platform-specific extensions for MEX files.

MEX-File Platform-Dependent Extension

Platform Binary MEX-File Extension

Linux (64-bit) mexa64

Apple Mac (64-bit) mexmaci64

Microsoft Windows (32-
bit)

mexw32

Windows (64-bit) mexw64

You cannot use a binary MEX file on a platform if you compiled it on a different platform.
Recompile the source code on the platform for which you want to use the MEX file.For
information about using MEX S-functions, see your Simulink® documentation.

 MEX File Placement

4-5

MEX File Placement

Put your MEX files in a folder on the MATLAB path. Alternatively, run MATLAB from
the folder containing the MEX file. MATLAB runs functions in the current working folder
before functions on the path.

To see the current folders on your path, use the path function. You can add new folders
to the path either by using the addpath function, or by selecting File > SetPath to edit
the path.

MEX Files on Windows Network Drives

Windows network drive file servers do not always report folder and file changes correctly.
If you change a MEX file on a network drive and find that MATLAB does not use the
latest changes, change folders away from and then back to the folder containing the file.

See Also
addpath | path

4 Intro to MEX-Files

4-6

Use Help Files with MEX Files

You can document the behavior of your MEX files by writing a MATLAB script
containing comment lines. The help command searches for a MATLAB script and
displays the appropriate text.

For example, copy the following text from the arrayProduct.c MEX source file into a
file, arrayproduct.m.

% arrayproduct.m Help file for arrayProduct MEX-file.

% arrayProduct.c - example in MATLAB External Interfaces

%

% Multiplies an input scalar (multiplier)

% times a 1xN matrix (inMatrix)

% and outputs a 1xN matrix (outMatrix)

%

% The calling syntax is:

%

% outMatrix = arrayProduct(multiplier, inMatrix)

%

% This is a MEX-file for MATLAB.

% Copyright 2007-2014 The MathWorks, Inc.

%

When you type:

help arrayproduct

MATLAB displays the comments.

See Also
help

Related Examples
• “Document Build Information in the MEX File” on page 4-56
• “Add Help for Your Program”

 MATLAB Data

4-7

MATLAB Data

In this section...

“The MATLAB Array” on page 4-7
“Lifecycle of mxArray” on page 4-7
“Data Storage” on page 4-8
“MATLAB Types” on page 4-10
“Sparse Matrices” on page 4-11
“Using Data Types” on page 4-12

The MATLAB Array

The MATLAB language works with a single object type: the MATLAB array. All
MATLAB variables (including scalars, vectors, matrices, strings, cell arrays, structures,
and objects) are stored as MATLAB arrays. In C/C++, the MATLAB array is declared to
be of type mxArray. The mxArray structure contains the following information about the
array:

• Its type
• Its dimensions
• The data associated with this array
• If numeric, whether the variable is real or complex
• If sparse, its indices and nonzero maximum elements
• If a structure or object, the number of fields and field names

To access the mxArray structure, use the API functions in the Matrix Library. These
functions allow you to create, read, and query information about the MATLAB data in
your MEX files. Matrix Library functions use the mwSize type to avoid portability issues
and allow MEX source files to be compiled correctly on all systems.

Lifecycle of mxArray

Like MATLAB functions, a MEX-file “Components of MEX File” on page 5-3 passes
MATLAB variables by reference. However, these arguments are C pointers. A pointer
to a variable is the address (location in memory) of the variable. MATLAB functions
handle data storage for you automatically. When passing data to a MEX-file, you use

4 Intro to MEX-Files

4-8

pointers, which follow specific rules for accessing and manipulating variables. For
information about working with pointers, refer to a programming reference, such as The
C Programming Language by Kernighan, B. W., and D. M. Ritchie.

Note: Since variables use memory, you need to understand how your MEX-file creates an
mxArray and your responsibility for releasing (freeing) the memory. This is important to
prevent memory leaks. The lifecycle of an mxArray—and the rules for managing memory
—depends on whether it is an input argument, output argument, or local variable. The
function you call to deallocate an mxArray depends on the function you used to create it,
which is listed in the create function’s MX Matrix Library documentation.

Input Argument prhs

An mxArray passed to a MEX-file through the prhs input parameter exists outside the
scope of the MEX-file. Do not free memory for any mxArray in the prhs parameter.
Additionally, prhs variables are read-only; do not modify them in your MEX-file.

Output Argument plhs

If you create an mxArray (allocate memory and create data) for an output argument,
the memory and data exist beyond the scope of the MEX-file. Do not free memory on an
mxArray returned in the plhs output parameter.

Local Variable

You allocate memory whenever you use an mxCreate* function to create an mxArray
or when you call the mxCalloc and associated functions. After observing the rules
for handling input and output arguments, the MEX-file should destroy temporary
arrays and free dynamically allocated memory. To deallocate memory, use either
mxDestroyArray or mxFree. Refer to the MX Matrix Library function documentation
for information about which function to use.

Data Storage

MATLAB stores data in a column-major (columnwise) numbering scheme, which is how
Fortran stores matrices. MATLAB uses this convention because it was originally written
in Fortran. MATLAB internally stores data elements from the first column first, then
data elements from the second column second, and so on, through the last column.

For example, given the matrix:

 MATLAB Data

4-9

a = ['house'; 'floor'; 'porch']

a =

 house

 floor

 porch

its dimensions are:

size(a)

ans =

 3 5

and its data is stored as:

If a matrix is N-dimensional, MATLAB represents the data in N-major order. For
example, consider a three-dimensional array having dimensions 4-by-2-by-3. Although
you can visualize the data as:

MATLAB internally represents the data for this three-dimensional array in the following
order:

A B C D E F G H I J K L M N O P Q R S T U V W X

4 Intro to MEX-Files

4-10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

The mxCalcSingleSubscript function creates the offset from the first element of an
array to the desired element, using N-dimensional subscripting.

MATLAB Types

Complex Double-Precision Matrices

The most common data type in MATLAB is the complex double-precision, nonsparse
matrix. These matrices are of type double and have dimensions m-by-n, where m is the
number of rows and n is the number of columns. The data is stored as two vectors of
double-precision numbers—one contains the real data and one contains the imaginary
data. The pointers to this data are referred to as pr (pointer to real data) and pi (pointer
to imaginary data), respectively. A noncomplex matrix is one whose pi is NULL.

Other Numeric Matrices

MATLAB supports single-precision floating-point and 8-, 16-, and 32-bit integers, both
signed and unsigned. The data is stored in two vectors in the same manner as double-
precision matrices.

Logical Matrices

The logical data type represents a logical true or false state using the numbers 1 and
0, respectively. Certain MATLAB functions and operators return logical 1 or logical 0
to indicate whether a certain condition was found to be true or not. For example, the
statement (5 * 10) > 40 returns a logical 1 value.

MATLAB Strings

MATLAB strings are of type char and are stored the same way as unsigned 16-bit
integers except there is no imaginary data component. Unlike C, MATLAB strings are
not null terminated.

Cell Arrays

Cell arrays are a collection of MATLAB arrays where each mxArray is referred to as
a cell. Cell arrays allow MATLAB arrays of different types to be stored together. Cell
arrays are stored in a similar manner to numeric matrices, except the data portion
contains a single vector of pointers to mxArrays. Members of this vector are called cells.
Each cell can be of any supported data type, even another cell array.

 MATLAB Data

4-11

Structures

A 1-by-1 structure is stored in the same manner as a 1-by-n cell array where n is the
number of fields in the structure. Members of the data vector are called fields. Each field
is associated with a name stored in the mxArray.

Objects

Objects are stored and accessed the same way as structures. In MATLAB, objects are
named structures with registered methods. Outside MATLAB, an object is a structure
that contains storage for an additional class name that identifies the name of the object.

Multidimensional Arrays

MATLAB arrays of any type can be multidimensional. A vector of integers is stored
where each element is the size of the corresponding dimension. The storage of the data is
the same as matrices.

Empty Arrays

MATLAB arrays of any type can be empty. An empty mxArray is one with at least one
dimension equal to zero. For example, a double-precision mxArray of type double, where
m and n equal 0 and pr is NULL, is an empty array.

Sparse Matrices

Sparse matrices have a different storage convention from full matrices in MATLAB. The
parameters pr and pi are still arrays of double-precision numbers, but these arrays
contain only nonzero data elements. There are three additional parameters: nzmax, ir,
and jc.

• nzmax is an integer that contains the length of ir, pr, and pi, if it exists. It is the
maximum number of nonzero elements in the sparse matrix.

• ir points to an integer array of length nzmax containing the row indices of the
corresponding elements in pr and pi.

• jc points to an integer array of length n+1, where n is the number of columns in the
sparse matrix. The jc array contains column index information. If the jth column of
the sparse matrix has any nonzero elements, jc[j] is the index into ir, pr, and pi
of the first nonzero element in the jth column. Index jc[j+1] - 1 contains the last
nonzero element in that column. For the jth column of the sparse matrix, jc[j] is

4 Intro to MEX-Files

4-12

the total number of nonzero elements in all preceding columns. The last element of
the jc array, jc[n], is equal to nnz, the number of nonzero elements in the entire
sparse matrix. If nnz is less than nzmax, more nonzero entries can be inserted into
the array without allocating more storage.

Using Data Types

You can write source MEX files, MAT-file applications, and engine applications in C/C++
that accept any class or data type supported by MATLAB (see “Data Types”). In Fortran,
only the creation of double-precision n-by-m arrays and strings are supported. You use
binary C/C++ and Fortran MEX files like MATLAB functions.

Caution MATLAB does not check the validity of MATLAB data structures created
in C/C++ or Fortran using one of the Matrix Library create functions (for example,
mxCreateStructArray). Using invalid syntax to create a MATLAB data structure can
result in unexpected behavior in your C/C++ or Fortran program.

Declaring Data Structures

To handle MATLAB arrays, use type mxArray. The following statement declares an
mxArray named myData:

mxArray *myData;

To define the values of myData, use one of the mxCreate* functions. Some useful
array creation routines are mxCreateNumericArray, mxCreateCellArray, and
mxCreateCharArray. For example, the following statement allocates an m-by-1 floating-
point mxArray initialized to 0:

myData = mxCreateDoubleMatrix(m, 1, mxREAL);

C/C++ programmers should note that data in a MATLAB array is in column-major order.
(For an illustration, see “Data Storage” on page 4-8.) Use the MATLAB mxGet*
array access routines to read data from an mxArray.

Manipulating Data

The mxGet* array access routines get references to the data in an mxArray. Use these
routines to modify data in your MEX file. Each function provides access to specific
information in the mxArray. Some useful functions are mxGetData, mxGetPr, mxGetM,

 MATLAB Data

4-13

and mxGetString. Many of these functions have corresponding mxSet* routines to allow
you to modify values in the array.

The following statements read the input string prhs[0] into a C-style string buf:

char *buf;

int buflen;

int status;

buflen = mxGetN(prhs[0])*sizeof(mxChar)+1;

buf = mxMalloc(buflen);

status = mxGetString(prhs[0], buf, buflen);

The explore Example

There is an example source MEX file included with MATLAB, called explore.c, that
identifies the data type of an input variable. The source code for this example is in
matlabroot/extern/examples/mex, where matlabroot represents the top-level
folder where MATLAB is installed on your system.

Note: In platform-independent discussions that refer to folder paths, this documentation
uses the UNIX convention. For example, a general reference to the mex folder is
matlabroot/extern/examples/mex.

To build the example MEX file, first copy the file to a writable folder on your path.

copyfile(fullfile(matlabroot,'extern','examples','mex','explore.c'),'.','f')

Use the mex function to build the MEX file.

mex -largeArrayDims explore.c

Type:

x = 2;

explore(x)

--

Name: prhs[0]

Dimensions: 1x1

Class Name: double

--

 (1,1) = 2

4 Intro to MEX-Files

4-14

explore accepts any data type. Try using explore with these examples:

explore([1 2 3 4 5])

explore 1 2 3 4 5

explore({1 2 3 4 5})

explore(int8([1 2 3 4 5]))

explore {1 2 3 4 5}

explore(sparse(eye(5)))

explore(struct('name', 'Joe Jones', 'ext', 7332))

explore(1, 2, 3, 4, 5)

 Testing for Most-Derived Class

4-15

Testing for Most-Derived Class

If you define functions that require inputs that are:

• MATLAB built-in types
• Not subclasses of MATLAB built-in types

use the following technique to exclude subclasses of built-in types from the input
arguments.

• Define a cell array that contains the names of built-in types accepted by your
function.

• Call class and strcmp to test for specific types in a MATLAB control statement.

The following code tests an input argument, inputArg:

if strcmp(class(inputArg),'single')

 % Call function

else

 inputArg = single(inputArg);

end

Testing for a Category of Types

Suppose that you create a MEX function, myMexFcn, that requires two numeric inputs
that must be of type double or single:

outArray = myMexFcn(a,b)

Define a cell array floatTypes that contains the strings double and single:

floatTypes = {'double','single'};

% Test for proper types

if any(strcmp(class(a),floatTypes)) && ...

 any(strcmp(class(b),floatTypes))

 outArray = myMexFcn(a,b);

else

 % Try to convert inputs to avoid error

 ...

end

4 Intro to MEX-Files

4-16

Another Test for Built-In Types

You can use isobject to separate built-in types from subclasses of built-in types. The
isobject function returns false for instances of built-in types. For example:

% Create a int16 array

a = int16([2,5,7,11]);

isobject(a)

ans =

 0

Determine if an array is one of the built-in integer types:

if isa(a,'integer') && ~isobject(a)

 % a is a built-in integer type

 ...

end

 Build MEX File

4-17

Build MEX File

This example shows how to build the example MEX file, timestwo. Use this example to
verify the build configuration for your system.

To build a code example, first copy the file to a writable folder on your path.

copyfile(fullfile(matlabroot,'extern','examples','refbook','timestwo.c'),'.','f')

Use the mex function to build the MEX file.

mex timestwo.c

Building with 'Microsoft Visual C++ 2010 (C)'.

MEX completed successfully.

This command creates the file timestwo.ext, where ext is the value returned by the
mexext function.

The timestwo function takes a scalar input and doubles it. Call timestwo like a
MATLAB function.

timestwo(4)

ans =

 8

See Also
mex | mexext

More About
• “What You Need to Build MEX Files” on page 4-19
• “Upgrade MEX-Files to Use 64-Bit API” on page 4-36

4 Intro to MEX-Files

4-18

Linking Multiple Files

You can combine multiple source files, object files, and file libraries to build a binary
MEX file. List the additional files, with their file extensions, separated by spaces. The
name of the MEX file is the name of the first file in the list.

The following command combines multiple files of different types into a binary MEX file
called circle.ext, where ext is the extension corresponding to the current platform:

mex circle.c square.obj rectangle.c shapes.lib

For a Fortran files, type:

mex circle.F square.o rectangle.F shapes.o

You can use a software development tool like MAKE to manage MEX file projects involving
multiple source files. Create a MAKEFILE that contains a rule for producing object files
from each of your source files. Then invoke the mex build script to combine your object
files into a binary MEX file. This method ensures that your source files are recompiled
only when necessary.

 What You Need to Build MEX Files

4-19

What You Need to Build MEX Files

To create a MEX file:

• Install a MATLAB-supported compiler.
• Assemble your functions and the MATLAB API functions into one or more C/C++ or

Fortran source files.
• Write a gateway function in one of your source files.
• Use the MATLAB mex function, called a build script, to build a binary MEX file.
• Use your binary MEX file like any MATLAB function.

If you have multiple compilers installed on your system, see “Change Default Compiler”
on page 4-20.

See Also
mex

Related Examples
• “Build MEX File” on page 4-17

More About
• “C/C++ Matrix Library API”
• “Fortran Matrix Library API”
• “Troubleshoot MEX Files”

External Websites
• Supported and Compatible Compilers

http://www.mathworks.com/support/compilers/current_release/

4 Intro to MEX-Files

4-20

Change Default Compiler

In this section...

“Windows Systems” on page 4-20
“Mac and Linux Systems” on page 4-21
“Do Not Use mex -f optionsfile Syntax” on page 4-21

Windows Systems

If you have multiple MATLAB-supported compilers for a language installed on your
Windows system, MATLAB selects one as the default compiler. You can change the
default using the mex -setup language command. If you have multiple compilers,
MATLAB displays a message with links to set up a different compiler.

If you call mex -setup without the language argument, MATLAB displays links to the
other supported languages. Select a link to change the default for building MEX files in
that language. MATLAB maintains separate default compiler options for C language and
C++ language files.

If you call mex -setup from an operating system prompt, MATLAB displays the same
information. However, the messages do not contain links. Instead, MATLAB displays the
appropriate mex command syntax for changing the default compiler. Copy the command
and paste it into the operating system prompt.

The compiler you choose remains the default until you call mex -setup to select a
different default.

C Compilers

To change the default C compiler, at the MATLAB command prompt, type:

mex -setup

mex -setup defaults to information about the C compiler. Alternatively, type:

mex -setup c

C++ Compilers

To change the default C++ compiler, type:

 Change Default Compiler

4-21

mex -setup cpp

Mac and Linux Systems

MATLAB supports only one compiler for each language on Linux and Mac platforms.
If you have multiple compilers installed, the default compiler might not be the
MATLAB-supported compiler. You can either change the system default compiler for
all applications, or select the MATLAB-supported compiler each time you run the mex
command.

Change System Default Compiler

To determine the default gcc compiler for your system, in MATLAB, type:

!which gcc

If this compiler is not a MATLAB-supported compiler, you can change the default. When
you change the compiler, it becomes the default compiler for all applications on your
system. To change the system default compiler:

Select MATLAB-Supported Compiler When Running mex

To change the compiler in the mex command, set the varname variable. varname for
the gcc compiler is GCC, in uppercase letters. For example, if the currently supported
gcc compiler is version 4.7, and it is installed in the /usr/bin/gcc-4.7 folder on your
system, to build yprime.c, type:

copyfile(fullfile(matlabroot,'extern','examples','refbook','timestwo.c'),'.','f')

mex -v GCC='/usr/bin/gcc-4.7' timestwo.c

Do Not Use mex -f optionsfile Syntax

The mex command -f option to specify a build configuration file will be removed in
a future release. Instead, use the work flows described in this topic for specifying a
compiler.

See Also
mex

Related Examples
• “Choose a C++ Compiler” on page 5-28

4 Intro to MEX-Files

4-22

External Websites
• Supported and Compatible Compilers

http://www.mathworks.com/support/compilers/current_release/

 Custom Build with MEX Script Options

4-23

Custom Build with MEX Script Options

The mex build script is sufficient for building MEX files. Following are reasons that you
might need more detailed information:

• You want to use an Integrated Development Environment (IDE), rather than the
provided script, to build MEX files.

• You want to exercise more control over the build process than the script uses.

Use the mex -v -n options to display the build commands to configure an IDE. You can
also use the mex script options to modify the build steps.

Include Files

Header files for the MATLAB API (MEX files, engine, and MAT-files). These files are in
the matlabroot\extern\include folder.

• matrix.h—C/C++ header file containing a definition of the mxArray structure and
function prototypes for matrix access routines.

• mex.h—Header file for building C/C++ MEX files. Contains function prototypes for
mex routines.

• engine.h—C/C++ header file for MATLAB engine programs. Contains function
prototypes for engine routines.

• mat.h—C/C++ header file for programs accessing MAT-files. Contains function
prototypes for mat routines.

• fintrf.h—Header file for building Fortran MEX files. Contains function prototypes
for mex routines.

See Also
mex

4 Intro to MEX-Files

4-24

Compiling MEX Files with the Microsoft Visual C++ IDE

Note: This topic provides information on how to compile source MEX files in the
Microsoft Visual C++® IDE. It assumes that you know how to use the IDE. If you need
more information, refer to the corresponding Microsoft documentation.

To build MEX files with the Microsoft Visual C++ integrated development environment:

1 Create a project and insert your MEX source files.
2 Create a .def file to export the MEX entry point. On the Project menu, click Add

New Item and select Module-Definition File (.def). For example:

LIBRARY MYFILE

EXPORTS mexFunction <-- for a C MEX-file

 or

EXPORTS _MEXFUNCTION <-- for a Fortran MEX-file

3 On the Project menu, click Properties for the project to open the property pages.
4 Under C/C++ General properties, add the MATLAB include folder,

matlab\extern\include, as an additional include folder.
5 Under C/C++ Preprocessor properties, add MATLAB_MEX_FILE as a preprocessor

definition.
6 Under Linker General properties, change the output file extension. If you are

building for a 32–bit platform, use .mexw32. If you are building for a 64–bit
platform, use .mexw64.

7 Locate the .lib files for the compiler you are using under matlabroot\extern
\lib\win32\microsoft or matlabroot\extern\lib\win64\microsoft.
Under Linker Input properties, add libmx.lib, libmex.lib, and libmat.lib as
additional dependencies.

8 Under Linker Input properties, add the module definition (.def) file you created.
9 Under Linker Debugging properties, if you intend to debug the MEX file

using the IDE, specify that the build generates debugging information. For more
information about debugging, see “Debugging on Microsoft Windows Platforms” on
page 5-52.

If you are using a compiler other than the Microsoft Visual C++ compiler, the process
for building MEX files is similar. In step 4, locate the .lib files for the compiler you are

 Compiling MEX Files with the Microsoft Visual C++ IDE

4-25

using in a folder of matlabroot\extern\lib\win32 or matlabroot\extern\lib
\win64.

4 Intro to MEX-Files

4-26

Call LAPACK and BLAS Functions

In this section...

“What You Need to Know” on page 4-26
“Creating a MEX File Using LAPACK and BLAS Functions” on page 4-26
“Preserving Input Values from Modification” on page 4-28
“Passing Arguments to Fortran Functions from C/C++ Programs” on page 4-29
“Passing Arguments to Fortran Functions from Fortran Programs” on page 4-30
“Handling Complex Numbers in LAPACK and BLAS Functions” on page 4-31
“Modifying the Function Name on UNIX Systems” on page 4-34

What You Need to Know

You can call a LAPACK or BLAS function using a MEX file. To create a MEX file,
you need C/C++ or Fortran programming experience and the software resources
(compilers and linkers) to build an executable file. It also is helpful to understand how
to use Fortran subroutines. MATLAB provides the mwlapack and mwblas libraries in
matlabroot/extern/lib. To work with complex numbers, use the conversion routines
in the fort.c and fort.h files in matlabroot/extern/examples/refbook. To help
you get started, there are source code examples in matlabroot/extern/examples/
refbook.

Creating a MEX File Using LAPACK and BLAS Functions

To call LAPACK or BLAS functions:

1 Create a source MEX file containing the mexFunction gateway routine.
2 Select a supported compiler for your platform.
3 Build a binary MEX file using the mex command with one or more of the following

options:

• Link your source file to one or both of the libraries, mwlapack and mwblas.
• Use the -largeArrayDims option; the mwlapack and mwblas libraries only

support 64-bit integers for matrix dimensions.

 Call LAPACK and BLAS Functions

4-27

• If your function uses complex numbers, build your source file with fort.c and
include the fort.h header file.

The following topics show how to use the mex command using the example
matrixMultiply.c. To work with this file, copy it to a local folder. For example:

copyfile(fullfile(matlabroot,'extern','examples','refbook','matrixMultiply.c'),'.')

The example files are read-only files. To modify an example, ensure that the file is
writable by typing:

fileattrib('matrixMultiply.c','+w')

Building on Windows Platforms

There are compiler-specific versions of the libraries on the Windows platform. To link to
a specific library, look at the matlabroot/extern/lib/ folder and choose the path for
your architecture and compiler.

For example, to link to the libraries for a Microsoft C/C++ compiler, create the following
build command variables, lapacklib and blaslib. These variables identify the full
path and file name of each library.

lapacklib = fullfile(matlabroot,'extern','lib',computer('arch'),'microsoft',...

 'libmwlapack.lib');

blaslib = fullfile(matlabroot,'extern','lib',computer('arch'),'microsoft',...

 'libmwblas.lib');

When you use a variable to identify the library, use the function syntax of the mex
command. (For more information, see “Command vs. Function Syntax”.) To build
matrixMultiply.c, which uses functions from the BLAS library, type:

mex('-v', '-largeArrayDims', 'matrixMultiply.c', blaslib)

To build a MEX file with functions that use complex numbers, see “Handling Complex
Numbers in LAPACK and BLAS Functions” on page 4-31.

Building on UNIX Platforms

To build the MEX file matrixMultiply.c, which uses functions from the BLAS library,
type:

mex -v -largeArrayDims matrixMultiply.c -lmwblas

4 Intro to MEX-Files

4-28

To build a MEX file with functions that use complex numbers, see “Handling Complex
Numbers in LAPACK and BLAS Functions” on page 4-31.

Testing the matrixMultiply MEX File

To run the matrixMultiply MEX file, type:

A = [1 3 5; 2 4 7];

B = [-5 8 11; 3 9 21; 4 0 8];

X = matrixMultiply(A,B)

X =

 24 35 114

 30 52 162

Preserving Input Values from Modification

Many LAPACK and BLAS functions modify the values of arguments passed to them. It is
good practice to make a copy of arguments you can modify before passing them to these
functions. For information about how MATLAB handles arguments to the mexFunction,
see “Managing Input and Output Parameters” on page 5-4.

Example — matrixDivide.c

The following example calls the LAPACK function dgesv that modifies its input
arguments. The code in this example makes copies of prhs[0] and prhs[1], and passes
the copies to dgesv to preserve the contents of the input arguments.

To see the example, open the file in the MATLAB Editor. To create the MEX file, copy the
source file to a writable folder.

copyfile(fullfile(matlabroot,'extern','examples','refbook','matrixDivide.c'),'.')

To build the file on Windows, type:

lapacklib = fullfile(matlabroot,'extern','lib',computer('arch'),'microsoft',...

 'libmwlapack.lib');

mex('-v', '-largeArrayDims', 'matrixDivide.c', lapacklib)

To build the file on UNIX type:

mex -v -largeArrayDims matrixDivide.c -lmwlapack

 Call LAPACK and BLAS Functions

4-29

To test, type:

A = [1 2; 3 4];

B = [5; 6];

X = matrixDivide(A,B)

X =

 -4.0000

 4.5000

Passing Arguments to Fortran Functions from C/C++ Programs

The LAPACK and BLAS functions are written in Fortran. C/C++ and Fortran use
different conventions for passing arguments to and from functions. Fortran functions
expect the arguments to be passed by reference, while arguments to C/C++ functions are
passed by value. When you pass by value, you pass a copy of the value. When you pass by
reference, you pass a pointer to the value. A reference is also the address of the value.

When you call a Fortran subroutine, like a function from LAPACK or BLAS, from a C/C+
+ program, be sure to pass the arguments by reference. To do this, precede the argument
with an ampersand (&), unless that argument is already a reference. For example, when
you create a matrix using the mxGetPr function, you create a reference to the matrix and
do not need the ampersand before the argument.

In the following code snippet, variables m, n, p, one, and zero need the & character to
make them a reference. Variables A, B, C, and chn are pointers, which are references.

/* pointers to input & output matrices*/

double *A, *B, *C;

/* matrix dimensions */

mwSignedIndex m,n,p;

/* other inputs to dgemm */

char *chn = "N";

double one = 1.0, zero = 0.0;

/* call BLAS function */

dgemm(chn, chn, &m, &n, &p, &one, A, &m, B, &p, &zero, C, &m);

Example — matrixMultiply.c

The matrixMultiply.c example calls dgemm, passing all arguments by reference. To
see the source code, open the file in the MATLAB Editor. To build and run this example,
see “Creating a MEX File Using LAPACK and BLAS Functions” on page 4-26.

4 Intro to MEX-Files

4-30

Passing Arguments to Fortran Functions from Fortran Programs

You can call LAPACK and BLAS functions from Fortran MEX files. The following
example takes two matrices and multiplies them by calling the BLAS routine dgemm. To
run the example, copy the code into the editor and name the file calldgemm.F.

#include "fintrf.h"

 subroutine mexFunction(nlhs, plhs, nrhs, prhs)

 mwPointer plhs(*), prhs(*)

 integer nlhs, nrhs

 mwPointer mxcreatedoublematrix

 mwPointer mxgetpr

 mwPointer A, B, C

 mwSize mxgetm, mxgetn

 mwSignedIndex m, n, p

 mwSize numel

 double precision one, zero, ar, br

 character ch1, ch2

 ch1 = 'N'

 ch2 = 'N'

 one = 1.0

 zero = 0.0

 A = mxgetpr(prhs(1))

 B = mxgetpr(prhs(2))

 m = mxgetm(prhs(1))

 p = mxgetn(prhs(1))

 n = mxgetn(prhs(2))

 plhs(1) = mxcreatedoublematrix(m, n, 0.0)

 C = mxgetpr(plhs(1))

 numel = 1

 call mxcopyptrtoreal8(A, ar, numel)

 call mxcopyptrtoreal8(B, br, numel)

 call dgemm(ch1, ch2, m, n, p, one, %val(A), m,

 + %val(B), p, zero, %val(C), m)

 return

 end

Link to the BLAS library, which contains the dgemm function.

 Call LAPACK and BLAS Functions

4-31

blaslib = fullfile(matlabroot,'extern','lib',computer('arch'),'microsoft',...

 'libmwblas.lib');

To build the file, type:

mex('-v','-largeArrayDims','calldgemm.F',blaslib)

Handling Complex Numbers in LAPACK and BLAS Functions

MATLAB stores complex numbers differently than Fortran. MATLAB stores the real
and imaginary parts of a complex number in separate, equal length vectors, pr and pi.
Fortran stores the same complex number in one location with the real and imaginary
parts interleaved.

As a result, complex variables exchanged between MATLAB and a Fortran function are
incompatible. Use the conversion routines, mat2fort and fort2mat, that change the
storage format of complex numbers to address this incompatibility.

• mat2fort — Convert MATLAB complex matrix to Fortran complex storage.
• fort2mat — Convert Fortran complex storage to MATLAB real and imaginary parts.

The fort.c and fort.h files provide routines for conversion between MATLAB and
Fortran complex data structures. These files define the mat2fort and fort2mat
routines.

To use these routines:

1 Include the fort.h header file in your source file, using the statement #include
"fort.h".

2 Link the fort.c file with your program. Specify the full path, matlabroot/
extern/examples/refbook for fort.c in the build command.

3 To indicate the header file, use the -Ipathname switch. Specify the full path,
matlabroot/extern/examples/refbook for fort.h in the build command.

4 When you specify the full path, replace the term matlabroot with the actual folder
name.

Handling Complex Number Input Values

It is unnecessary to copy arguments for functions that use complex number input
values. The mat2fort conversion routine creates a copy of the arguments for you. For
information, see “Preserving Input Values from Modification” on page 4-28.

4 Intro to MEX-Files

4-32

Handling Complex Number Output Arguments

For complex variables returned by a Fortran function, do the following:

1 When allocating storage for the variable, allocate a real variable with twice as much
space as you would for a variable of the same size. Do this because the returned
variable uses the Fortran format, which takes twice the space. See the allocation of
zout in the example.

2 To make the variable compatible with MATLAB, use the fort2mat function.

Example — Passing Complex Variables

This example shows how to call a function, passing complex prhs[0] as input and
receiving complex plhs[0] as output. Temporary variables zin and zout contain the
input and output values in Fortran format. To see the example, open the file in the
MATLAB Editor. To create the MEX file, copy the source file to a writable folder.

copyfile(fullfile(matlabroot,'extern','examples','refbook','matrixDivideComplex.c'),'.')

To build the file on a Windows platform, type:

lapacklib = fullfile(matlabroot,'extern','lib',computer('arch'),'microsoft',...

 'libmwlapack.lib');

fortfile = fullfile(matlabroot,'extern','examples','refbook','fort.c');

fortheaderdir = fullfile(matlabroot,'extern','examples','refbook');

mex('-v', '-largeArrayDims', ['-I' fortheaderdir], ...

 'matrixDivideComplex.c', fortfile, lapacklib)

To build on a UNIX platform, type:

fortfile = fullfile(matlabroot,'extern','examples','refbook','fort.c');

fortheaderdir = fullfile(matlabroot,'extern','examples','refbook');

mex('-v', '-largeArrayDims', ['-I' fortheaderdir], ...

 'matrixDivideComplex.c', fortfile, '-lmwlapack')

To test:

Areal = [1 2; 3 4];

Aimag = [1 1; 0 0];

Breal = [5; 6];

Bimag = [0; 0];

Acomplex = complex(Areal,Aimag);

Bcomplex = complex(Breal,Bimag);

X = matrixDivideComplex(Acomplex,Bcomplex)

 Call LAPACK and BLAS Functions

4-33

X =

 -4.4000 + 0.8000i

 4.8000 - 0.6000i

Example — Handling Fortran Complex Return Type

Some level 1 BLAS functions (for example, zdotu and zdotc) return a double
complex type, which the C language does not support. The following C MEX file,
dotProductComplex.c, shows how to handle the Fortran complex return type for
function zdotu. To see the example, open the file in the MATLAB Editor.

The calling syntax for a C program calling a Fortran function that returns a
value in an output argument is platform-dependent. On the Windows platform,
pass the return value as the first input argument. MATLAB provides a macro,
FORTRAN_COMPLEX_FUNCTIONS_RETURN_VOID, to handle these differences.

The dotProductComplex example computes the dot product X of each element of two
complex vectors A and B. The calling syntax is:

X = dotProductComplex(A,B)

where A and B are complex vectors of the same size and X is a complex scalar.

For example, to build the MEX file on a Windows platform, type:

blaslib = fullfile(matlabroot,'extern','lib',computer('arch'),'microsoft',...

 'libmwblas.lib');

fortfile = fullfile(matlabroot,'extern','examples','refbook','fort.c');

fortheaderdir = fullfile(matlabroot,'extern','examples','refbook');

mex('-v', '-largeArrayDims', ['-I' fortheaderdir], ...

 'dotProductComplex.c', fortfile, blaslib)

To test, type;

a1 = [1+2i; 2+3i];

b1 = [-1+2i; -1+3i];

X = dotProductComplex(a1,b1)

X =

 -16.0000 + 3.0000i

Example — Symmetric Indefinite Factorization Using LAPACK

The example utdu_slv.c calls LAPACK functions zhesvx and dsysvx. To see the
example, open the file in the MATLAB Editor. To create the MEX file, copy the source file
to a writable folder.

4 Intro to MEX-Files

4-34

copyfile(fullfile(matlabroot,'extern','examples','refbook','utdu_slv.c'),'.')

To build the file on Windows, type:

lapacklib = fullfile(matlabroot,'extern','lib',computer('arch'),'microsoft',...

 'libmwlapack.lib');

fortheaderdir = fullfile(matlabroot,'extern','examples','refbook');

mex('-v','-largeArrayDims',['-I' fortheaderdir],'utdu_slv.c',fortfile,lapacklib)

To build on a UNIX platform, type:

mex -v -largeArrayDims utdu_slv.c -lmwlapack

Modifying the Function Name on UNIX Systems

Add an underscore character following the function name when calling LAPACK or
BLAS functions on a UNIX system. For example, to call dgemm, use:

dgemm_(arg1, arg2, ..., argn);

Or add these lines to your source code:

#if !defined(_WIN32)

#define dgemm dgemm_

#endif

 Running MEX Files with .DLL File Extensions on Windows 32-Bit Platforms

4-35

Running MEX Files with .DLL File Extensions on Windows 32-Bit
Platforms

A MEX file is a shared library dynamically loaded at runtime. Shared libraries are
sometimes called .dll files, for dynamically linked library. MEX files have a platform-
dependent extension, which the mex function automatically assigns.

On 32-bit Windows platforms, the MEX file extension is .mexw32. MATLAB also
supports .dll as a secondary MEX file extension. However, future versions of MATLAB
will not support this extension.

To convert a MEX file to the .mexw32 file extension, rebuild the source file.

More About
• “Call MEX File Functions”
• “Build MEX File” on page 4-17

4 Intro to MEX-Files

4-36

Upgrade MEX-Files to Use 64-Bit API
In this section...

“MATLAB Support for 64-Bit Indexing” on page 4-36
“MEX Uses 32-Bit API by Default” on page 4-36
“What If I Do Not Upgrade?” on page 4-38
“How to Upgrade MEX-Files to Use the 64-Bit API” on page 4-38

MATLAB Support for 64-Bit Indexing

MATLAB Version 7.3 (R2006b) added support for 64-bit indexing. With 64-bit indexing,
you can create variables with up to 248-1 elements on 64-bit platforms. Before Version
7.3, the C/C++ and Fortran API Reference library functions used int in C/C++ and
INTEGER*4 in Fortran to represent array dimensions. These types limit the size of an
array to 32-bit integers. Simply building and running MEX-files on a 64-bit platform does
not guarantee you access to the additional address space. You must update your MEX
source code to take advantage of this functionality.

The following changes to the MX Matrix Library support 64-bit indexing:

• New types, mwSize and mwIndex, enabling large-sized data.
• Updated MX Matrix Library functions use mwSize and mwIndex types for inputs and

outputs. These functions are called the 64-bit API or the large-array-handling API.
• New -largeArrayDims flag for mex build command enabling use of the 64-bit API.

To help transition your MEX-files to the 64-bit API, MATLAB maintains an
interface, or compatibility layer. To build MEX-files with this interface, use the -
compatibleArrayDims flag.

Note: Only variables representing array size or index value require the mwSize or
mwIndex types. The C-language int data type is valid for variables representing, for
example, the number of fields or arrays.

MEX Uses 32-Bit API by Default

The mex command uses the -compatibleArrayDims flag (32-bit API) by default. In
a future version of MATLAB, the mex command will change to use the large-array-

 Upgrade MEX-Files to Use 64-Bit API

4-37

handling API. Then, the -largeArrayDims option will be the default. This topic
describes how to upgrade your MEX-files now in preparation for that transition.

Can I Run Existing Binary MEX-Files?

You can run existing binary MEX-files without upgrading the files for use with the 64-
bit API. However, unrelated incompatibilities that prevent execution of an existing MEX-
file can occur. If your MEX-file does not execute properly, review the MEX Compatibility
Considerations topics in the Release Notes for this release. To find MEX topics, check the
External Interfaces section of the Compatibility Summary for MATLAB release notes
table for each relevant version.

Must I Update Source MEX-Files on 64-Bit Platforms?

If you build MEX-files on 64-bit platforms or write platform-independent applications,
you must upgrade your MEX-files when the default changes. To upgrade, review your
source code, make appropriate changes, and rebuild using the mex command.

Previous versions of the External Interfaces Release Notes provide instructions for
updating your MEX-files. What action you take now depends on whether your MEX-files
currently use the 64-bit API. The following table helps you identify your next actions.

State of Your Source Code Next Action

I do not plan to update my code. You have chosen to opt out and you must
build using the -compatibleArrayDims
flag.

I want to update my code. Where do I start? See “How to Upgrade MEX-Files to Use the
64-Bit API” on page 4-38.

I use MEX-files, but do not have access to
the source code.

Ask the owner of the source code to follow
the steps in “How to Upgrade MEX-Files to
Use the 64-Bit API” on page 4-38.

I use third-party libraries. Ask the vendor if the libraries support
64-bit indexing. If not, you cannot use
these libraries to create 64-bit MEX-
files. Build your MEX-file using the -
compatibleArrayDims flag.

If the libraries support 64-bit indexing,
review your source code, following the steps

4 Intro to MEX-Files

4-38

State of Your Source Code Next Action

in “How to Upgrade MEX-Files to Use the
64-Bit API” on page 4-38, and then test.

I updated my code in a previous release. Review your source code, following the
steps in “How to Upgrade MEX-Files to
Use the 64-Bit API” on page 4-38, and
then test.

Must I Update Source MEX-Files on 32-Bit Platforms?

There are no changes to building 32-bit MEX-files. However, in a future version of
MATLAB, the compatibility layer, with the -compatibleArrayDims flag, might be
unsupported and you then would need to upgrade your MEX-files.

If you build MEX-files exclusively on 32-bit platforms, but want to write platform-
independent code, you still can upgrade your code. If possible, build on a 64-bit system to
validate your changes.

What If I Do Not Upgrade?

On 32-bit platforms, you do not need to make any changes to build MEX-files.

On 64-bit platforms, you can build MEX-files by using the -compatibleArrayDims flag.

On 64-bit platforms, if you do not update your source files and you build without the -
compatibleArrayDims flag, the results are unpredictable. One or more of the following
could occur:

• Increased compiler warnings and/or errors from your native compiler
• Run-time errors
• Wrong answers

How to Upgrade MEX-Files to Use the 64-Bit API

To review and update MEX-file source code, use the following checklist.

1 Prepare your code before editing — see “Back Up Files and Create Tests” on page
4-39.

 Upgrade MEX-Files to Use 64-Bit API

4-39

2 Iteratively change and test code.

Before building your MEX-files with the 64-bit API, refactor your existing code by
checking for the following conditions:

a “Update Variables” on page 4-40.
b “Replace Unsupported Functions” on page 4-42.
c If necessary, “Update Fortran Source Code” on page 4-44.

After each change, build and test your code:

• Build with the 32-bit API. For example, to build myMexFile.c, type:

mex -compatibleArrayDims myMexFile.c

• Test after each refactoring — see “Test, Debug, and Resolve Differences After
Each Refactoring Iteration” on page 4-42.

3 Compile using the 64-bit API. To build myMexFile.c, type:

mex -largeArrayDims myMexFile.c

4 Resolve failures and warnings — see “Resolve -largeArrayDims Build Failures and
Warnings” on page 4-43.

5 Compare Results — see “Execute 64-Bit MEX-File and Compare Results with 32-Bit
Version” on page 4-43.

6 Check memory — see “Experiment with Large Arrays” on page 4-43.

The following procedures use C/C++ terminology and example code. Fortran MEX-files
share the same issues, with more tasks described in “Update Fortran Source Code” on
page 4-44.

Back Up Files and Create Tests

Before adapting your code to handle large arrays, verify the MEX-file works with the
traditional 32-bit array dimensions. At a minimum, build a list of expected inputs and
outputs, or create a full test suite. To compare the results with the upgraded source code,
use these tests. The results should be identical.

Back up all source, binary, and test files.

4 Intro to MEX-Files

4-40

Update Variables

To handle large arrays, convert variables containing array indices or sizes to use the
mwSize and mwIndex types instead of the 32-bit int type. Review your code to see if it
contains the following types of variables:

• Variables used directly by the MX Matrix Library functions — see “Update
Arguments Used to Call Functions in the 64-Bit API” on page 4-40.

• Intermediate variables — see “Update Variables Used for Array Indices and Sizes” on
page 4-41.

• Variables used as both size/index values and as 32-bit integers — see “Analyze Other
Variables” on page 4-41.

Update Arguments Used to Call Functions in the 64-Bit API

Identify the 64-bit API functions in your code that use the mwSize / mwIndex types. For
the list of functions, see “Using the 64-Bit API” on page 5-61. Search for the variables
that you use to call the functions. Check the function signature, shown under the Syntax
heading on the function reference documentation. The signature identifies the variables
that take mwSize / mwIndex values as input or output values. Change your variables to
use the correct type.

For example, suppose that your code uses the mxCreateDoubleMatrix function, as
shown in the following statements:

int nrows,ncolumns;

...

y_out = mxCreateDoubleMatrix(nrows, ncolumns, mxREAL);

To see the function signature, type:

doc mxCreateDoubleMatrix

The signature is:

mxArray *mxCreateDoubleMatrix(mwSize m, mwSize n, mxComplexity ComplexFlag)

The type for input arguments m and n is mwSize. Change your code as shown in the
table.

Replace: With:

int nrows,ncolumns; mwSize nrows,ncolumns;

 Upgrade MEX-Files to Use 64-Bit API

4-41

Update Variables Used for Array Indices and Sizes

If your code uses intermediate variables to calculate size and index values, use mwSize
/ mwIndex for these variables. For example, the following code declares the inputs to
mxCreateDoubleMatrix as type mwSize:

mwSize nrows,ncolumns; /* inputs to mxCreateDoubleMatrix */

int numDataPoints;

nrows = 3;

numDataPoints = nrows * 2;

ncolumns = numDataPoints + 1;

...

y_out = mxCreateDoubleMatrix(nrows, ncolumns, mxREAL);

This example uses the intermediate variable, numDataPoints (of type int), to calculate
the value of ncolumns. If you copy a 64-bit value from nrows into the 32-bit variable,
numDataPoints, the resulting value truncates. Your MEX-file could crash or produce
incorrect results. Use type mwSize for numDataPoints, as shown in the following table.

Replace: With:

int numDataPoints; mwSize numDataPoints;

Analyze Other Variables

You do not need to change every integer variable in your code. For example, field
numbers in structures and status codes are of type int. However, you need to identify
variables used for multiple purposes and, if necessary, replace them with multiple
variables.

The following example creates a matrix, myNumeric, and a structure, myStruct, based on
the number of sensors. The code uses one variable, numSensors, for both the size of the
array and the number of fields in the structure.

mxArray *myNumeric, *myStruct;

int numSensors;

mwSize m, n;

char **fieldnames;

...

myNumeric = mxCreateDoubleMatrix(numSensors, n, mxREAL);

myStruct = mxCreateStructMatrix(m, n, numSensors, fieldnames);

The function signatures for mxCreateDoubleMatrix and mxCreateStructMatrix are:

mxArray *mxCreateDoubleMatrix(mwSize m, mwSize n,

4 Intro to MEX-Files

4-42

 mxComplexity ComplexFlag)

mxArray *mxCreateStructMatrix(mwSize m, mwSize n,

 int nfields, const char **fieldnames);

For the mxCreateDoubleMatrix function, your code uses numSensors for the variable
m. The type for m is mwSize. For the mxCreateStructMatrix function, your code uses
numSensors for the variable nfields. The type for nfields is int. Replace numSensors
with two new variables to handle both functions, as shown in the following table.

Replace: With:

int numSensors; /* create 2 variables */

/* of different types */

mwSize numSensorSize;

int numSensorFields;

myNumeric =

 mxCreateDoubleMatrix(

 numSensors,

 n, mxREAL);

/* use mwSize variable */

/* numSensorSize */

myNumeric =

 mxCreateDoubleMatrix(

 numSensorSize,

 n, mxREAL);

myStruct =

 mxCreateStructMatrix(

 m, n,

 numSensors,

 fieldnames);

/* use int variable */

/* numSensorFields */

myStruct =

 mxCreateStructMatrix(

 m, n,

 numSensorFields,

 fieldnames);

Replace Unsupported Functions

While updating older MEX-files, you could find calls to unsupported functions, such
as mxCreateFull, mxGetName, or mxIsString. MATLAB removed support for these
functions in Version 7.1 (R14SP3). You cannot use unsupported functions with 64-
bit array dimensions. For the list of unsupported functions and the recommended
replacements, see “Obsolete Functions No Longer Documented”.

Update your code to use an equivalent function, if available. For example, use
mxCreateDoubleMatrix instead of mxCreateFull.

Test, Debug, and Resolve Differences After Each Refactoring Iteration

To build myMexFile.c with the 32-bit API, type:

 Upgrade MEX-Files to Use 64-Bit API

4-43

mex -compatibleArrayDims myMexFile.c

Use the tests you created at the beginning of this process to compare the results of your
updated MEX-file with your original binary file. Both MEX-files should return identical
results. If not, debug and resolve any differences. Differences are easier to resolve now
than when you build using the 64-bit API.

Resolve -largeArrayDims Build Failures and Warnings

After reviewing and updating your code, compile your MEX-file using the large array
handling API. To build myMexFile.c with the 64-bit API, type:

mex -largeArrayDims myMexFile.c

Since the mwSize / mwIndex types are MATLAB types, your compiler sometimes refers to
them as size_t, unsigned_int64, or by other similar names.

Most build problems are related to type mismatches between 32- and 64-bit types. Refer
to http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-
update-mex-files-to-use-the-large-array-handling-api-largearraydims,
Step 5 to identify common build problems for specific compilers, and possible solutions.

Execute 64-Bit MEX-File and Compare Results with 32-Bit Version

Compare the results of running your MEX-file compiled with the 64-bit API with the
results from your original binary. If there are any differences or failures, use a debugger
to investigate the cause. For information on the capabilities of your debugger, refer to
your compiler documentation.

Refer to http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-
update-mex-files-to-use-the-large-array-handling-api-largearraydims,
Step 6 to identify issues you might encounter when running your MEX-files, and possible
solutions.

After you resolve any issues and upgrade your MEX-file, it replicates the functionality of
your original code while using the large array handling API.

Experiment with Large Arrays

If you have access to a machine with large amounts of memory, you can experiment
with large arrays. An array of double-precision floating- point numbers (the default in
MATLAB) with 232 elements takes approximately 32 GB of memory.

http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-update-mex-files-to-use-the-large-array-handling-api-largearraydims
http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-update-mex-files-to-use-the-large-array-handling-api-largearraydims
http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-update-mex-files-to-use-the-large-array-handling-api-largearraydims
http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-update-mex-files-to-use-the-large-array-handling-api-largearraydims

4 Intro to MEX-Files

4-44

For an example that demonstrates the use of large arrays, see the arraySize.c MEX-
file in “Handling Large mxArrays” on page 5-61.

Update Fortran Source Code

All of the previous information applies to Fortran, as well as C/C++. Fortran uses similar
API signatures, identical mwSize / mwIndex types, and similar compilers and debuggers.
To make your Fortran source code 64-bit compatible, perform these additional tasks:

• “Use Fortran API Header File” on page 4-44
• “Declare Fortran Pointers” on page 4-44
• “Require Fortran Type Declarations” on page 4-44
• “Use Variables in Function Calls” on page 4-45
• “Manage Reduced Fortran Compiler Warnings” on page 4-46

Use Fortran API Header File

To make your Fortran MEX-file compatible with the 64-bit API, use the fintrf.h
header file in your Fortran source files. Name your source files with an uppercase .F file
extension. For more information about these requirements, see “Components of Fortran
MEX File” on page 6-2.

Declare Fortran Pointers

Pointers are 32- or 64-bit addresses, based on machine type. This requirement is not
directly tied to array dimensions, but you could encounter problems when moving 32-bit
code to 64-bit machines as part of this conversion.

For more information, see “Preprocessor Macros” on page 6-5 and mwPointer.

The C/C++ compiler automatically handles pointer size. In Fortran, MATLAB uses
the mwPointer type to handle this difference. For example, mxCreateDoubleMatrix
returns an mwPointer:

mwPointer mxCreateDoubleMatrix(m, n, ComplexFlag)

mwSize m, n

integer*4 ComplexFlag

Require Fortran Type Declarations

Fortran uses implicit type definitions. This means undeclared variables starting with
letters I through N are implicitly declared type INTEGER. Variable names starting with

 Upgrade MEX-Files to Use 64-Bit API

4-45

other letters are implicitly declared type REAL*4. Using the implicit INTEGER type could
work for 32-bit indices, but is not safe for large array dimension MEX-files. To force you
to declare all variables, add the IMPLICIT NONE statement to your Fortran subroutines.
For example:

subroutine mexFunction(nlhs, plhs, nrhs, prhs)

implicit none

This statement helps identify 32-bit integers in your code that do not have explicit
type declarations. Then, you can declare them as INTEGER*4 or mwSize / mwIndex, as
appropriate. For more information on IMPLICIT NONE, refer to your Fortran compiler
documentation.

Use Variables in Function Calls

If you use a number as an argument to a function, your Fortran compiler could assign the
argument an incorrect type. On a 64-bit platform, an incorrect type can produce Out of
Memory errors, segmentation violations, or incorrect results. For example, definitions for
the argument types for the mxCreateDoubleMatrix function are:

mwPointer mxCreateDoubleMatrix(m, n, ComplexFlag)

mwSize m, n

integer*4 ComplexFlag

Suppose that you have a C/C++ MEX-file with the following statement:

myArray = mxCreateDoubleMatrix(2, 3, mxREAL);

Most C/C++ compilers interpret the number 2 as a 64-bit value. Some Fortran compilers
cannot detect this requirement, and supply a 32-bit value. For example, an equivalent
Fortran statement is:

myArray = mxCreateDoubleMatrix(2, 3, 0)

The compiler interprets the value of the ComplexFlag argument 0 correctly as type
INTEGER*4. However, the compiler could interpret the argument 2 as a 32-bit value,
even though the argument m is declared type mwSize.

A compiler-independent solution to this problem is to declare and use an mwSize /
mwIndex variable instead of a literal value. For example, the following statements
unambiguously call the mxCreateDoubleMatrix function in Fortran:

mwSize nrows, ncols

INTEGER*4 flag

4 Intro to MEX-Files

4-46

nrows = 2

ncols = 3

flag = 0

myArray = mxCreateDoubleMatrix(nrows, ncols, flag)

Manage Reduced Fortran Compiler Warnings

Some Fortran compilers cannot detect as many type mismatches as similar C/C+
+ compilers. This inability can complicate the step “Resolve -largeArrayDims Build
Failures and Warnings” on page 4-43 by leaving more issues to find with your
debugger in the step “Execute 64-Bit MEX-File and Compare Results with 32-Bit
Version” on page 4-43.

 Upgrade MEX Files to Use Graphics Objects

4-47

Upgrade MEX Files to Use Graphics Objects

MATLAB Version 8.4 (R2014b) changes the data type of handles to graphics objects from
double to object.

Before Version 8.4, MEX files used the C/C++ and Fortran API Reference library
functions mexGet and mexSet, which declare the input handle argument as type
double. If your MEX function uses mexGet or mexSet, MATLAB displays the following
“Deprecated MEX function” error.

Error using mex

Deprecated MEX function mexGet|mexSet was called. Either update the source code

to use mxGetProperty|mxSetProperty, OR rerun MEX with the -DMEX_DOUBLE_HANDLE

added to the command line to enter compatibility mode.

To upgrade your MEX file, consider one or more of the following actions.

In this section...

“Replace mexGet and mexSet Functions” on page 4-47
“mex Automatically Converts Handle Type” on page 4-50
“I Want to Rebuild MEX Source Code Files” on page 4-50
“I Do Not Have MEX Source Code File” on page 4-50

Replace mexGet and mexSet Functions

To upgrade a MEX file to use a graphics object, replace calls to mexGet with
mxGetProperty and calls to mexSet with mxSetProperty. The following program
listings show an example of a before and after source MEX file.

The following code uses mexCallMATLAB to create a plot, which returns the graphics
handle in variable plhs[0]. To change the line color, the example uses mxGetScalar to
convert the handle to a double, then passes it to mexGet and mexSet.

#include "mex.h"

#define RED 0

#define GREEN 1

#define BLUE 2

void fill_array(double *x)

4 Intro to MEX-Files

4-48

{

 int i = 0;

 for(i = 0 ; i < 4 ; i++)

 {

 x[i] = i+1;

 }

}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

 mxArray *color;

 int ret;

 double handle;

 mxArray *copycolor;

 double *acolor;

 mxArray *data = mxCreateDoubleMatrix(1,4,mxREAL);

 fill_array(mxGetPr(data));

 ret = mexCallMATLAB(1,&plhs[0],1,&data,"plot");

 if(!ret)

 {

 handle = mxGetScalar(plhs[0]);

 color = mexGet(handle,"Color");

 copycolor = mxDuplicateArray(color);

 acolor = mxGetPr(copycolor);

 acolor[RED] = (1 + acolor[RED]) /2;

 acolor[GREEN] = acolor[GREEN]/2;

 acolor[BLUE] = acolor[BLUE]/2;

 mexSet(handle,"Color",copycolor);

 mxSetProperty(plhs[0],0,"Color",copycolor);

 }

}

When you build this MEX file, MATLAB displays the “Deprecated MEX function” error.

To change the source file, make the following edits. This code uses the variable plhs[0]
in mxGetProperty to get the Color property directly. There is no need to create an
intermediate handle variable.

#include "mex.h"

#define RED 0

#define GREEN 1

 Upgrade MEX Files to Use Graphics Objects

4-49

#define BLUE 2

void fill_array(double *x)

{

 int i = 0;

 for(i = 0 ; i < 4 ; i++)

 {

 x[i] = i+1;

 }

}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

 mxArray *color;

 int ret;

 mxArray *copycolor;

 double *acolor;

 mxArray *data = mxCreateDoubleMatrix(1,4,mxREAL);

 fill_array(mxGetPr(data));

 ret = mexCallMATLAB(1,&plhs[0],1,&data,"plot");

 if(!ret)

 {

 color = mxGetProperty(plhs[0],0,"Color");

 copycolor = mxDuplicateArray(color);

 acolor = mxGetPr(copycolor);

 acolor[RED] = (1 + acolor[RED]) /2;

 acolor[GREEN] = acolor[GREEN]/2;

 acolor[BLUE] = acolor[BLUE]/2;

 mxSetProperty(plhs[0],0,"Color",copycolor);

 }

}

To build this MEX file, type:

mex mymex.c

Building with 'Microsoft Visual C++ 2010 (C)'.

MEX completed successfully.

Alternatively, you can build the original source file by following the steps in “I Want to
Rebuild MEX Source Code Files” on page 4-50.

4 Intro to MEX-Files

4-50

mex Automatically Converts Handle Type

If your MEX function uses the mexCallMATLAB or mexGetVariable functions to
get a graphics handle and to pass the handle to the mexGet and mexSet APIs, then
MATLAB automatically detects that behavior and your MEX function continues to
execute correctly. You know that your MEX function uses this pattern if the function
executes without error.

If you rebuild this MEX file in MATLAB R2014b or later, MATLAB displays the
“Deprecated MEX function” error. To rebuild the file, follow the instructions in either
“Replace mexGet and mexSet Functions” on page 4-47 or “I Want to Rebuild MEX
Source Code Files” on page 4-50.

I Want to Rebuild MEX Source Code Files

If you rebuild your MEX source files in MATLAB R2014b or later, MATLAB displays the
“Deprecated MEX function” error.

You might be able to use the mex function compatibility flag, -DMEX_DOUBLE_HANDLE,
to build the MEX file to work with graphics objects. If the MEX function calls a function
that returns a graphics handle using the mexCallMATLAB or mexGetVariable
functions, MATLAB automatically detects and converts the handle type. To build the
source file, mymex.c, type:

mex -DMEX_DOUBLE_HANDLE mymex.c

If you pass a graphics handle to a MEX function, convert the handle to double before
calling the function. For more information, see “I Do Not Have MEX Source Code File” on
page 4-50.

I Do Not Have MEX Source Code File

If you get a runtime error and you do not have the source code, you might be able to
use the following workaround. Use this workaround only for MEX functions that take a
graphics handle as an input argument.

Before you pass a graphics handle to the MEX function, first convert the handle to a
double. For example, if you call MEX function, mymex:

Y = 1:10;

h = plot(Y);

 Upgrade MEX Files to Use Graphics Objects

4-51

mymex(h)

add a statement to convert the handle h to double:

Y = 1:10;

h = plot(Y);

h = double(h);

mymex(h)

See Also
mxGetProperty | mxSetProperty

More About
• “Graphics Object Handles”

4 Intro to MEX-Files

4-52

Platform Compatibility

In this section...

“Verify the MEX File Is Built for Your Platform” on page 4-52
“Verify Your Architecture on Windows Platforms” on page 4-52

Verify the MEX File Is Built for Your Platform

If you obtain a binary MEX file from another source, be sure that the file was compiled
for the same platform on which you want to run it. The file extension reflects the
platform, as shown in the following table. To determine the extension for your platform,
use the mexext function.

MEX-File Platform-Dependent Extension

Platform Binary MEX-File Extension

Linux (64-bit) mexa64

Apple Mac (64-bit) mexmaci64

Microsoft Windows (32-
bit)

mexw32

Windows (64-bit) mexw64

Verify Your Architecture on Windows Platforms

Verify the MEX file is for the same architecture, 32- vs. 64-bit.

On non-Windows platforms, MATLAB is supported for 64-bit architectures only.

More About
• “Version Compatibility” on page 4-58

 Invalid MEX File Error

4-53

Invalid MEX File Error

If MATLAB cannot find all .dll files referenced by a MEX file, it cannot load the MEX
file. MATLAB displays the following error message:

Invalid MEX-file <mexfilename>:

The specified module could not be found.

where mexfilename is the module with the dependency error. This module cannot find
its dependent libraries. To resolve this error, find the names of the dependent libraries,
and determine if they are present on your system and on the system path.

On Windows systems, to find library dependencies, use the third-party product
Dependency Walker. Dependency Walker is a free utility that scans any 32-bit or 64-bit
Windows module and builds a hierarchical tree diagram of all dependent modules. For
each module found, it lists all the functions exported by that module, and which of those
functions are called by other modules. Download the Dependency Walker utility from the
website http://www.dependencywalker.com/. See http://www.mathworks.com/
matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-

mex-file-or-stand-alone-application-requires for information on using the
Dependency Walker.

For .dll files that the MEX file linked against when it was built, the .dll files must be
on the system path or in the same folder as the MEX file.

MEX files might require additional libraries that are not linked to the MEX file. Failure
to find one of these explicitly loaded libraries might not prevent a MEX file from loading,
but prevents it from working correctly. The search path used to find these explicitly
loaded libraries is controlled by the code that loads the libraries and might not include
the folder that contains the MEX file. Consult the library documentation on proper
installation locations.

Possible reasons for failure include:

• MATLAB version incompatibility
• Missing compiler runtime libraries. If your system does not have the same compiler

that built the MEX file, see the Microsoft MSDN website for information about Visual
C++ Redistributable Packages.

• Missing or incorrectly installed specialized runtime libraries. Contact your MEX file
or library vendor.

http://www.dependencywalker.com/
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires

4 Intro to MEX-Files

4-54

Run MEX File You Receive from Someone Else

To call a MEX file, put the file on your MATLAB path. Then type the name of the file,
without the file extension.

If you have MEX file source code, see “Build MEX File” on page 4-17 for information
about creating the executable function.

If you get runtime errors when you call a MEX file that you did not create, consider the
following:

• “Platform Compatibility” on page 4-52
• “Version Compatibility” on page 4-58
• On Windows platforms, install the C++ compiler runtime libraries used to create the

MEX file. This step is needed if you do not have the same compiler installed on your
machine that was used to compile the MEX file.

• If the MEX file uses specialized runtime libraries, those libraries must be installed on
your system.

If you write a MEX file, build it, and then execute it in the same MATLAB session, all
of the dependent libraries are available, as expected. However, if you receive a MEX file
from another MATLAB user, you might not have all of the dependent libraries.

A MEX file is a dynamically linked subroutine that the MATLAB interpreter loads and
executes when you call the function. Dynamic linking means that when you call the
function, the program looks for dependent libraries. MEX files use MATLAB runtime
libraries and language-specific libraries. A MEX file might also use specialized runtime
libraries. The code for these libraries is not included in the MEX file; the libraries must
be present on your computer when you run the MEX file.

For troubleshooting library dependencies, see “Invalid MEX File Error” on page 4-53.

For information about how MATLAB finds a MEX file, see “Files and Folders that
MATLAB Accesses”.

 MEX File Dependent Libraries

4-55

MEX File Dependent Libraries

When you build a MEX file, MATLAB dynamically links your code with the following
libraries:

• MATLAB runtime libraries, libmex.dll and libmx.dll. To avoid compatibility
issues, run the MEX file with the same version of MATLAB that was used to create
the MEX file. For more information, see “Version Compatibility” on page 4-58.

• Language-specific libraries, provided by the compiler. C-language MEX files built on
Windows systems require Visual C++ runtime libraries.

• Other runtime libraries, which you specify in the build command.

Dynamic linking means that when you call the function, the program looks for these
dependent libraries. The code for these libraries is not included in the MEX file. When
you share a MEX file with another MATLAB user, these libraries must be present on the
user’s computer.

4 Intro to MEX-Files

4-56

Document Build Information in the MEX File

This example shows how to document the xtimesy MEX file built on a Windows
platform using a Microsoft Visual C++ compiler.

When you share a MEX file, your users need the following information about the
configuration used to build the MEX file:

• MATLAB version.
• Build platform.
• Compiler.

Copy the source file to a folder on your MATLAB path.

copyfile(fullfile(matlabroot,'extern','examples','refbook','xtimesy.c'),'.')

Create a help file, xtimesy.m, and copy the header information from the source file.

% xtimesy.m Help file for XTIMESY MEX-file

%

% XTIMESY Multiplies a scalar and a matrix

% C = XTIMESY(b,A) multiplies scalar b with matrix A,

% and returns the result in C

%

% MEX-File function.

Identify your MATLAB version.

v = ver('matlab');

v.Release

ans =

(R2012a)

Identify your platform.

archstr = computer('arch')

archstr =

win64

Identify the MEX file extension.

ext = mexext

 Document Build Information in the MEX File

4-57

ext =

mexw64

Identify your C compiler.

cc = mex.getCompilerConfigurations('C','Selected');

cc.Name

ans =

Microsoft Visual C++ 2008 (C)

Add this information to the help file.

% xtimesy.m Help file for XTIMESY MEX-file

%

% XTIMESY Multiplies a scalar and a matrix

% C = XTIMESY(b,A) multiplies scalar b with matrix A,

% and returns the result in C

%

% Created with:

% MATLAB R2012a

% Platform: win64

% Microsoft Visual C++ 2008

% MEX-File function.

Provide your users with the following.

• xtimesy.mexw64

• xtimesy.m

• Instructions for downloading and installing the runtime library from the Microsoft
Visual C++ 2008 Redistributable Package.

• If you build a MEX file with a third-party library, instructions for acquiring and
installing the necessary files.

Related Examples
• “Use Help Files with MEX Files” on page 4-6

4 Intro to MEX-Files

4-58

Version Compatibility

For best results, your version of MATLAB must be the same version that was used to
create the MEX file.

MEX files use MATLAB runtime libraries. MEX files are usually backward compatible,
which means you can run a MEX file that was created on an earlier version of MATLAB
on later versions of MATLAB. If the MEX file generates errors, recompile the MEX file
from the source code.

Sometimes a MEX file created on a newer version of MATLAB runs on an older version of
MATLAB (forward compatibility), but this is not supported.

More About
• “Platform Compatibility” on page 4-52

 Getting Help When MEX Fails

4-59

Getting Help When MEX Fails

In this section...

“Errors Finding Supported Compiler” on page 4-59
“Errors Building MEX Function” on page 4-59
“Preview mex Build Commands” on page 4-60

To help diagnose compiler set up and build errors, call mex with the verbose option, -v.
For an example of the information mex provides, type the following commands from a
writable folder:

copyfile(fullfile(matlabroot,'extern','examples','refbook','timestwo.c'),'.','f')

mex -v timestwo.c

Errors Finding Supported Compiler

In verbose mode, mex displays the steps used to find a supported compiler and to
determine if it is properly installed. Each step begins with the following text:

... Looking for

If the compiler is not configured properly, these messages show you the expected values
for specific files, paths, and variables in the configuration.

If the compiler is found, mex displays a message similar to:

Building with 'Microsoft Visual C++ 2010 (C)'

Errors Building MEX Function

After locating the installed compiler, indicated by the “Building with” message, verbose
mode displays the compile and link commands mex passes to the build tools. For
example, the compile command on Windows platforms might be similar to the following:

cl /c /GR /W3 /EHs /nologo /MD /DMX_COMPAT_32 /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0 /DMATLAB_MEX_FILE -I"matlabroot\extern\include" -I"matlabroot\simulink\include" /O2 /Oy- /DNDEBUG C:\work\mex\timestwo.c /FoC:\work\timestwo.obj

timestwo.c

mex displays error messages from the compiler build tools. For information about errors
and warnings, see your compiler or language reference documentation.

4 Intro to MEX-Files

4-60

If you have experience with program development and want to modify a command
parameter, use the mex varname=varvalue option.

Preview mex Build Commands

To display the build command details without executing the commands, type:

mex -n timestwo.c

See Also
mex

 Understanding MEX File Problems

4-61

Understanding MEX File Problems

Use the following figure to help isolate common problems that occur when creating
binary MEX files.

4 Intro to MEX-Files

4-62

Start

Acquire a supported
compiler. See
"Supported Compilers"
for details.

Stop

Can you
compile and run
timestwo.c or
timestwo.f?

Are you
using a supported

compiler?

Link against all libraries
you intend to use.

Check for:
Spelling of mexFunction

Check for:
ANSI C code
General C syntax errors

Double-check your
configuration. See
"Testing your Configuration
on UNIX (or Windows)".

Can you
compile your

program?

Can MATLAB
load your MEX-file?

Segmentation
fault or

bus error?

Do you get
the right answer?

Run in debugger.

Use:
mexPrintf
matlab -check_malloc

Stop
Use:
matlab -check_malloc
mex -argcheck

no no

yes

no

no

no no

yes

yes

yes

yes yes

2

1

3

4 5

Troubleshooting MEX File Creation Problems

 Understanding MEX File Problems

4-63

In this section...

“Problem 1 — Compiling a Source MEX File Fails” on page 4-63
“Problem 2 — Compiling Your Own Program Fails” on page 4-63
“Problem 3 — Binary MEX File Load Errors” on page 4-64
“Problem 4 — Segmentation Fault” on page 4-65
“Problem 5 — Program Generates Incorrect Results” on page 4-65

Problems 1 through 5 refer to the corresponding numbered sections of the previous
flow chart. For additional suggestions on resolving MEX file build problems, see the
MathWorks Technical Support website http://www.mathworks.com/support.

Problem 1 — Compiling a Source MEX File Fails

Syntax Errors Compiling C/C++ MEX Files on UNIX

The most common configuration problem in creating C/C++ source MEX files on UNIX
systems involves using a non-ANSI C compiler, or failing to pass to the compiler a flag
that tells it to compile ANSI C code.

A reliable way of knowing if you have this type of configuration problem is if the header
files supplied by MATLAB generate a string of syntax errors when you try to compile
your code. See “What You Need to Build MEX Files” on page 4-19 or, if necessary, obtain
an ANSI C compiler.

File Not Found on Windows

The mex function cannot find files located in folder names that contain non-ASCII
characters.

Problem 2 — Compiling Your Own Program Fails

Mixing ANSI and non-ANSI C code can generate a string of syntax errors. MATLAB
provides header and source files that are ANSI C compliant. Therefore, your C code must
also be ANSI compliant.

Other common problems that can occur in any C/C++ program are neglecting to include
all necessary header files, or neglecting to link against all required libraries.

http://www.mathworks.com/support

4 Intro to MEX-Files

4-64

Make sure that you are using a MATLAB-supported compiler. For an up-to-date list of
supported compilers, see the Supported and Compatible Compilers website. Additional
information can be found in “Compiler- and Platform-Specific Issues” on page 4-66.

Symbol mexFunction Unresolved or Not Defined

Attempting to compile a MEX function that does not include a gateway function
generates errors about the mexFunction symbol. For example, using a C/C++ compiler,
MATLAB displays information like:

LINK : error LNK2001: unresolved external symbol mexFunction

Using a Fortran compiler, MATLAB displays information like:

unresolved external symbol _MEXFUNCTION

If you want to call functions from a C/C++ or Fortran library from MATLAB, write a
gateway function, as described in “Components of MEX File” on page 5-3.

Problem 3 — Binary MEX File Load Errors

If you receive an error of the form:

Unable to load mex file:

Invalid MEX-file

MATLAB does not recognize your MEX file.

MATLAB loads MEX files by looking for the gateway routine, mexFunction. If you
misspell the function name, MATLAB cannot load your MEX file and generates an error
message. On Windows systems, check that you are exporting mexFunction correctly.

On some platforms, if you fail to link against required libraries, you might get an error
when MATLAB loads your MEX file rather than when you compile your MEX file.
In such cases, a system error message referring to unresolved symbols or unresolved
references appears. Be sure to link against the library that defines the function in
question.

On Windows systems, MATLAB fails to load MEX files if it cannot find all .dll files
referenced by the MEX file; the .dll files must be on the path or in the same folder as
the MEX file. This is also true for third party .dll files. To diagnose this problem, see
“Invalid MEX File Error” on page 4-53 for information.

http://www.mathworks.com/support/compilers/current_release/

 Understanding MEX File Problems

4-65

Problem 4 — Segmentation Fault

If a binary MEX-file causes a segmentation violation or assertion, it means the MEX-file
attempted to access protected, read-only, or unallocated memory.

These types of programming errors are sometimes difficult to track down. Segmentation
violations do not always occur at the same point as the logical errors that cause them.
If a program writes data to an unintended section of memory, an error might not occur
until the program reads and interprets the corrupted data. Consequently, a segmentation
violation can occur after the MEX-file finishes executing.

One cause of memory corruption is to pass a null pointer to a function. To check for this
condition, add code in your MEX-file to check for invalid arguments to MEX Library and
MX Matrix Library API functions.

To troubleshoot problems of this nature, run MATLAB within a debugging environment.
For more information, see “Debugging on Microsoft Windows Platforms” on page 5-52
or “Debug Fortran Source MEX-Files” on page 6-31.

Problem 5 — Program Generates Incorrect Results

If your program generates the wrong answers, there are several causes. First, there could
be an error in the computational logic. Second, the program could be reading from an
uninitialized section of memory. For example, reading the 11th element of a 10-element
vector yields unpredictable results.

Another cause of generating a wrong answer could be overwriting valid data due to
memory mishandling. For example, writing to the 15th element of a 10-element vector
might overwrite data in the adjacent variable in memory. This case can be handled in a
similar manner as segmentation violations, as described in Problem 4.

In all of these cases, you can use mexPrintf to examine data values at intermediate
stages. Alternatively, run MATLAB within a debugger.

4 Intro to MEX-Files

4-66

Compiler- and Platform-Specific Issues

In this section...

“Linux gcc Compiler Version Error” on page 4-66
“Linux gcc -fPIC Errors” on page 4-66

Linux gcc Compiler Version Error

For information concerning a gcc compiler version error on Linux systems, see http://
www.mathworks.com/matlabcentral/answers/97943-why-do-i-receive-an-

error-about-gcc-version-when-executing-a-mex-file-or-an-executable-

generated-by.

Linux gcc -fPIC Errors

If you link a static library with a MEX file, which is a shared library, you might get an
error message containing the text recompile with -fPIC. Try compiling the static
library with the -fPIC flag in order to create position independent code. For information
about using the gcc compiler, see www.gnu.org. For an up-to-date list of supported
compilers, see the Supported and Compatible Compilers website.

http://www.mathworks.com/matlabcentral/answers/97943-why-do-i-receive-an-error-about-gcc-version-when-executing-a-mex-file-or-an-executable-generated-by
http://www.mathworks.com/matlabcentral/answers/97943-why-do-i-receive-an-error-about-gcc-version-when-executing-a-mex-file-or-an-executable-generated-by
http://www.mathworks.com/matlabcentral/answers/97943-why-do-i-receive-an-error-about-gcc-version-when-executing-a-mex-file-or-an-executable-generated-by
http://www.mathworks.com/matlabcentral/answers/97943-why-do-i-receive-an-error-about-gcc-version-when-executing-a-mex-file-or-an-executable-generated-by
http://www.gnu.org/
http://www.mathworks.com/support/compilers/current_release/

 Memory Management Issues

4-67

Memory Management Issues

In this section...

“Overview” on page 4-67
“Improperly Destroying an mxArray” on page 4-68
“Incorrectly Constructing a Cell or Structure mxArray” on page 4-68
“Creating a Temporary mxArray with Improper Data” on page 4-69
“Creating Potential Memory Leaks” on page 4-70
“Improperly Destroying a Structure” on page 4-70
“Destroying Memory in a C++ Class Destructor” on page 4-71

Overview

When a MEX file returns control to MATLAB, it returns the results of its computations
in the output arguments—the mxArrays contained in the left-side arguments plhs[].
These arrays must have a temporary scope, so do not pass arrays created with the
mexMakeArrayPersistent function in plhs. MATLAB destroys any mxArray created
by the MEX file that is not in plhs. MATLAB also frees any memory that was allocated
in the MEX file using the mxCalloc, mxMalloc, or mxRealloc functions.

In general, MathWorks® recommends that MEX-file functions destroy their own
temporary arrays and free their own dynamically allocated memory. It is more efficient
to perform this cleanup in the source MEX-file than to rely on the automatic mechanism.
This approach is consistent with other MATLAB API applications (MAT-file applications,
engine applications, and MATLAB Compiler generated applications, which do not have
any automatic cleanup mechanism.)

However, do not destroy an mxArray in a source MEX file when it is:

• passed to the MEX file in the right-hand side list prhs[]
• returned in the left side list plhs[]
• returned by mexGetVariablePtr
• used to create a structure

This section describes situations specific to memory management. We recommend
that you review code in your source MEX files to avoid using these functions in the

4 Intro to MEX-Files

4-68

following situations. For more information, see “Memory Management” on page 5-65
in Creating C/C++ Language MEX Files. For guidance on memory issues, see “Strategies
for Efficient Use of Memory”.

Potential memory management problems include:

Improperly Destroying an mxArray

Do not use mxFree to destroy an mxArray.

Example

In the following example, mxFree does not destroy the array object. This operation frees
the structure header associated with the array, but MATLAB still operates as if the
array object needs to be destroyed. Thus MATLAB tries to destroy the array object, and
in the process, attempts to free its structure header again:

mxArray *temp = mxCreateDoubleMatrix(1,1,mxREAL);

 ...

mxFree(temp); /* INCORRECT */

Solution

Call mxDestroyArray instead:

mxDestroyArray(temp); /* CORRECT */

Incorrectly Constructing a Cell or Structure mxArray

Do not call mxSetCell or mxSetField variants with prhs[] as the member array.

Example

In the following example, when the MEX file returns, MATLAB destroys the entire cell
array. Since this includes the members of the cell, this implicitly destroys the MEX file's
input arguments. This can cause several strange results, generally having to do with the
corruption of the caller's workspace, if the right-hand side argument used is a temporary
array (for example, a literal or the result of an expression):

myfunction('hello')

 Memory Management Issues

4-69

/* myfunction is the name of your MEX-file and your code

/* contains the following: */

 mxArray *temp = mxCreateCellMatrix(1,1);

 ...

 mxSetCell(temp, 0, prhs[0]); /* INCORRECT */

Solution

Make a copy of the right-hand side argument with mxDuplicateArray and use that
copy as the argument to mxSetCell (or mxSetField variants). For example:

mxSetCell(temp, 0, mxDuplicateArray(prhs[0])); /* CORRECT */

Creating a Temporary mxArray with Improper Data

Do not call mxDestroyArray on an mxArray whose data was not allocated by an API
routine.

Example

If you call mxSetPr, mxSetPi, mxSetData, or mxSetImagData, specifying memory
that was not allocated by mxCalloc, mxMalloc, or mxRealloc as the intended data
block (second argument), then when the MEX file returns, MATLAB attempts to free
the pointers to real data and imaginary data (if any). Thus MATLAB attempts to free
memory, in this example, from the program stack:

mxArray *temp = mxCreateDoubleMatrix(0,0,mxREAL);

double data[5] = {1,2,3,4,5};

 ...

mxSetM(temp,1); mxSetN(temp,5); mxSetPr(temp, data);

/* INCORRECT */

Solution

Rather than use mxSetPr to set the data pointer, instead, create the mxArray with the
right size and use memcpy to copy the stack data into the buffer returned by mxGetPr:

mxArray *temp = mxCreateDoubleMatrix(1,5,mxREAL);

double data[5] = {1,2,3,4,5};

 ...

memcpy(mxGetPr(temp), data, 5*sizeof(double)); /* CORRECT */

4 Intro to MEX-Files

4-70

Creating Potential Memory Leaks

Before Version 5.2, if you created an mxArray using one of the API creation routines
and then you overwrote the pointer to the data using mxSetPr, MATLAB still freed the
original memory. MATLAB no longer frees the memory.

For example:

pr = mxCalloc(5*5, sizeof(double));

... <load data into pr>

plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);

mxSetPr(plhs[0], pr); /* INCORRECT */

now leaks 5*5*8 bytes of memory, where 8 bytes is the size of a double.

You can avoid that memory leak by changing the code to:

plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);

pr = mxGetPr(plhs[0]);

... <load data into pr>

or alternatively:

pr = mxCalloc(5*5, sizeof(double));

... <load data into pr>

plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);

mxFree(mxGetPr(plhs[0]));

mxSetPr(plhs[0], pr);

The first solution is more efficient.

Similar memory leaks can also occur when using mxSetPi, mxSetData,
mxSetImagData, mxSetIr, or mxSetJc. You can avoid memory leaks by changing the
code as described in this section.

Improperly Destroying a Structure

For a structure, you must call mxDestroyArray only on the structure, not on the field
data arrays. A field in the structure points to the data in the array used by mxSetField
or mxSetFieldByNumber. When mxDestroyArray destroys the structure, it attempts
to traverse down through itself and free all other data, including the memory in the data
arrays. If you call mxDestroyArray on each data array, the same memory is freed twice
which can corrupt memory.

 Memory Management Issues

4-71

Example

The following example creates three arrays: one structure array aStruct and two data
arrays, myDataOne and myDataTwo. Field name one contains a pointer to the data in
myDataOne, and field name two contains a pointer to the data in myDataTwo.

mxArray *myDataOne;

mxArray *myDataTwo;

mxArray *aStruct;

const char *fields[] = { "one", "two" };

myDataOne = mxCreateDoubleScalar(1.0);

myDataTwo = mxCreateDoubleScalar(2.0);

aStruct = mxCreateStructMatrix(1,1,2,fields);

mxSetField(aStruct, 0, "one", myDataOne);

mxSetField(aStruct, 1, "two", myDataTwo);

mxDestroyArray(myDataOne);

mxDestroyArray(myDataTwo);

mxDestroyArray(aStruct); /* tries to free myDataOne and myDataTwo */

Solution

The command mxDestroyArray(aStruct) destroys the data in all three arrays:

 ...

aStruct = mxCreateStructMatrix(1,1,2,fields);

mxSetField(aStruct, 0, "one", myDataOne);

mxSetField(aStruct, 1, "two", myDataTwo);

mxDestroyArray(aStruct);

Destroying Memory in a C++ Class Destructor

Do not use the mxFree or mxDestroyArray functions in a C++ destructor of a class used
in a MEX-function. If the MEX-function throws an error, MATLAB cleans up MEX-file
variables, as described in “Automatic Cleanup of Temporary Arrays” on page 5-65.

If an error occurs that causes the object to go out of scope, MATLAB calls the C++
destructor. Freeing memory directly in the destructor means both MATLAB and the
destructor free the same memory, which can corrupt memory.

See Also
mxDestroyArray | mxFree

4 Intro to MEX-Files

4-72

More About
• “Memory Management” on page 5-65
• “Strategies for Efficient Use of Memory”
• “Automatic Cleanup of Temporary Arrays” on page 5-65

 Compiler Errors in Fortran MEX Files

4-73

Compiler Errors in Fortran MEX Files

When you compile a Fortran MEX file using a free source form format, MATLAB displays
an error message of the following form:

Illegal character in statement label field

mex supports the fixed source form. The difference between free and fixed source forms is
explained in the Fortran Language Reference Manual Source Forms topic. The URL for
this topic is:

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/

docs/lrm/lrm0015.htm#source_formatmenu?&Record=383697&STASH=7

The URL for the Fortran Language Reference Manual is:

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/

docs/lrm/dflrm.htm

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/docs/lrm/lrm0015.htm#source_formatmenu?&Record=383697&STASH=7

5

C/C++ MEX-Files

• “Components of MEX File” on page 5-3
• “MATLAB API Libraries” on page 5-6
• “User Messages” on page 5-8
• “Error Handling” on page 5-9
• “Data Flow in MEX Files” on page 5-10
• “Creating C++ MEX Files” on page 5-13
• “C++ Class in MEX Files” on page 5-15
• “Handle Files with C++” on page 5-16
• “Create C Source MEX File” on page 5-18
• “Table of MEX File Source Code Files” on page 5-24
• “Choose a C++ Compiler” on page 5-28
• “Set Up C/C++ Examples” on page 5-30
• “Pass Scalar Values” on page 5-31
• “Pass Strings” on page 5-34
• “Handling Strings in C/C++” on page 5-36
• “Pass Multiple Inputs or Outputs” on page 5-39
• “Pass Structures and Cell Arrays” on page 5-41
• “Create 2-D Cell Array” on page 5-42
• “Fill mxArray” on page 5-43
• “Prompt User for Input” on page 5-45
• “Handle Complex Data” on page 5-46
• “Handle 8-, 16-, and 32-Bit Data” on page 5-47
• “Manipulate Multidimensional Numerical Arrays” on page 5-48
• “Handle Sparse Arrays” on page 5-50
• “Call MATLAB Functions from C/C++ MEX Files” on page 5-51

5 C/C++ MEX-Files

5-2

• “Debugging on Microsoft Windows Platforms” on page 5-52
• “Debugging on Linux Platforms” on page 5-54
• “Debugging on Mac Platforms” on page 5-56
• “Handling Large mxArrays” on page 5-61
• “Memory Management” on page 5-65
• “Handling Large File I/O” on page 5-68
• “Install MinGW-w64 Compiler” on page 5-74
• “Troubleshooting and Limitations Compiling C/C++ MEX Files with MinGW-w64” on

page 5-77

 Components of MEX File

5-3

Components of MEX File

In this section...

“mexFunction Gateway Routine” on page 5-3
“Naming the MEX File” on page 5-3
“Required Parameters” on page 5-3
“Managing Input and Output Parameters” on page 5-4
“Validating Inputs” on page 5-4
“Computational Routine” on page 5-5

mexFunction Gateway Routine

The gateway routine is the entry point to the MEX file. It is through this routine that
MATLAB accesses the rest of the routines in your MEX files. The name of the gateway
routine is mexFunction. It takes the place of the main function in your source code.

Naming the MEX File

The name of the source file containing mexFunction is the name of your MEX file, and,
hence, the name of the function you call in MATLAB.

The file extension of the binary MEX file is platform-dependent. You find the file
extension using the mexext function, which returns the value for the current machine.

Required Parameters

The signature for mexfunction is:

void mexFunction(

 int nlhs, mxArray *plhs[],

 int nrhs, const mxArray *prhs[])

Place this function after your computational routine and any other functions in your
source file.

The following table describes the parameters for mexFunction.

5 C/C++ MEX-Files

5-4

Parameter Description

prhs Array of right-side input arguments.
plhs Array of left-side output arguments.
nrhs Number of right-side arguments, or the size of the prhs array.
nlhs Number of left-side arguments, or the size of the plhs array.

Declare prhs and plhs as type mxArray *, which means they point to MATLAB arrays.
They are vectors that contain pointers to the arguments of the MEX file. The keyword
const, which modifies prhs, means that your MEX file does not modify the input
arguments.

You can think of the name prhs as representing the “parameters, right-hand side,” that
is, the input parameters. Likewise, plhs represents the “parameters, left-hand side,” or
output parameters.

Managing Input and Output Parameters

Input parameters (found in the prhs array) are read-only; do not modify them in your
MEX file. Changing data in an input parameter can produce undesired side effects.

You also must take care when using an input parameter to create output data or any
data used locally in your MEX file. To copy an input array into a locally defined variable,
myData, call the mxDuplicateArray function to make of copy of the input array. For
example:

mxArray *myData = mxCreateStructMatrix(1,1,nfields,fnames);

mxSetField(myData,0,"myFieldName",mxDuplicateArray(prhs[0]));

For more information, see the troubleshooting topic “Incorrectly Constructing a Cell or
Structure mxArray” on page 4-68.

Validating Inputs

For a list of functions to validate inputs to your functions, see the Matrix Library
category, “Validate Data”.

The mxIsClass function is a general-purpose way to test an mxArray. For example,
suppose your second input argument (identified by prhs[1]) must be a full matrix of
real numbers. To check this condition, use the following statements.

 Components of MEX File

5-5

if(mxIsSparse(prhs[1]) ||

 mxIsComplex(prhs[1]) ||

 mxIsClass(prhs[1],"char")) {

 mexErrMsgTxt("input2 must be full matrix of real values.");

}

This example is not an exhaustive check. You can also test for structures, cell arrays,
function handles, and MATLAB objects.

Computational Routine

The computational routine contains the code for performing the computations you
want implemented in the binary MEX file. Although not required, consider writing the
gateway routine, mexFunction, to call a computational routine. Use the mexFunction
code as a wrapper to validate input parameters and to convert them into the types
required by the computational routine.

If you write separate gateway and computational routines, you can combine them
into one source file or into separate files. If you use separate files, the file containing
mexFunction must be the first source file listed in the mex command.

See Also
mexext | mexFunction | mxDuplicateArray | mxIsClass

More About
• “MATLAB API Libraries” on page 5-6

5 C/C++ MEX-Files

5-6

MATLAB API Libraries

In this section...

“Matrix Library” on page 5-6
“MEX Library” on page 5-6
“Preprocessor Macros” on page 5-6

Use Matrix Library and the MEX Library functions in gateway and computational
routines to interact with data in the MATLAB workspace. These libraries are part of the
MATLAB C/C++ and Fortran API Reference library.

To use these functions, include the mex header, which declares the entry point and
interface routines. Put this statement in your source file:

#include "mex.h"

Matrix Library

Use Matrix Library functions to pass mxArray, the type MATLAB uses to store arrays,
to and from MEX files. For examples using these functions, see matlabroot/extern/
examples/mx.

MEX Library

Use MEX Library functions to perform operations in the MATLAB environment. For
examples using these functions, see matlabroot/extern/examples/mex.

Unlike MATLAB functions, MEX file functions do not have their own variable workspace.
MEX file functions operate in the caller workspace. Use mexEvalString to evaluate
the string in the caller workspace. Use the mexGetVariable and mexPutVariable
functions to get and put variables into the caller workspace.

Preprocessor Macros

The Matrix and MEX libraries use the MATLAB preprocessor macros mwSize and
mwIndex for cross-platform flexibility. mwSize represents size values, such as array
dimensions and number of elements. mwIndex represents index values, such as indices
into arrays.

 MATLAB API Libraries

5-7

See Also
mexEvalString | mexGetVariable | mexPutVariable | mwIndex | mwSize |
mxArray

More About
• “MATLAB Data” on page 4-7
• “MEX Library API”
• C/C++ Matrix Library

5 C/C++ MEX-Files

5-8

User Messages

To print a string in the MATLAB Command Window, use the mexPrintf function as
you would a C/C++ printf function. To print error and warning information in the
Command Window, use the mexErrMsgIdAndTxt and mexWarnMsgIdAndTxt functions.

For example, the following code snippet prints the input string, prhs[0].

char *buf;

int buflen;

if (mxGetString(prhs[0], buf, buflen) == 0) {

 mexPrintf("The input string is: %s\n", buf);

}

See Also
mexErrMsgIdAndTxt | mexPrintf | mexWarnMsgIdAndTxt

 Error Handling

5-9

Error Handling

The mexErrMsgIdAndTxt function prints error information and terminates your
binary MEX file. The mexWarnMsgIdAndTxt function prints information, but does not
terminate the MEX file.

char *buf;

int buflen;

if (mxIsChar(prhs[0])) {

 if (mxGetString(prhs[0], buf, buflen) == 0) {

 mexPrintf("The input string is: %s\n", buf);

 }

 else {

 mexErrMsgIdAndTxt("MyProg:ConvertString",

 "Could not convert string data.");

 // exit MEX file

 }

}

else {

 mexWarnMsgIdAndTxt("MyProg:InputString",

 "Input should be a string to print properly.");

}

// continue with processing

See Also
mexErrMsgIdAndTxt | mexWarnMsgIdAndTxt

5 C/C++ MEX-Files

5-10

Data Flow in MEX Files

In this section...

“Showing Data Input and Output” on page 5-10
“Gateway Routine Data Flow Diagram” on page 5-11

Showing Data Input and Output

Suppose your MEX-file myFunction has two input arguments and one output argument.
The MATLAB syntax is [X] = myFunction(Y, Z). To call myFunction from
MATLAB, type:

X = myFunction(Y, Z);

The MATLAB interpreter calls mexFunction, the gateway routine to myFunction, with
the following arguments:

Your input is prhs, a two-element array (nrhs = 2). The first element is a pointer to an
mxArray named Y and the second element is a pointer to an mxArray named Z.

Your output is plhs, a one-element array (nlhs = 1) where the single element is a null
pointer. The parameter plhs points at nothing because the output X is not created until
the subroutine executes.

The gateway routine creates the output array and sets a pointer to it in plhs[0]. If
the routine does not assign a value to plhs[0] but you assign an output value to the
function when you call it, MATLAB generates an error.

 Data Flow in MEX Files

5-11

Note: It is possible to return an output value even if nlhs = 0, which corresponds to
returning the result in the ans variable.

Gateway Routine Data Flow Diagram

The following MEX Cycle diagram shows how inputs enter a MEX-file, what functions
the gateway routine performs, and how outputs return to MATLAB.

In this example, the syntax of the MEX-file func is [C, D] = func(A,B). In the
figure, a call to func tells MATLAB to pass variables A and B to your MEX-file. C and D
are left unassigned.

The gateway routine, func.c, uses the mxCreate* functions to create the MATLAB
arrays for your output arguments. It sets plhs[0] and plhs[1] to the pointers to
the newly created MATLAB arrays. It uses the mxGet* functions to extract your data
from your input arguments prhs[0] and prhs[1]. Finally, it calls your computational
routine, passing the input and output data pointers as function parameters.

MATLAB assigns plhs[0] to C and plhs[1] to D.

5 C/C++ MEX-Files

5-12

A call to
MEX-file func:

tells MATLAB to
pass variables A and
B to your MEX-file.
C and D are left
unassigned.

MATLAB

[C,D]=func(A,B)

On return from
MEX-file func:

plhs[0] is assigned
to C and plhs[1] is
assigned to D.

[C,D]=func(A,B)

MATLAB

func.c

void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

In the gateway routine:

Use the mxCreate functions to create
the MATLAB arrays for your output
arguments. Set plhs[0],[1],...
to the pointers to the newly created
MATLAB arrays.

Use the mxGet functions to extract
your data from prhs[0],[1],... .

Call your C subroutine passing the
input and output data pointers as
function parameters.

Inputs

Outputs

const mxArray *B
B = prhs[1]

const mxArray *A
A = prhs[0]

mxarray *D
D = plhs[1]

mxarray *C
C = plhs[0]

C/C++ MEX Cycle

 Creating C++ MEX Files

5-13

Creating C++ MEX Files

In this section...

“Creating Your C++ Source File” on page 5-13
“Compiling and Linking” on page 5-13
“Memory Considerations for Class Destructors” on page 5-13
“Use mexPrintf to Print to MATLAB Command Window” on page 5-14

MEX files support all C++ language standards. This topic discusses specific C++
language issues to consider when creating and using MEX files.

Use the C syntax statements in the MATLAB API libraries in your C++ applications.
You can also copy MATLAB C code examples into C++ applications. For example, see the
mexcpp.cpp file that contains both C and C++ statements.

Creating Your C++ Source File

The C++ source code for the examples provided by MATLAB use the .cpp file extension.
The extension .cpp is unambiguous and recognized by C++ compilers. Other possible
extensions include .C, .cc, and .cxx.

Compiling and Linking

To build a C++ MEX file, type:

mex filename.cpp

where filename is the name of the source file.

You can run a C++ MEX file only on systems with the same version of MATLAB that the
file was compiled on.

Memory Considerations for Class Destructors

Do not use the mxFree or mxDestroyArray functions in a C++ destructor of a class used
in a MEX-function. If the MEX-function throws an error, MATLAB cleans up MEX-file
variables, as described in “Automatic Cleanup of Temporary Arrays” on page 5-65.

5 C/C++ MEX-Files

5-14

If an error occurs that causes the object to go out of scope, MATLAB calls the C++
destructor. Freeing memory directly in the destructor means both MATLAB and the
destructor free the same memory, which can corrupt memory.

Use mexPrintf to Print to MATLAB Command Window

Using cout or the C-language printf function does not work as expected in C++ MEX
files. Use the mexPrintf function instead.

See Also
mexPrintf

Related Examples
• “C++ Class in MEX Files” on page 5-15
• “Handle Files with C++” on page 5-16
• mexcpp.cpp

More About
• “Build MEX File” on page 4-17

 C++ Class in MEX Files

5-15

C++ Class in MEX Files

This example, mexcpp.cpp, shows how to use C++ code with your C language MEX file.
It uses member functions, constructors, destructors, and the iostream include file.

To build this example, at the command prompt type:

mex mexcpp.cpp

The calling syntax is mexcpp(num1, num2).

The routine defines a class, myData, with member functions display and set_data,
and variables v1 and v2. It constructs an object d of class myData and displays the
initialized values of v1 and v2. It then sets v1 and v2 to your input and displays the new
values. Finally, the delete operator cleans up the object.

Related Examples
• mexcpp.cpp

5 C/C++ MEX-Files

5-16

Handle Files with C++
In this section...

“C++ Example” on page 5-16
“C Example” on page 5-16

The mexatexit.cpp example shows C++ file handling features. Compare it with the C
code example mexatexit.c, which uses the mexAtExit function.

C++ Example

The C++ example uses a fileresource class to handle the file open and close functions.
The MEX file calls the destructor for this class (which closes the data file). This example
also prints a message on the screen when performing operations on the data file.
However, in this case, the only C file operation performed is the write operation,
fprintf.

To build the mexatexit.cpp MEX file, type:

mex mexatexit.cpp

Type:

z = 'for the C++ MEX-file';

mexatexit(x)

mexatexit(z)

clear mexatexit

Writing data to file.

Writing data to file.

Display the contents of matlab.data.

type matlab.data

my input string

for the C++ MEX-file

C Example

The C code example registers the mexAtExit function to perform cleanup tasks (close
the data file) when the MEX file clears. This example prints a message on the screen
(using mexPrintf) when performing file operations fopen, fprintf, and fclose.

 Handle Files with C++

5-17

To build the MEX file, type:

mex mexatexit.c

Run the example.

x = 'my input string';

mexatexit(x)

Opening file matlab.data.

Writing data to file.

Clear the MEX file.

clear mexatexit

Closing file matlab.data.

Display the contents of matlab.data.

type matlab.data

my input string

See Also
mexAtExit

Related Examples
• mexatexit.cpp
• mexatexit.c

5 C/C++ MEX-Files

5-18

Create C Source MEX File

This example shows how to write a MEX file to call a C function, arrayProduct, in
MATLAB using a MATLAB matrix. You can use these same C statements in a C++
application.

arrayProduct multiplies an n-dimensional array, y, by a scalar value, x, and returns
the results in array, z.

void arrayProduct(double x, double *y, double *z, int n)

{

 int i;

 for (i=0; i<n; i++) {

 z[i] = x * y[i];

 }

}

Create Source File

Open MATLAB Editor, create a file, and document the MEX file with the following
information.

/*

 * arrayProduct.c - example in MATLAB External Interfaces

 *

 * Multiplies an input scalar (multiplier)

 * times a 1xN matrix (inMatrix)

 * and outputs a 1xN matrix (outMatrix)

 *

 * The calling syntax is:

 *

 * outMatrix = arrayProduct(multiplier, inMatrix)

 *

 * This is a MEX file for MATLAB.

*/

Add the C/C++ header file, mex.h, containing the MATLAB API function declarations.

#include "mex.h"

Save the file on your MATLAB path, for example, in c:\work, and name it
arrayProduct.c. The name of your MEX file is arrayProduct.

 Create C Source MEX File

5-19

Create Gateway Routine

Every C program has a main() function. MATLAB uses the gateway routine,
mexfunction, as the entry point to the function. Add the following mexFunction code.

/* The gateway function */

void mexFunction(int nlhs, mxArray *plhs[],

 int nrhs, const mxArray *prhs[])

{

/* variable declarations here */

/* code here */

}

This table describes the input parameters for mexfunction.

Parameter Description

nlhs Number of output (left-side) arguments, or the size of the plhs array.
plhs Array of output arguments.
nrhs Number of input (right-side) arguments, or the size of the prhs array.
prhs Array of input arguments.

Verify MEX File Input and Output Parameters

Verify the number of MEX file input and output arguments using the nrhs and nlhs
arguments.

To check for two input arguments, multiplier and inMatrix, use this code.

if(nrhs != 2) {

 mexErrMsgIdAndTxt("MyToolbox:arrayProduct:nrhs",

 "Two inputs required.");

}

Use this code to check for one output argument, the product outMatrix.

if(nlhs != 1) {

 mexErrMsgIdAndTxt("MyToolbox:arrayProduct:nlhs",

 "One output required.");

5 C/C++ MEX-Files

5-20

}

Verify the argument types using the plhs and prhs arguments. This code validates that
multiplier, represented by prhs[0], is a scalar.

/* make sure the first input argument is scalar */

if(!mxIsDouble(prhs[0]) ||

 mxIsComplex(prhs[0]) ||

 mxGetNumberOfElements(prhs[0]) != 1) {

 mexErrMsgIdAndTxt("MyToolbox:arrayProduct:notScalar",

 "Input multiplier must be a scalar.");

}

This code validates that inMatrix, represented by prhs[1], is type double.

if(!mxIsDouble(prhs[1]) ||

 mxIsComplex(prhs[1])) {

 mexErrMsgIdAndTxt("MyToolbox:arrayProduct:notDouble",

 "Input matrix must be type double.");

}

Validate that inMatrix is a row vector.

/* check that number of rows in second input argument is 1 */

if(mxGetM(prhs[1]) != 1) {

 mexErrMsgIdAndTxt("MyToolbox:arrayProduct:notRowVector",

 "Input must be a row vector.");

}

Create Computational Routine

Add the arrayProduct code. This function is your computational routine, the source
code that performs the functionality you want to use in MATLAB.

void arrayProduct(double x, double *y, double *z, int n)

{

 int i;

 for (i=0; i<n; i++) {

 z[i] = x * y[i];

 }

}

A computational routine is optional. Alternatively, you can place the code within the
mexfunction function block.

 Create C Source MEX File

5-21

Write Code for Cross-Platform Flexibility

MATLAB provides a preprocessor macro, mwsize, that represents size values for
integers, based on the platform. The computational routine declares the size of the array
as int. Replace the int declaration for variables n and i with mwsize.

void arrayProduct(double x, double *y, double *z, mwSize n)

{

 mwSize i;

 for (i=0; i<n; i++) {

 z[i] = x * y[i];

 }

}

Declare Variables for Computational Routine

Put the following variable declarations in mexFunction.

• Declare variables for the input arguments.

double multiplier; /* input scalar */

double *inMatrix; /* 1xN input matrix */

• Declare ncols for the size of the input matrix.

mwSize ncols; /* size of matrix */

• Declare the output argument, outMatrix.

double *outMatrix; /* output matrix */

Later you assign the mexFunction arguments to these variables.

Read Input Data

To read the scalar input, use the mxGetScalar function.

/* get the value of the scalar input */

multiplier = mxGetScalar(prhs[0]);

Use the mxGetPr function to point to the input matrix data.

/* create a pointer to the real data in the input matrix */

inMatrix = mxGetPr(prhs[1]);

Use the mxGetN function to get the size of the matrix.

5 C/C++ MEX-Files

5-22

/* get dimensions of the input matrix */

ncols = mxGetN(prhs[1]);

Prepare Output Data

To create the output argument, plhs[0], use the mxCreateDoubleMatrix function.

/* create the output matrix */

plhs[0] = mxCreateDoubleMatrix(1,ncols,mxREAL);

Use the mxGetPr function to assign the outMatrix argument to plhs[0]

/* get a pointer to the real data in the output matrix */

outMatrix = mxGetPr(plhs[0]);

Perform Calculation

Pass the arguments to arrayProduct.

/* call the computational routine */

arrayProduct(multiplier,inMatrix,outMatrix,ncols);

View Complete Source File

Compare your source file with arrayProduct.c, located in matlabroot/extern/
examples/mex. Open the file in the editor.

Build Binary MEX File

At the MATLAB command prompt, build the binary MEX file.

mex arrayProduct.c

Test the MEX File

s = 5;

A = [1.5, 2, 9];

B = arrayProduct(s,A)

B =

 7.5000 10.0000 45.0000

Validate MEX File Input Arguments

It is good practice to validate the type of a MATLAB variable before calling a MEX file.
To test the input variable, inputArg, and convert it to double, if necessary, use this
code.

 Create C Source MEX File

5-23

A = [1.5, 2, 9];

inputArg = int16(A);

if ~strcmp(class(inputArg),'double')

 inputArg = double(inputArg);

end

B = arrayProduct(s,inputArg)

See Also
mexfunction | mwSize | mxCreateDoubleMatrix | mxGetN | mxGetPr |
mxGetScalar

Related Examples
• arrayProduct.c

More About
• “Creating C++ MEX Files” on page 5-13

5 C/C++ MEX-Files

5-24

Table of MEX File Source Code Files
Source code for the MEX examples shown in the following table is in subfolders of
matlabroot/extern/examples. Make sure that you have a MATLAB-supported
compiler installed.

To build a code example, first copy the file to a writable folder on your path:

copyfile(fullfile(matlabroot,'extern','examples','foldername',...

 'filename'),'.','f')

where filename is the name of the example, for example arrayProduct.c, and
foldername is the subfolder name, for example mex.

You can create and compile MEX files in MATLAB or at your operating system prompt.
At either prompt, type:

mex -v filename

For examples listing multiple Fortran sources files, both files are required to build the
MEX file.

mex -v file1.F file2.F

You can modify the source code for the examples. For convenience, the example
instructions open the files in MATLAB Editor, but you can use any code development
editor.

Example Name Example Subfolder Description

arrayFillGetPr.c refbook Fill mxArray using
mxGetPr.

arrayFillSetData.c refbook Fill mxArray with non-
double values.

arrayFillSetPr.c refbook Fill mxArray using mxSetPr
to allocate memory
dynamically.

arrayProduct.c mex Multiply a scalar times 1xN
matrix.

arraySize.c mex Illustrate memory
requirements of large
mxArray.

 Table of MEX File Source Code Files

5-25

Example Name Example Subfolder Description

convec.c
convec.F

refbook Pass complex data.

dblmat.F
compute.F

refbook Use of Fortran %VAL.

dotProductComplex.c refbook Handle Fortran complex
return type for function
called from a C MEX file.

doubleelement.c refbook Use unsigned 16-bit integers.
explore.c mex Identify data type of input

variable.
findnz.c refbook Use N-dimensional arrays.
fulltosparse.c
fulltosparse.F, loadsparse.F

refbook Populate a sparse matrix.

matrixDivide.c refbook Call a LAPACK function.
matrixDivideComplex.c refbook Call a LAPACK function

with complex numbers.
matrixMultiply.c refbook Call a BLAS function.
matsq.F refbook Pass matrices in Fortran.
matsqint8.F refbook Pass non-double matrices in

Fortran.
mexatexit.c
mexatexit.cpp

mex Register an exit function to
close a data file.

mexcallmatlab.c mex Call built-in MATLAB disp
function.

mexcallmatlabwithtrap.c mex How to capture error
information.

mexcpp.cpp mex Illustrate some C++
language features in a MEX
file.

mexevalstring.c mex Use mexEvalString
to assign variables in
MATLAB.

5 C/C++ MEX-Files

5-26

Example Name Example Subfolder Description

mexfunction.c mex How to use mexfunction.
mexgetproperty.c mex Use mxGetProperty and

mxSetProperty to change
the Color property of a
graphic object.

mexgetarray.c mex Use mexGetVariable and
mexPutVariable to track
counters in the MEX file
and in the MATLAB global
workspace.

mexlock.c
mexlockf.F

mex How to lock and unlock a
MEX file.

mxcalcsinglesubscript.c mx Demonstrate MATLAB 1-
based matrix indexing versus
C 0-based indexing.

mxcreatecellmatrix.c
mxcreatecellmatrixf.F

mx Create 2-D cell array.

mxcreatecharmatrixfromstr.cmx Create 2-D string array.
mxcreatestructarray.c mx Create MATLAB structure

from C structure.
mxgeteps.c
mxgetepsf.F

mx Read MATLAB eps value.

mxgetinf.c mx Read inf value.
mxgetnzmax.c mx Display number of nonzero

elements in a sparse matrix
and maximum number of
nonzero elements it can
store.

mxisclass.c mx Check if array is member of
specified class.

mxisfinite.c mx Check for NaN and infinite
values.

 Table of MEX File Source Code Files

5-27

Example Name Example Subfolder Description

mxislogical.c mx Check if workspace variable
is logical or global.

mxmalloc.c mx Allocate memory to copy
a MATLAB string to a C
string.

mxsetdimensions.c
mxsetdimensionsf.F

mx Reshape an array.

mxsetnzmax.c mx Reallocate memory for
sparse matrix and reset
values of pr, pi, ir, and
nzmax.

passstr.F refbook Pass C character matrix
from Fortran to MATLAB.

phonebook.c refbook Manipulate structures and
cell arrays.

revord.c
revord.F

refbook Copy MATLAB string data to
and from C-style string.

sincall.c
sincall.F, fill.F

refbook Create mxArray and pass
to MATLAB sin and plot
functions
.

timestwo.c
timestwo.F

refbook Demonstrate common
workflow of MEX file.

utdu_slv.c refbook Use LAPACK for symmetric
indefinite factorization.

xtimesy.c
xtimesy.F

refbook Pass multiple parameters.

yprime.c
yprimef.F, yprimefg.F

mex Solve simple three body orbit
problem.

5 C/C++ MEX-Files

5-28

Choose a C++ Compiler

Select Microsoft Visual Studio Compiler

This example shows how to determine and change the default compiler for building C+
+ MEX files when you have multiple versions of Microsoft Visual Studio on your system.
The messages in this example assume that you have Microsoft Visual C++ 2012 and
Microsoft Visual C++ 2010. Use these steps for any C++ compilers on your system.

MATLAB chooses a default compiler for C source files and a default complier for C++
source files. To see the default C++ compiler, type:

mex -setup c++

MEX configured to use 'Microsoft Visual C++ 2012' for C++ language compilation.

MATLAB also displays links to other C++ compilers installed on your system.

To change the default to MSVC 2010, click the link:

Microsoft Visual C++ 2010

MEX configured to use 'Microsoft Visual C++ 2010' for C++ language compilation.

Microsoft Visual C++ 2010 remains the default until you call mex -setup c++ to select
a different default.

When you call the mex command with a source file, MATLAB displays the name of the
compiler used to build the MEX file. You can also find this information using the mex -
setup lang command. By default, when you type mex -setup, MATLAB shows you
information for the C compiler only. If you want information for C++ compilers, type:

mex -setup c++

Select MinGW-w64 Compiler

If you only have the MinGW compiler installed on your system, the mex command
automatically chooses MinGW for both C and C++ MEX files. If you have multiple C or C
++ compilers, use mex -setup to choose MinGW for both C and C++ MEX files.

mex -setup

mex -setup cpp

 Choose a C++ Compiler

5-29

If you only type mex -setup choosing MinGW, when you compile a C++ file, mex might
choose a different compiler.

More About
• “Change Default Compiler” on page 4-20

5 C/C++ MEX-Files

5-30

Set Up C/C++ Examples

The Matrix Library provides a full set of routines that handle the types supported by
MATLAB. For each data type, there is a specific set of functions that you can use for data
manipulation. The first example discusses the simple case of doubling a scalar. After
that, the examples discuss how to pass in, manipulate, and pass back various data types,
and how to handle multiple inputs and outputs. Finally, the sections discuss passing and
manipulating various MATLAB types.

Source code for the examples in this section is in the matlabroot/extern/examples/
refbook folder. To build an example, first copy the file to a writable folder on your path:

copyfile(fullfile(matlabroot,'extern','examples','refbook',...

 'filename.c'),'.','f')

where filename is the name of the example.

At the MATLAB command prompt, type:

mex filename.c

The following topics look at source code for the examples. Unless otherwise specified, the
term ”MEX file” refers to a source file.

For a list of MEX example files available with MATLAB, see “Table of MEX File Source
Code Files” on page 5-24.

 Pass Scalar Values

5-31

Pass Scalar Values

In this section...

“Pass Scalar as Matrix” on page 5-31
“Pass Scalar by Value” on page 5-32

Pass Scalar as Matrix

This example shows how to write a MEX file that passes scalar values.

Suppose that you have the following C code, timestwo, that takes a scalar input, a 1-
by-1 matrix, and doubles it.

void timestwo(double y[], double x[])

{

 y[0] = 2.0*x[0];

 return;

}

C Code Analysis

To see the function written as a MEX file, open the file, timestwo.c, in the MATLAB
Editor.

In C/C++, the compiler checks function arguments for number and type. However, in
MATLAB, you can pass any number or type of arguments to a function; the function is
responsible for argument checking. MEX files also allow variable inputs. Your MEX file
must safely handle any number of input or output arguments of any supported type.

This code checks for the proper number of arguments.

if(nrhs != 1) {

 mexErrMsgIdAndTxt("MATLAB:timestwo:invalidNumInputs",

 "One input required.");

} else if(nlhs>1) {

 mexErrMsgIdAndTxt("MATLAB:timestwo:maxlhs",

 "Too many output arguments.");

}

This code checks if the input is a scalar double value.

5 C/C++ MEX-Files

5-32

mrows = mxGetM(prhs[0]);

ncols = mxGetN(prhs[0]);

if(!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0]) ||

 !(mrows==1 && ncols==1)) {

 mexErrMsgIdAndTxt("MATLAB:timestwo:inputNotRealScalarDouble",

 "Input must be a noncomplex scalar double.");

}

Build and Test Example

Build the MEX file.

mex -v timestwo.c

Call the function.

x = 2;

y = timestwo(x)

y =

 4

Pass Scalar by Value

This example shows how to write a MEX file that passes a scalar by value.

The mxGetScalar function returns the value of a scalar instead of a pointer to a copy of
the scalar variable, x.

The following C code implements the timestwo_alt function.

void timestwo_alt(double *y, double x)

{

 *y = 2.0*x;

}

Compare the timestwo_alt function signature with the timestwo function signature.

void timestwo_alt(double *y, double x)

void timestwo(double y[], double x[])

The input value x is a scalar of type double. In the timestwo function, the input value
is a matrix of type double.

 Pass Scalar Values

5-33

To see the function written as a MEX file, open the file, timestwoalt.c, in the
MATLAB Editor.

Compare the call to timestwo_alt to the call to timestwo.

 /* Get the scalar value of the input x */

 /* note: mxGetScalar returns a value, not a pointer */

 x = mxGetScalar(prhs[0]);

 /* Assign a pointer to the output */

 y = mxGetPr(plhs[0]);

 /* Call the timestwo_alt subroutine */

 timestwo_alt(y,x);

 /* Assign pointers to each input and output. */

 x = mxGetPr(prhs[0]);

 y = mxGetPr(plhs[0]);

 /* Call the timestwo subroutine. */

 timestwo(y,x);

The value x, created by mxGetScalar, is a scalar not a pointer.

5 C/C++ MEX-Files

5-34

Pass Strings

This example shows how to pass strings to a MEX file. The example revord.c accepts a
string and returns the characters in reverse order.

C Code Analysis

To see the code, open the file, revord.c, in the MATLAB Editor.

The gateway function, mexFunction, creates a C string from the input variable,
prhs[0]. By isolating variables of type mxArray from the computational subroutine,
revord, you can avoid making significant changes to your original C and C++ code.

Convert the input argument, prhs[0], to a C-style string, input_buf.

input_buf = mxArrayToString(prhs[0]);

Allocate memory for the output argument, output_buf, a C-style string.

output_buf = mxCalloc(buflen, sizeof(char));

The size of the output argument is equivalent to the size of the input argument.

Call the computational subroutine, revord.

revord(input_buf, buflen, output_buf);

Convert the output, output_buf, to an mxArray and assign to plhs[0].

plhs[0] = mxCreateString(output_buf);

Do not release memory for this variable because it is an output argument.

The mxArrayToString function, used to create the temporary input_buf variable,
allocates memory; use the mxFree function to release the memory.

mxFree(input_buf);

Build and Test Example

Run the following commands from the MATLAB command line.

Build the example.

 Pass Strings

5-35

mex -v revord.c

Call the function.

x = 'hello world';

y = revord(x)

y =

dlrow olleh

Related Examples
• revord.c

5 C/C++ MEX-Files

5-36

Handling Strings in C/C++

In this section...

“How MATLAB Represents Strings in MEX-Files” on page 5-36
“Character Encoding and Multibyte Encoding Schemes” on page 5-36
“Converting MATLAB String to C-Style String” on page 5-37
“Converting C-Style String to MATLAB String” on page 5-37
“Returning Modified Input String” on page 5-37
“Memory Management” on page 5-37

How MATLAB Represents Strings in MEX-Files

In C/C++ MEX-files, a MATLAB string is an mxArray of type mxChar, using a locale-
neutral data representation (Unicode encoding). MATLAB represents C-style strings as
type char, and uses the character encoding scheme specified by the user locale setting.

The following C/C++ Matrix Library functions provides string handling functions to help
you work with both mxArrays and C-style strings.

• mxCreateString — Creates a string mxArray initialized to the input string.
• mxArrayToString — Copies a string mxArray into a C-style string. Supports

multibyte encoded characters.
• mxGetString — Copies a string mxArray into a C-style string. Best used with single-

byte encoded characters. Supports multibyte encoded characters when you calculate
string buffer size.

• mxGetChars — Returns a pointer to the first mxChar element in the mxArray.

Consider the following topics when choosing a string handling function.

Character Encoding and Multibyte Encoding Schemes

MATLAB supports the character encoding scheme specified by the user locale setting.
When an MX Library function converts mxChar data to a C char type, MATLAB also
converts the character to the user default encoding.

 Handling Strings in C/C++

5-37

If you use a multibyte encoding scheme, use the mxArrayToString function.

The mxGetChars function provides a pointer to the mxChar array; it does not change the
character encoding.

You can also use the mxGetString function with multibyte encoding schemes.
mxGetString converts the mxChar data to your user default encoding, and copies the
converted characters to the destination buffer. However, you must calculate the size of
the destination buffer. For single-byte encoding, the size of the buffer is the number of
characters, plus 1 for the null terminator. For multibyte encoding, the size of a character
is one or more bytes. Some options for calculating the buffer size are to overestimate the
amount (calculating the number of characters times the maximum number of bytes used
by the encoding scheme), analyze the string to determine the precise size used by each
character, or utilize 3rd-party string buffer libraries. After this calculation, add 1 for the
null terminator.

Converting MATLAB String to C-Style String

When you pass a character array to a MEX-function, it is an mxArray of type mxChar.
If you call a C function to manipulate the string, first convert the data to a C type char
using the mxArrayToString or mxGetString functions.

Converting C-Style String to MATLAB String

If your MEX-file creates a C string and returns the data to MATLAB, use the
mxCreateString function to copy the C string into an mxChar array.

Returning Modified Input String

Suppose your MEX-file takes a string input argument, modifies it, and returns the result.
Since MEX-file input parameters (the prhs array) are read-only, you must define a
separate output parameter to handle the modified string.

Memory Management

MathWorks recommends that MEX-file functions destroy their own temporary arrays
and free their own dynamically allocated memory. The function you use to release
memory depends on how you use the string buffer and what function you use to create
the buffer.

5 C/C++ MEX-Files

5-38

If you call this function: Release memory using this function:

Any string function listed here Do not destroy an mxArray in a source
MEX-file when it is:

• Passed to the MEX-file in the right-hand
side list prhs[].

• Returned in the left side list plhs[].
• Returned by the mexGetVariablePtr

function.
• Used to create a structure.

mxArrayToString mxFree

mxGetString When using mxCalloc / mxMalloc /
mxRealloc to create input argument buf,
call mxFree(buf).

mxCreateString mxDestroyArray

mxGetChars None. Function creates a pointer to an
mxArray but does not allocate additional
memory.

More About
• “C/C++ Matrix Library API”
• “Locale Settings for MATLAB Process”

 Pass Multiple Inputs or Outputs

5-39

Pass Multiple Inputs or Outputs

This example shows how to call a MEX file with multiple inputs. The function, xtimesy,
multiplies an input scalar by a scalar or matrix and outputs a matrix.

The plhs[] and prhs[] parameters are vectors that contain pointers to each left-side
(output) variable and each right-side (input) variable, respectively. plhs[0] contains
a pointer to the first left-side argument, plhs[1] contains a pointer to the second left-
side argument, and so on. Likewise, prhs[0] contains a pointer to the first right-side
argument, prhs[1] points to the second, and so on.

C Code Analysis

To see the code, open the file, xtimesy.c, in the MATLAB Editor.

Get the scalar input value, x.

x = mxGetScalar(prhs[0]);

Get the second input, y, which can be either a scalar or a matrix.

y = mxGetPr(prhs[1]);

Create the output argument, plhs[0], which is the same size as argument y.

 /* get the dimensions of the matrix input y */

 mrows = mxGetM(prhs[1]);

 ncols = mxGetN(prhs[1]);

 /* set the output pointer to the output matrix */

 plhs[0] = mxCreateDoubleMatrix((mwSize)mrows, (mwSize)ncols, mxREAL);

Build and Test Example

Run the following commands from the MATLAB command line.

Build the example.

mex -v xtimesy.c

Call the function with scalar values.

x = 7;

y = 7;

5 C/C++ MEX-Files

5-40

z = xtimesy(x,y)

z =

 49

Call the function with a matrix.

x = 9;

y = ones(3);

z = xtimesy(x,y)

z =

 9 9 9

 9 9 9

 9 9 9

Related Examples
• xtimesy.c

 Pass Structures and Cell Arrays

5-41

Pass Structures and Cell Arrays

Passing structures and cell arrays into MEX files is like passing any other data type,
except the data itself is of type mxArray. In practice, mxGetField (for structures) and
mxGetCell (for cell arrays) return pointers of type mxArray. You treat the pointers like
any other pointers of type mxArray. To pass the data contained in the mxArray to a C/C+
+ routine, use an API function such as mxGetData to access it.

This example takes an m-by-n structure matrix as input and returns a new 1-by-1
structure that contains these fields:

• String input generates an m-by-n cell array
• Numeric input (noncomplex, scalar values) generates an m-by-n vector of numbers

with the same class ID as the input, for example int, double, and so on.

To build this example, at the command prompt type:

mex phonebook.c

To see how this program works, enter this structure:

friends(1).name = 'Jordan Robert';

friends(1).phone = 3386;

friends(2).name = 'Mary Smith';

friends(2).phone = 3912;

friends(3).name = 'Stacy Flora';

friends(3).phone = 3238;

friends(4).name = 'Harry Alpert';

friends(4).phone = 3077;

Call the MEX file:

phonebook(friends)

ans =

 name: {1x4 cell }

 phone: [3386 3912 3238 3077]

Related Examples
• phonebook.c

5 C/C++ MEX-Files

5-42

Create 2-D Cell Array

This example shows how to create a cell array in a MEX file, using the
mxcreatecellmatrix.c function, which places input arguments in a cell array.

C Code Analysis

To see the code, open the file in MATLAB Editor.

Create a cell array for the number of input arguments.

cell_array_ptr = mxCreateCellMatrix((mwSize)nrhs,1);

Copy the input arguments into the cell array.

for(i=0; i<(mwIndex)nrhs; i++){

 mxSetCell(cell_array_ptr,i,mxDuplicateArray(prhs[i]));

Build and Test Example

Run the following commands from the MATLAB command line.

Build the example.

mex -v mxcreatecellmatrix.c

Create input arguments.

str1 = 'hello';

str2 = 'world';

num = 2012;

Create a 3-x-1 cell array and call disp to display the contents.

mxcreatecellmatrix(str1,str2,num)

The contents of the created cell is:

 'hello'

 'world'

 [2012]

Related Examples
• mxcreatecellmatrix.c

 Fill mxArray

5-43

Fill mxArray

In this section...

“Options” on page 5-43
“Copying Data Directly into an mxArray” on page 5-43
“Pointing to Data” on page 5-43

Options

You can move data from a C/C++ program into an mxArray using the Matrix Library.
The functions you use depend on the type of data in your application. Use the mxSetPr
and mxGetPr functions for data of type double. For numeric data other than
double, use the mxSetData function. For nonnumeric data, see the examples for the
mxCreateString function.

The following examples use a variable. data, to represent data from a computational
routine. Each example creates an mxArray using the mxCreateNumericMatrix
function, fills it with data, and returns it as the output argument plhs[0].

These examples use real data only. If you have complex data, use the mxGetPi and
mxSetPi functions as needed.

Copying Data Directly into an mxArray

The arrayFillGetPr.c example uses the mxGetPr function to copy the values from
data to plhs[0].

Pointing to Data

The arrayFillSetPr.c example uses the mxSetPr function to point plhs[0] to data.

The example arrayFillSetData.c shows how to fill an mxArray for numeric types
other than double.

See Also
mxCreateString | mxGetPr | mxSetData | mxSetPr

5 C/C++ MEX-Files

5-44

Related Examples
• arrayFillGetPr.c
• arrayFillSetPr.c
• arrayFillSetData.c

 Prompt User for Input

5-45

Prompt User for Input

Because MATLAB does not use stdin and stdout, do not use C/C++ functions like
scanf and printf to prompt for user input. The following example shows how to use
mexCallMATLAB with the input function to get a number from the user.

#include "mex.h"

#include "string.h"

void mexFunction(int nlhs, mxArray *plhs[],

 int nrhs, const mxArray *prhs[])

{

 mxArray *new_number, *str;

 double out;

 str = mxCreateString("Enter extension: ");

 mexCallMATLAB(1,&new_number,1,&str,"input");

 out = mxGetScalar(new_number);

 mexPrintf("You entered: %.0f ", out);

 mxDestroyArray(new_number);

 mxDestroyArray(str);

 return;

 }

See Also
input | inputdlg | mexCallMATLAB

5 C/C++ MEX-Files

5-46

Handle Complex Data

MATLAB separates complex data into real and imaginary parts. The MATLAB API
provides two functions, mxGetPr and mxGetPi, that return pointers (of type double *)
to the real and imaginary parts of your data.

This example, convec.c, takes two complex row vectors and convolves them.

To build this example, at the command prompt type:

mex convec.c

Enter these numbers at the MATLAB prompt.

x = [3.000 - 1.000i, 4.000 + 2.000i, 7.000 - 3.000i];

y = [8.000 - 6.000i, 12.000 + 16.000i, 40.000 - 42.000i];

Call the MEX file.

z = convec(x,y)

z =

 1.0e+02 *

Columns 1 through 4

0.1800 - 0.2600i 0.9600 + 0.2800i 1.3200 - 1.4400i 3.7600 - 0.1200i

Column 5

1.5400 - 4.1400i

Compare the results with the built-in MATLAB function conv.

See Also
mxGetPi | mxGetPr

Related Examples
• convec.c

 Handle 8-, 16-, and 32-Bit Data

5-47

Handle 8-, 16-, and 32-Bit Data

The MATLAB API provides a set of functions that support signed and unsigned 8-,
16-, and 32-bit data. For example, the mxCreateNumericArray function constructs
an unpopulated N-dimensional numeric array with a specified data size. For more
information, see mxClassID.

Once you have created an unpopulated MATLAB array of a specified data type, you can
access the data using mxGetData and mxGetImagData. These two functions return
pointers to the real and imaginary data. You can perform arithmetic on data of 8-, 16-,
or 32-bit precision in MEX files and return the result to MATLAB, which recognizes the
correct data class.

The example, doubleelement.c, constructs a 2-by-2 matrix with unsigned 16-bit
integers, doubles each element, and returns both matrices to MATLAB.

To build this example, at the command prompt type:

mex doubleelement.c

Call the example.

doubleelement

ans =

 2 6

 4 8

The output of this function is a 2-by-2 matrix populated with unsigned 16-bit integers.

See Also
mxClassID | mxCreateNumericArray | mxGetData | mxGetImagData

Related Examples
• doubleelement.c

5 C/C++ MEX-Files

5-48

Manipulate Multidimensional Numerical Arrays

You can manipulate multidimensional numerical arrays by using mxGetData and
mxGetImagData. These functions return pointers to the real and imaginary parts of the
data stored in the original multidimensional array. The example, findnz.c, takes an
N-dimensional array of doubles and returns the indices for the nonzero elements in the
array.

Build the example.

mex findnz.c

Create a sample matrix.

matrix = [3 0 9 0; 0 8 2 4; 0 9 2 4; 3 0 9 3; 9 9 2 0]

matrix =

 3 0 9 0

 0 8 2 4

 0 9 2 4

 3 0 9 3

 9 9 2 0

findnz determines the position of all nonzero elements in the matrix.

nz = findnz(matrix)

nz =

 1 1

 4 1

 5 1

 2 2

 3 2

 5 2

 1 3

 2 3

 3 3

 4 3

 5 3

 2 4

 3 4

 4 4

 Manipulate Multidimensional Numerical Arrays

5-49

See Also
mxGetData | mxGetImagData

Related Examples
• findnz.c

5 C/C++ MEX-Files

5-50

Handle Sparse Arrays

The MATLAB API provides a set of functions that allow you to create and manipulate
sparse arrays from within your MEX files. These API routines access and manipulate ir
and jc, two of the parameters associated with sparse arrays. For more information on
how MATLAB stores sparse arrays, see “The MATLAB Array” on page 4-7.

The example fulltosparse.c shows how to populate a sparse matrix.

Build the example.

mex fulltosparse.c

Create a full, 5-by-5 identity matrix.

full = eye(5)

full =

 1 0 0 0 0

 0 1 0 0 0

 0 0 1 0 0

 0 0 0 1 0

 0 0 0 0 1

Call fulltosparse to produce the corresponding sparse matrix.

spar = fulltosparse(full)

spar =

 (1,1) 1

 (2,2) 1

 (3,3) 1

 (4,4) 1

 (5,5) 1

Related Examples
• fulltosparse.c

 Call MATLAB Functions from C/C++ MEX Files

5-51

Call MATLAB Functions from C/C++ MEX Files

It is possible to call MATLAB functions, operators, user-defined functions, and other
binary MEX files from within your C/C++ source code by using the API function
mexCallMATLAB.

The example, sincall.c, creates an mxArray, passes various pointers to a local
function to acquire data, and calls mexCallMATLAB to calculate the sine function and
plot the results.

To build this example, at the command prompt type:

mex sincall.c

Run the example.

sincall

MATLAB displays a sin curve equivalent to executing the following MATLAB commands:

MAX = 1000;

mm = MAX/2;

for i = 1:mm-1

 X(i) = i*(4*3.14159/MAX);

end

Y = sin(X);

plot(X,Y)

See Also
mexCallMATLAB

Related Examples
• sincall.c

5 C/C++ MEX-Files

5-52

Debugging on Microsoft Windows Platforms

This example shows how to debug yprime.c, found in your matlabroot/extern/
examples/mex/ folder, with Microsoft Visual Studio 2010.

1 Make sure Visual Studio is your selected C compiler:

cc = mex.getCompilerConfigurations('C','Selected');

cc.Name

ans =

Microsoft Visual C++ 2010 (C)

2 Compile the source MEX file with the -g option, which builds the file with debugging
symbols included. For example:

copyfile(fullfile(matlabroot,'extern','examples','mex','yprime.c'),'.','f')

mex -g yprime.c

3 Start Visual Studio. Do not exit your MATLAB session.
4 From the Visual Studio Tools menu, select Attach to Process...
5 In the Attach to Process dialog box, select the MATLAB process and click Attach.

Visual Studio loads data then displays an empty code pane.
6 Open the source file yprime.c by selecting File > Open > File. Locate yprime.c in

the folder, c:\work.
7 Set a breakpoint by right-clicking the desired line of code and following Breakpoint

> Insert Breakpoint on the context menu. It is often convenient to set a breakpoint
at mexFunction to stop at the beginning of the gateway routine.

If you have not yet run the executable file, ignore any “!” icon that appears with the
breakpoint next to the line of code.

Once you hit one of your breakpoints, you can make full use of any commands the
debugger provides to examine variables, display memory, or inspect registers.

8 Open MATLAB and type:

yprime(1,1:4)

yprime.c is opened in the Visual Studio debugger at the first breakpoint.
9 If you select Debug > Continue, MATLAB displays:

 Debugging on Microsoft Windows Platforms

5-53

ans =

 2.0000 8.9685 4.0000 -1.0947

For more information on how to debug in the Visual Studio environment, see your
Microsoft documentation.

Notes on Debugging

Binary MEX files built with the -g option do not execute on other computers because
they rely on files that are not distributed with MATLAB. For more information on
isolating problems with MEX files, see “Troubleshoot MEX Files”.

5 C/C++ MEX-Files

5-54

Debugging on Linux Platforms

The GNU® Debugger gdb, available on Linux systems, provides complete source code
debugging, including the ability to set breakpoints, examine variables, and step through
the source code line-by-line.

In this procedure, the MATLAB command prompt >> is shown in front of MATLAB
commands, and linux> represents a Linux prompt; your system might show a different
prompt. The debugger prompt is <gdb>.

To debug with gdb:

1 Compile the source MEX file with the -g option, which builds the file with debugging
symbols included. For this example, at the Linux prompt, type:

linux> mex -g yprime.c

2 At the Linux prompt, start the gdb debugger using the matlab function -D option.

linux> matlab -Dgdb

3 Tell gdb to stop for debugging.

<gdb> handle SIGSEGV SIGBUS nostop noprint

4 Start MATLAB without the Java® Virtual Machine (JVM™) by using the -nojvm
startup flag.

<gdb> run -nojvm

5 In MATLAB, enable debugging with the dbmex function and run your binary MEX
file.

>> dbmex on

>> yprime(1,1:4)

6 You are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

<gdb> break mexFunction

<gdb> r

7 Once you hit one of your breakpoints, you can make full use of any commands the
debugger provides to examine variables, display memory, or inspect registers.

 Debugging on Linux Platforms

5-55

To proceed from a breakpoint, type:

<gdb> continue

8 After stopping at the last breakpoint, type:

<gdb> continue

yprime finishes and MATLAB displays:

ans =

 2.0000 8.9685 4.0000 -1.0947

9 From the MATLAB prompt you can return control to the debugger by typing:

>> dbmex stop

Or, if you are finished running MATLAB, type:

>> quit

10 When you are finished with the debugger, type:

<gdb> quit

You return to the Linux prompt.

Refer to the documentation provided with your debugger for more information on its use.

5 C/C++ MEX-Files

5-56

Debugging on Mac Platforms

In this section...

“Using Xcode” on page 5-56
“Using LLDB” on page 5-58

Using Xcode

This example shows how to debug the MEX-file, yprime.c, using Xcode.

Copy the source MEX file

The yprime.c source code is in the matlabroot folder. In MATLAB, copy the file to a
local, writable folder, for example /usr/work/my_data. Create the folder if it does not
already exist.

copyfile(fullfile(matlabroot,'extern','examples','mex','yprime.c'), ...

fullfile('/','usr','work','my_data'))

Set your current folder in MATLAB to /usr/work/my_data.

Compile the source MEX file

Compile the source MEX-file with the -g option, which adds debugging symbols.

mex -g yprime.c

MATLAB creates the binary MEX-file, yprime.mexmaci64.

Create an empty Xcode project for debugging

In Xcode,

• Select File > New > Project.
• In the Choose a template for your project dialog box, in the OS X section, select

Other.
• Select Empty.
• Set Product Name to debug_yprime.

 Debugging on Mac Platforms

5-57

Add yprime files to the project

To add breakpoints to your source code file, add the yprime.c file to the project. You
can either drag the file directly into the project or right-click in the project and click Add
files to "debug_yprime" to add files.

Make sure the Destination option, Copy items into destination group's
folder (if needed), is unchecked. Unchecking this option enables breakpoints to be
added to the file that MATLAB runs.

Click Finish to add the file.

Create a scheme

• Select Product > Scheme > New Scheme....
• Set Name to debug.
• Set Target to None.
• Press OK. The scheme editing dialog box opens.
• Set the Run > Info > Executable option to the MATLAB executable to use to debug

the MEX-file, for example, MATLAB_R2014a.app.

Add a symbolic breakpoint

Open the Debug menu:

• In Xcode 4.6.x:

Select Product > Debug > Create Symbolic Breakpoint .
• In Xcode 5.0 and later:

Select Debug > Breakpoints > Create Symbolic Breakpoint.

Set Symbol to NSApplicationMain.

Click Add action to add the following debugger command:

process handle -p true -n false -s false SIGSEGV SIGBUS

Check Automatically continue after evaluating.

Set breakpoints

To add a breakpoint to yprime.c, click the gutter next to the line where you want
execution to pause. For more information, refer to the Xcode documentation.

5 C/C++ MEX-Files

5-58

Start MATLAB

Click Run at the top left of the project window (or type Command-R) to start the
MATLAB executable. The executable pauses twice; press Continue.

Run the binary MEX-file in MATLAB

In MATLAB, change the current folder to the folder with the yprime files.

Run the binary MEX-file.

yprime(1,1:4)

The debugger opens yprime.c at the first breakpoint.

Press Continue. MATLAB displays:

ans =

 2.0000 8.9685 4.0000 -1.0947

Using LLDB

LLDB is the debugger available with Xcode on Mac OS X systems. Refer to the
documentation provided with your debugger for more information on its use.

In this procedure, >> indicates the MATLAB command prompt, and % represents a Mac
Terminal prompt. The debugger prompt is (lldb).

• “Debug MEX Without JVM” on page 5-58
• “Debug MEX with JVM” on page 5-60

Debug MEX Without JVM

This example debugs the yprime MEX file without the Java Virtual Machine (JVM).
Running MATLAB in this mode minimizes memory usage and improves initial startup
speed, but restricts functionality. For example, you cannot use the desktop.

1 Compile the source MEX file with the -g option, which builds the file with debugging
symbols included. At the Terminal prompt, type:

% mex -g yprime.c

2 Start the lldb debugger using the matlab function -D option:

 Debugging on Mac Platforms

5-59

% matlab -Dlldb

3 Start MATLAB using the -nojvm startup flag:

(lldb) run -nojvm

4 In MATLAB, enable debugging with the dbmex function and run your MEX file:

>> dbmex on

>> yprime(1,1:4)

The debugger traps a user-defined signal and the prompt returns to lldb.
5 You are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

(lldb) b mexFunction

6 Once you hit a breakpoint, you can use any debugger commands to examine
variables, display memory, or inspect registers. To proceed from a breakpoint, type:

(lldb) c

7 After stopping at the last breakpoint, type:

(lldb) c

yprime finishes and MATLAB displays:

ans =

 2.0000 8.9685 4.0000 -1.0947

8 From the MATLAB prompt, return control to the debugger by typing:

>> dbmex stop

Or, if you are finished running MATLAB, type:

>> quit

9 When you are finished with the debugger, type:

(lldb) q

You return to the Terminal prompt.

5 C/C++ MEX-Files

5-60

Debug MEX with JVM

To debug a MEX file with the JVM, first handle SIGSEGV and SIGBUS process signals.
Start MATLAB and stop at the first instruction.

• At the Terminal prompt, compile the MEX file and start the lldb debugger.

% mex -g yprime.c

% matlab -Dlldb

• Start MATLAB.

(lldb) process launch -s

• Tell the process to continue when these process signals occur.

(lldb) process handle -p true -n false -s false SIGSEGV SIGBUS

• You can set break points and execute other debugger commands.

 Handling Large mxArrays

5-61

Handling Large mxArrays

In this section...

“Using the 64-Bit API” on page 5-61
“Building the Binary MEX File” on page 5-63
“Example” on page 5-63
“Caution Using Negative Values” on page 5-63
“Building Cross-Platform Applications” on page 5-64

Binary MEX files built on 64-bit platforms can handle 64-bit mxArrays. These large
data arrays can have up to 248-1 elements. The maximum number of elements a sparse
mxArray can have is 248-2.

Using the following instructions creates platform-independent binary MEX files as well.

Your system configuration can affect the performance of MATLAB. The 64-bit processor
requirement enables you to create the mxArray and access data in it. However, the
system memory, in particular the size of RAM and virtual memory, determine the speed
at which MATLAB processes the mxArray. The more memory available, the faster the
processing.

The amount of RAM also limits the amount of data you can process at one time in
MATLAB. For guidance on memory issues, see “Strategies for Efficient Use of Memory”
in the Programming Fundamentals documentation. Memory management within source
MEX files can have special considerations, as described in “Memory Management” on
page 5-65.

Using the 64-Bit API

The signatures of the API functions shown in the following table use the mwSize or
mwIndex types to work with a 64-bit mxArray. The variables you use in your source code
to call these functions must be the correct type.

mxArray Functions Using mwSize/mwIndex

mxCalcSingleSubscript mxCreateSparseLogicalMatrix 2

mxCalloc mxCreateStructArray

mxCopyCharacterToPtr1 mxCreateStructMatrix

5 C/C++ MEX-Files

5-62

mxCopyComplex16ToPtr1 mxGetCell

mxCopyComplex8ToPtr1 mxGetDimensions

mxCopyInteger1ToPtr1 mxGetElementSize

mxCopyInteger2ToPtr1 mxGetField

mxCopyInteger4ToPtr1 mxGetFieldByNumber

mxCopyPtrToCharacter1 mxGetIr

mxCopyPtrToComplex161 mxGetJc

mxCopyPtrToComplex81 mxGetM

mxCopyPtrToInteger11 mxGetN

mxCopyPtrToInteger21 mxGetNumberOfDimensions

mxCopyPtrToInteger41 mxGetNumberOfElements

mxCopyPtrToPtrArray1 mxGetNzmax

mxCopyPtrToReal41 mxGetProperty

mxCopyPtrToReal81 mxGetString

mxCopyReal4ToPtr1 mxMalloc

mxCopyReal8ToPtr1 mxRealloc

mxCreateCellArray mxSetCell

mxCreateCellMatrix mxSetDimensions

mxCreateCharArray mxSetField

mxCreateCharMatrixFromStrings mxSetFieldByNumber

mxCreateDoubleMatrix mxSetIr

mxCreateLogicalArray2 mxSetJc

mxCreateLogicalMatrix2 mxSetM

mxCreateNumericArray mxSetN

mxCreateNumericMatrix mxSetNzmax

mxCreateSparse mxSetProperty

1Fortran function only.

 Handling Large mxArrays

5-63

2C function only.

Functions in this API use the mwIndex and mwSize types.

Building the Binary MEX File

Use the mex build script option -largeArrayDims with the 64-bit API.

Example

The example, arraySize.c in matlabroot/extern/examples/mex, shows memory
requirements of large mxArrays. To see the example, open the file in MATLAB Editor.

This function requires one positive scalar numeric input, which it uses to create a square
matrix. It checks the size of the input to make sure that your system can theoretically
create a matrix of this size. If the input is valid, it displays the size of the mxArray in
kilobytes.

Build this MEX file.

mex -largeArrayDims arraySize.c

Run the MEX file.

arraySize(2^10)

Dimensions: 1024 x 1024

Size of array in kilobytes: 1024

If your system does not have enough memory to create the array, MATLAB displays an
Out of memory error.

You can experiment with this function to test the performance and limits of handling
large arrays on your system.

Caution Using Negative Values

When using the 64-bit API, mwSize and mwIndex are equivalent to size_t in C/C++.
This type is unsigned, unlike int, which is the type used in the 32-bit API. Be careful
not to pass any negative values to functions that take mwSize or mwIndex arguments.

5 C/C++ MEX-Files

5-64

Do not cast negative int values to mwSize or mwIndex; the returned value cannot be
predicted. Instead, change your code to avoid using negative values.

Building Cross-Platform Applications

If you develop programs that can run on both 32- and 64-bit architectures, pay attention
to the upper limit of values for mwSize and mwIndex. The 32-bit application reads these
values and assigns them to variables declared as int in C/C++. Be careful to avoid
assigning a large mwSize or mwIndex value to an int or other variable that might be too
small.

 Memory Management

5-65

Memory Management

In this section...

“Automatic Cleanup of Temporary Arrays” on page 5-65
“Example” on page 5-66
“Persistent Arrays” on page 5-66

Automatic Cleanup of Temporary Arrays

When a MEX file returns control to MATLAB, it returns the results of its computations
in the output arguments—the mxArrays contained in the left-side arguments plhs[].
These arrays must have a temporary scope, so do not pass arrays created with the
mexMakeArrayPersistent function in plhs. MATLAB destroys any mxArray created
by the MEX file that is not in plhs. MATLAB also frees any memory that was allocated
in the MEX file using the mxCalloc, mxMalloc, or mxRealloc functions.

MathWorks recommends that MEX-file functions destroy their own temporary arrays
and free their own dynamically allocated memory. It is more efficient to perform this
cleanup in the source MEX-file than to rely on the automatic mechanism. However,
there are several circumstances in which the MEX file does not reach its normal return
statement.

The normal return is not reached if:

• MATLAB calls mexErrMsgTxt.
• MATLAB calls mexCallMATLAB and the function being called creates an error.

(A source MEX file can trap such errors by using the mexCallMATLABWithTrap
function, but not all MEX files necessarily need to trap errors.)

• The user interrupts the MEX file execution using Ctrl+C.
• The binary MEX file runs out of memory. The MATLAB out-of-memory handler

terminates the MEX file.

For the first two cases, a MEX file programmer can ensure safe cleanup of temporary
arrays and memory before returning, but not in the last two cases. The automatic
cleanup mechanism is necessary to prevent memory leaks in those cases.

You must use the MATLAB-provided functions, such as mxCalloc and mxFree, to
manage memory. Do not use the standard C library counterparts; doing so can produce
unexpected results, including program termination.

5 C/C++ MEX-Files

5-66

Example

This example shows how to allocate memory for variables in a MEX file. For example, if
the first input to your function (prhs[0]) is a string, in order to manipulate the string,
create a buffer buf of size buflen. The following statements declare these variables:

char *buf;

int buflen;

The size of the buffer depends the number of dimensions of your input array and the size
of the data in the array. This statement calculates the size of buflen:

buflen = mxGetN(prhs[0])*sizeof(mxChar)+1;

Next, allocate memory for buf:

buf = mxMalloc(buflen);

At the end of the program, if you do not return buf as a plhs output parameter, then
free its memory as follows:

mxFree(buf);

Before exiting the MEX file, destroy any temporary arrays and free any dynamically
allocated memory, except if such an mxArray is returned in the output argument list,
returned by mexGetVariablePtr, or used to create a structure. Also, never delete input
arguments.

Use mxFree to free memory allocated by the mxCalloc, mxMalloc, or mxRealloc
functions. Use mxDestroyArray to free memory allocated by the mxCreate* functions.

Persistent Arrays

You can exempt an array, or a piece of memory, from the MATLAB automatic cleanup by
calling mexMakeArrayPersistent or mexMakeMemoryPersistent. However, if a MEX
file creates such persistent objects, there is a danger that a memory leak could occur
if the MEX file is cleared before the persistent object is properly destroyed. To prevent
memory leaks, use the mexAtExit function to register a function to free the memory for
objects created using these functions.

For example, here is a source MEX file that creates a persistent array and properly
disposes of it.

 Memory Management

5-67

#include "mex.h"

static int initialized = 0;

static mxArray *persistent_array_ptr = NULL;

void cleanup(void) {

 mexPrintf("MEX file is terminating, destroying array\n");

 mxDestroyArray(persistent_array_ptr);

}

void mexFunction(int nlhs,

 mxArray *plhs[],

 int nrhs,

 const mxArray *prhs[])

{

 if (!initialized) {

 mexPrintf("MEX file initializing, creating array\n");

 /* Create persistent array and register its cleanup. */

 persistent_array_ptr = mxCreateDoubleMatrix(1, 1, mxREAL);

 mexMakeArrayPersistent(persistent_array_ptr);

 mexAtExit(cleanup);

 initialized = 1;

 /* Set the data of the array to some interesting value. */

 *mxGetPr(persistent_array_ptr) = 1.0;

 } else {

 mexPrintf("MEX file executing; value of first array element is %g\n",

 *mxGetPr(persistent_array_ptr));

 }

}

See Also
mexAtExit | mexMakeArrayPersistent | mxCalloc | mxFree

More About
• “Memory Allocation”
• “Memory Management Issues” on page 4-67

5 C/C++ MEX-Files

5-68

Handling Large File I/O

In this section...

“Prerequisites to Using 64-Bit I/O” on page 5-68
“Specifying Constant Literal Values” on page 5-70
“Opening a File” on page 5-70
“Printing Formatted Messages” on page 5-71
“Replacing fseek and ftell with 64-Bit Functions” on page 5-71
“Determining the Size of an Open File” on page 5-72
“Determining the Size of a Closed File” on page 5-73

Prerequisites to Using 64-Bit I/O

MATLAB supports the use of 64-bit file I/O operations in your MEX file programs. You
can read and write data to files that are up to and greater than 2 GB (2 31-1 bytes) in size.
Some operating systems or compilers do not support files larger than 2 GB. The following
topics describe how to use 64-bit file I/O in your MEX file programs.

• “Header File” on page 5-68
• “Type Declarations” on page 5-68
• “Functions” on page 5-69

Header File

Header file io64.h defines many of the types and functions required for 64-bit file I/O.
The statement to include this file must be the first #include statement in your source
file and must also precede any system header include statements:

#include "io64.h"

#include "mex.h"

Type Declarations

To declare variables used in 64-bit file I/O, use the following types.

MEX Type Description POSIX

fpos_T Declares a 64-bit int type
for setFilePos() and

fpos_t

 Handling Large File I/O

5-69

MEX Type Description POSIX

getFilePos(). Defined in
io64.h.

int64_T, uint64_T Declares 64-bit signed and
unsigned integer types. Defined in
tmwtypes.h.

long, long

structStat Declares a structure to hold the
size of a file. Defined in io64.h.

struct stat

FMT64 Used in mexPrintf to specify
length within a format specifier
such as %d. See example in the
section “Printing Formatted
Messages” on page 5-71. FMT64
is defined in tmwtypes.h.

%lld

LL, LLU Suffixes for literal int constant 64-
bit values (C Standard ISO®/IEC
9899:1999(E) Section 6.4.4.1). Used
only on UNIX systems.

LL, LLU

Functions

Use the following functions for 64-bit file I/O. All are defined in the header file io64.h.

Function Description POSIX

fileno() Gets a file descriptor from a file
pointer

fileno()

fopen() Opens the file and obtains the file
pointer

fopen()

getFileFstat() Gets the file size of a given file
pointer

fstat()

getFilePos() Gets the file position for the next I/
O

fgetpos()

getFileStat() Gets the file size of a given file
name

stat()

setFilePos() Sets the file position for the next I/O fsetpos()

5 C/C++ MEX-Files

5-70

Specifying Constant Literal Values

To assign signed and unsigned 64-bit integer literal values, use type definitions int64_T
and uint64_T.

On UNIX systems, to assign a literal value to an integer variable where the value to be
assigned is greater than 2 31-1 signed, you must suffix the value with LL. If the value is
greater than 2 32-1 unsigned, then use LLU as the suffix. These suffixes are not valid on
Microsoft Windows systems.

Note: The LL and LLU suffixes are not required for hardcoded (literal) values less than 2
G (2

31
-1), even if they are assigned to a 64-bit int type.

The following example declares a 64-bit integer variable initialized with a large literal
int value, and two 64-bit integer variables:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

 const mxArray *prhs[])

{

#if defined(_MSC_VER) || defined(__BORLANDC__) /* Windows */

 int64_T large_offset_example = 9000222000;

#else /* UNIX */

 int64_T large_offset_example = 9000222000LL;

#endif

int64_T offset = 0;

int64_T position = 0;

Opening a File

To open a file for reading or writing, use the C/C++ fopen function as you normally
would. As long as you have included io64.h at the start of your program, fopen works
correctly for large files. No changes at all are required for fread, fwrite, fprintf,
fscanf, and fclose.

The following statements open an existing file for reading and updating in binary mode.

fp = fopen(filename, "r+b");

if (NULL == fp)

 Handling Large File I/O

5-71

 {

 /* File does not exist. Create new file for writing

 * in binary mode.

 */

 fp = fopen(filename, "wb");

 if (NULL == fp)

 {

 sprintf(str, "Failed to open/create test file '%s'",

 filename);

 mexErrMsgTxt(str);

 return;

 }

 else

 {

 mexPrintf("New test file '%s' created\n",filename);

 }

 }

else mexPrintf("Existing test file '%s' opened\n",filename);

Printing Formatted Messages

You cannot print 64-bit integers using the %d conversion specifier. Instead, use FMT64
to specify the appropriate format for your platform. FMT64 is defined in the header file
tmwtypes.h. The following example shows how to print a message showing the size of a
large file:

int64_T large_offset_example = 9000222000LL;

mexPrintf("Example large file size: %" FMT64 "d bytes.\n",

 large_offset_example);

Replacing fseek and ftell with 64-Bit Functions

The ANSI C fseek and ftell functions are not 64-bit file I/O capable on most
platforms. The functions setFilePos and getFilePos, however, are defined as the
corresponding POSIX® fsetpos and fgetpos (or fsetpos64 and fgetpos64) as
required by your platform/OS. These functions are 64-bit file I/O capable on all platforms.

The following example shows how to use setFilePos instead of fseek, and
getFilePos instead of ftell. The example uses getFileFstat to find the size of the
file. It then uses setFilePos to seek to the end of the file to prepare for adding data at
the end of the file.

5 C/C++ MEX-Files

5-72

Note: Although the offset parameter to setFilePos and getFilePos is really a
pointer to a signed 64-bit integer, int64_T, it must be cast to an fpos_T*. The fpos_T
type is defined in io64.h as the appropriate fpos64_t or fpos_t, as required by your
platform OS.

getFileFstat(fileno(fp), &statbuf);

fileSize = statbuf.st_size;

offset = fileSize;

setFilePos(fp, (fpos_T*) &offset);

getFilePos(fp, (fpos_T*) &position);

Unlike fseek, setFilePos supports only absolute seeking relative to the beginning of
the file. If you want to do a relative seek, first call getFileFstat to obtain the file size.
Then convert the relative offset to an absolute offset that you can pass to setFilePos.

Determining the Size of an Open File

To get the size of an open file:

• Refresh the record of the file size stored in memory using getFilePos and
setFilePos.

• Retrieve the size of the file using getFileFstat.

Refreshing the File Size Record

Before attempting to retrieve the size of an open file, first refresh the record of the file
size residing in memory. If you skip this step on a file that is opened for writing, the file
size returned might be incorrect or 0.

To refresh the file size record, seek to any offset in the file using setFilePos. If you do
not want to change the position of the file pointer, you can seek to the current position in
the file. This example obtains the current offset from the start of the file. It then seeks to
the current position to update the file size without moving the file pointer.

getFilePos(fp, (fpos_T*) &position);

setFilePos(fp, (fpos_T*) &position);

 Handling Large File I/O

5-73

Getting the File Size

The getFileFstat function takes a file descriptor input argument. Use fileno
function to get the file pointer of the open file. getFileFstat returns the size of that file
in bytes in the st_size field of a structStat structure.

structStat statbuf;

int64_T fileSize = 0;

if (0 == getFileFstat(fileno(fp), &statbuf))

 {

 fileSize = statbuf.st_size;

 mexPrintf("File size is %" FMT64 "d bytes\n", fileSize);

 }

Determining the Size of a Closed File

The getFileStat function takes the file name of a closed file as an input argument.
getFileStat returns the size of the file in bytes in the st_size field of a structStat
structure.

structStat statbuf;

int64_T fileSize = 0;

if (0 == getFileStat(filename, &statbuf))

 {

 fileSize = statbuf.st_size;

 mexPrintf("File size is %" FMT64 "d bytes\n", fileSize);

 }

5 C/C++ MEX-Files

5-74

Install MinGW-w64 Compiler
You can use the MinGW-w64 version 4.9.2 compiler from TDM-GCC to build MEX files
and standalone MATLAB engine and MAT-file applications.

Installing Compiler from Add-Ons Menu

To install the MinGW compiler, open the installer from MATLAB Add-Ons menu. On
the Home tab, in the Environment section, click the Add-Ons icon. Under Refine by
Type, select Features, or search for MinGW. Follow the prompts to add the compiler.

Note: To install the MATLAB-supported version of MinGW-w64, you must clear the
check box highlighted in the following figure.

 Install MinGW-w64 Compiler

5-75

For more information, see “Support Package Installation” on page 17-2.

Building yprime.c Example

You can test the MinGW compiler by building the yprime.c example. Copy the source
file to a writable folder.

copyfile(fullfile(matlabroot,'extern','examples','mex','yprime.c'),'.','f')

If you only have the MinGW compiler installed on your system, the mex command
automatically chooses MinGW. Go to the next step. However, if you have multiple C or C
++ compilers, use mex -setup to choose MinGW.

mex -setup

Build the MEX file.

mex yprime.c

MATLAB displays a “Building with” message showing what compiler was used to build
the MEX file.

Run the function.

yprime(1,1:4)

For more information, see “Troubleshooting and Limitations Compiling C/C++ MEX Files
with MinGW-w64” on page 5-77.

MinGW Installation Folder Cannot Contain Space

Do not install MinGW in a location with spaces in the path name. For example, do not
use:

C:\Program Files\TDM-GCC-64

Instead, use:

C:\TDM-GCC-64

Updating MEX Files to Use MinGW Compiler

If you have MEX source files built with a different MATLAB-supported compiler, you
might need to modify the code in order to build with the MinGW compiler. For example:

5 C/C++ MEX-Files

5-76

• Library (.lib) files generated by Microsoft Visual Studio are not compatible with
MinGW.

• Object cleanup is not possible when an exception is thrown using the
mexErrMsgIdAndTxt function from C++ MEX files, resulting in memory leak.

• An uncaught exception in C++ MEX files compiled with MinGW causes MATLAB to
crash.

• MEX files with variables containing large amounts of data cannot be compiled, as the
compiler runs out of memory.

More About
• “Support Package Installation” on page 17-2
• “Troubleshooting and Limitations Compiling C/C++ MEX Files with MinGW-w64”

on page 5-77

External Websites
• Supported and Compatible Compilers

http://www.mathworks.com/support/compilers/current_release/

 Troubleshooting and Limitations Compiling C/C++ MEX Files with MinGW-w64

5-77

Troubleshooting and Limitations Compiling C/C++ MEX Files with
MinGW-w64

In this section...

“Do Not Link to Library Files Compiled with Non-MinGW Compilers” on page 5-77
“MinGW Compiler Not Setup for Use with MEX” on page 5-77
“MinGW Installation Folder Cannot Contain Space” on page 5-78
“MEX Command Does not Choose MinGW” on page 5-78
“Manually Configure MinGW for MATLAB” on page 5-78
“Potential Memory Leak Inside C++ MEX Files on Using MEX Exceptions” on page
5-79
“Unhandled Explicit Exceptions in C++ MEX Files Unexpectedly Terminate MATLAB”
on page 5-80
“Out of Memory Error for Variables Containing Large Amounts of Data” on page
5-81

Do Not Link to Library Files Compiled with Non-MinGW Compilers

If you use the MinGW compiler to build a MEX file that links to a library compiled with a
non-MinGW compiler, such as Microsoft Visual Studio, the file will not run in MATLAB.
Library (.lib) files generated by different compilers are not compatible with each other.

You can generate a new library file using the dlltool utility from MinGW.

MinGW Compiler Not Setup for Use with MEX

If you installed the MinGW compiler but MATLAB does not recognize it, the compiler
might not be the supported version.

To install the MATLAB-supported version of MinGW-w64, you must clear the Check
for updated files on the TDM-GCC server check box. This check box appears during
TDM-GCC Setup when you are asked to Choose which action you want the setup
wizard to perform. For information about installing MinGW, see “Installing Compiler
from Add-Ons Menu” on page 5-74.

5 C/C++ MEX-Files

5-78

MinGW Installation Folder Cannot Contain Space

Do not install MinGW in a location with spaces in the path name. For example, do not
use:

C:\Program Files\TDM-GCC-64

Instead, use:

C:\TDM-GCC-64

MEX Command Does not Choose MinGW

If you only have the MinGW compiler installed on your system, the mex command
automatically chooses MinGW for both C and C++ MEX files. If you have multiple C or C
++ compilers, use mex -setup to choose MinGW for both C and, if required, C++ MEX
files.

mex -setup

mex -setup cpp

If you only type mex -setup choosing MinGW, when you compile a C++ file, mex might
choose a different compiler.

Manually Configure MinGW for MATLAB

MATLAB detects the MinGW compiler by reading an environment variable,
MW_MINGW64_LOC. When you install MinGW from the MATLAB Add-Ons menu,
MATLAB sets this variable.

If necessary, you can set this variable globally, if you have Windows administrative
privileges, using the Windows Control Panel. Alternatively, set the variable every time
you open MATLAB.

Note: Verify you have installed MinGW-w64 version 4.9.2 before setting the environment
variable.

Set variable using Windows Control Panel

To set the environment variable on Windows 7:

 Troubleshooting and Limitations Compiling C/C++ MEX Files with MinGW-w64

5-79

1 Make sure you have administrative privileges.
2 Select Computer from the Start menu.
3 Choose System properties from the context menu.
4 Click Advanced system settings > Advanced tab.
5 Click Environment Variables.
6 Under System variables, select New.
7 In the New System Variable dialog box, type MW_MINGW64_LOC in the Variable

name field.
8 In the Variable value field, type the location of the MinGW-w64 compiler

installation, for example, C:\TDM-GCC-64.
9 Click Ok to close the dialog boxes, then close the Control Panel dialog box.

Set variable for MATLAB session

To set the environment variable in MATLAB, type:

setenv('MW_MINGW64_LOC',folder)

where folder is the installation directory, for example, 'C:\TDM-GCC-64'. You must
set the variable every time you run MATLAB.

Potential Memory Leak Inside C++ MEX Files on Using MEX Exceptions

Error handling in C++ MEX files compiled with the MinGW-w64 compiler is not
consistent with MATLAB error handling. If a C++ MEX file contains a class, using the
mexErrMsgIdAndTxt function to throw a MEX exception can cause a memory leak for
objects created for the class.

For example, the following C++ MEX function contains class MyClass.

#include "mex.h"

class MyClass {

 public:

 MyClass() {

 mexPrintf("Constructor called");

 }

 ~MyClass() {

 mexPrintf("Destructor called");

5 C/C++ MEX-Files

5-80

 }

};

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

 MyClass X;

 if (nrhs != 0) {

 mexErrMsgIdAndTxt("MATLAB:cppfeature:invalidNumInputs",

 "No input arguments allowed.");

 }

}

The MEX function creates object X from MyClass, then checks the number of input
arguments. If the MEX function calls mexErrMsgIdAndTxt, the MATLAB error
handling does not free memory for object X, thus creating a memory leak.

Unhandled Explicit Exceptions in C++ MEX Files Unexpectedly Terminate
MATLAB

If a function in a C++ MEX file throws an explicit exception which is not caught inside
the MEX file with a catch statement, then the exception causes MATLAB to terminate
instead of propagating the error to the MATLAB command line.

#include "mex.h"

class error {}; // Throw an exception of this class

class MyClass

{

 public:

 MyClass(){

 mexPrintf("Constructor called.");

 }

 ~MyClass(){

 mexPrintf("Destructor called.");

 }

};

void doErrorChecking(const MyClass& obj)

{

 // Do error checking

 throw error();

 Troubleshooting and Limitations Compiling C/C++ MEX Files with MinGW-w64

5-81

}

void createMyClass()

{

 MyClass myobj;

 doErrorChecking(myobj);

}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

 createMyClass();

}

The MEX function calls createMyClass, which creates an object of class MyClass and
calls function doErrorChecking. Function doErrorChecking throws an exception
of type error. This exception, however, is not caught inside the MEX file and causes
MATLAB to crash.

This behavior also occurs for classes inheriting from the class std::exception.

Work around

Catch the exception in the MEX function:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

 try{

 createMyClass();

 }

 catch(error e){

 // Error handling

 }

}

Out of Memory Error for Variables Containing Large Amounts of Data

The TDM-GCC MinGW 4.9.2 compiler cannot allocate memory for variables in MEX files
that contain large amounts of data. The compiler displays an error message like:

out of memory allocating XXXXXX bytes

See Also
mexErrMsgIdAndTxt

6

Fortran MEX-Files

• “Components of Fortran MEX File” on page 6-2
• “MATLAB Fortran API Libraries” on page 6-5
• “Data Flow in Fortran MEX Files” on page 6-8
• “User Messages” on page 6-11
• “Error Handling” on page 6-12
• “Build Fortran MEX File” on page 6-13
• “Create Fortran Source MEX File” on page 6-14
• “Set Up Fortran Examples” on page 6-19
• “Pass Scalar Values” on page 6-20
• “Pass Strings” on page 6-21
• “Pass Arrays of Strings” on page 6-22
• “Pass Matrices” on page 6-23
• “Pass Integers” on page 6-24
• “Pass Multiple Inputs or Outputs” on page 6-25
• “Handle Complex Data” on page 6-26
• “Dynamically Allocate Memory” on page 6-27
• “Handle Sparse Matrices” on page 6-28
• “Call MATLAB Functions from Fortran MEX Files” on page 6-29
• “Debug Fortran Source MEX-Files” on page 6-31
• “Handling Large mxArrays” on page 6-34
• “Memory Management” on page 6-37
• “MATLAB Supports Fortran 77” on page 6-38

6 Fortran MEX-Files

6-2

Components of Fortran MEX File

In this section...

“mexFunction Gateway Routine” on page 6-2
“Naming the MEX File” on page 6-2
“Difference Between .f and .F Files” on page 6-2
“Required Parameters” on page 6-3
“Managing Input and Output Parameters” on page 6-3
“Validating Inputs” on page 6-4
“Computational Routine” on page 6-4

mexFunction Gateway Routine

The gateway routine is the entry point to the MEX file. It is through this routine that
MATLAB accesses the rest of the routines in your MEX files. The name of the gateway
routine is mexFunction. It takes the place of the main program in your source code.

Naming the MEX File

The name of the source file containing mexFunction is the name of your MEX file, and,
hence, the name of the function you call in MATLAB. Name your Fortran source file with
an uppercase .F file extension.

The file extension of the binary MEX file is platform-dependent. You find the file
extension using the mexext function, which returns the value for the current machine.

Difference Between .f and .F Files

To ensure your Fortran MEX file is platform independent, use an uppercase .F file
extension.

Fortran compilers assume source files using a lowercase .f file extension have been
preprocessed. On most platforms, mex makes sure that the file is preprocessed regardless
of the file extension. However, on Apple Macintosh platforms, mex cannot force
preprocessing.

 Components of Fortran MEX File

6-3

Required Parameters

The Fortran signature for mexfunction is:

 subroutine mexFunction(nlhs, plhs, nrhs, prhs)

 integer nlhs, nrhs

 mwpointer plhs(*), prhs(*)

Place this subroutine after your computational routine and any other subroutines in your
source file.

The following table describes the parameters for mexFunction.

Parameter Description

prhs Array of right-side input arguments.
plhs Array of left-side output arguments.
nrhs Number of right-side arguments, or the size of the prhs array.
nlhs Number of left-side arguments, or the size of the plhs array.

Declare prhs and plhs as type mwPointer, which means they point to MATLAB arrays.
They are vectors that contain pointers to the arguments of the MEX file.

You can think of the name prhs as representing the “parameters, right-hand side,” that
is, the input parameters. Likewise, plhs represents the “parameters, left side,” or output
parameters.

Managing Input and Output Parameters

Input parameters (found in the prhs array) are read-only; do not modify them in your
MEX file. Changing data in an input parameter can produce undesired side effects.

You also must take care when using an input parameter to create output data or any
data used locally in your MEX file. If you want to copy an input array into an output
array, for example plhs(1), call the mxDuplicateArray function to make of copy of the
input array. For example:

plhs(1) = mxDuplicateArray(prhs(1))

For more information, see the troubleshooting topic “Incorrectly Constructing a Cell or
Structure mxArray” on page 4-68.

6 Fortran MEX-Files

6-4

Validating Inputs

For a list of functions to validate inputs to your subroutines, see the Matrix Library
category, “Validate Data”. The mxIsClass function is a general-purpose way to test an
mxArray.

Computational Routine

The computational routine contains the code for performing the computations you
want implemented in the binary MEX file. Although not required, consider writing
the gateway routine, mexFunction, to call a computational routine. To validate input
parameters and to convert them into the types required by the computational routine,
use the mexFunction code as a wrapper.

If you write separate gateway and computational routines, you can combine them
into one source file or into separate files. If you use separate files, the file containing
mexFunction must be the first source file listed in the mex command.

See Also
mexext | mexFunction | mwPointer | mxDuplicateArray | mxIsClass

 MATLAB Fortran API Libraries

6-5

MATLAB Fortran API Libraries

In this section...

“Matrix Library” on page 6-5
“MEX Library” on page 6-5
“Preprocessor Macros” on page 6-5
“Using the Fortran %val Construct” on page 6-6

The Matrix Library and the MEX Library describe functions you can use in your gateway
and computational routines that interact with MATLAB programs and the data in the
MATLAB workspace. These libraries are part of the MATLAB C/C++ and Fortran API
Reference library.

To use these functions, include the fintrf header, which declares the entry point and
interface routines. Put this statement in your source file:

#include "fintrf.h"

Matrix Library

Use Fortran Matrix Library functions to pass mxArray, the type MATLAB uses to store
arrays, to and from MEX files. For examples using these functions, see matlabroot/
extern/examples/mx.

MEX Library

Use MEX Library functions to perform operations in the MATLAB environment. For
examples using these functions, see matlabroot/extern/examples/mex.

Unlike MATLAB functions, MEX file functions do not have their own variable
workspace. MEX file functions operate in the caller workspace. To evaluate a string,
use mexEvalString. To get and put variables into the caller workspace, use the
mexGetVariable and mexPutVariable functions.

Preprocessor Macros

The Matrix and MEX libraries use the MATLAB preprocessor macros mwSize and
mwIndex for cross-platform flexibility. mwSize represents size values, such as array

6 Fortran MEX-Files

6-6

dimensions and number of elements. mwIndex represents index values, such as indices
into arrays.

MATLAB has an extra preprocessor macro for Fortran files, mwPointer. MATLAB uses
a unique data type, the mxArray. Because you cannot create a data type in Fortran,
MATLAB passes a special identifier, created by the mwPointer preprocessor macro, to a
Fortran program. This is how you get information about an mxArray in a native Fortran
data type. For example, you can find out the size of the mxArray, determine whether
it is a string, and look at the contents of the array. Use mwPointer to build platform-
independent code.

The Fortran preprocessor converts mwPointer to integer*4 when building binary MEX
files on 32-bit platforms and to integer*8 when building on 64-bit platforms.

Note: Declaring a pointer to be the incorrect size might cause your program to crash.

Using the Fortran %val Construct

The Fortran %val(arg) construct specifies that an argument, arg, is to be passed by
value, instead of by reference. Most, but not all, Fortran compilers support the %val
construct.

If your compiler does not support the %val construct, copy the array values
into a temporary true Fortran array using the mxCopy* routines (for example,
mxCopyPtrToReal8).

%val Construct Example

If your compiler supports the %val construct, you can use routines that point directly
to the data (that is, the pointer returned by mxGetPr or mxGetPi). You can use %val to
pass the contents of this pointer to a subroutine, where it is declared as a Fortran double-
precision matrix.

For example, consider a gateway routine that calls its computational routine, yprime,
by:

call yprime(%val(yp), %val(t), %val(y))

If your Fortran compiler does not support the %val construct, you would replace the call
to the computational subroutine with:

 MATLAB Fortran API Libraries

6-7

C Copy array pointers to local arrays.

 call mxCopyPtrToReal8(t, tr, 1)

 call mxCopyPtrToReal8(y, yr, 4)

C

C Call the computational subroutine.

 call yprime(ypr, tr, yr)

C

C Copy local array to output array pointer.

 call mxCopyReal8ToPtr(ypr, yp, 4)

You must also add the following declaration line to the top of the gateway routine:

real*8 ypr(4), tr, yr(4)

If you use mxCopyPtrToReal8 or any of the other mxCopy* routines, the size of the
arrays declared in the Fortran gateway routine must be greater than or equal to the size
of the inputs to the MEX file coming in from MATLAB. Otherwise, mxCopyPtrToReal8
does not work correctly.

See Also
“Fortran Matrix Library API” | “MEX Library API” | mwIndex | mwPointer | mwSize
| mxArray

6 Fortran MEX-Files

6-8

Data Flow in Fortran MEX Files

In this section...

“Showing Data Input and Output” on page 6-8
“Gateway Routine Data Flow Diagram” on page 6-9

Showing Data Input and Output

Suppose your MEX-file myFunction has two input arguments and one output argument.
The MATLAB syntax is [X] = myFunction(Y, Z). To call myFunction from
MATLAB, type:

X = myFunction(Y, Z);

The MATLAB interpreter calls mexFunction, the gateway routine to myFunction, with
the following arguments:

Your input is prhs, a two-element array (nrhs = 2). The first element is a pointer to an
mxArray named Y and the second element is a pointer to an mxArray named Z.

Your output is plhs, a one-element array (nlhs = 1) where the single element is a null
pointer. The parameter plhs points at nothing because the output X is not created until
the subroutine executes.

The gateway routine creates the output array and sets a pointer to it in plhs[0]. If
the routine does not assign a value to plhs[0] but you assign an output value to the
function when you call it, MATLAB generates an error.

 Data Flow in Fortran MEX Files

6-9

Note: It is possible to return an output value even if nlhs = 0, which corresponds to
returning the result in the ans variable.

Gateway Routine Data Flow Diagram

The following MEX Cycle diagram shows how inputs enter a MEX-file, what functions
the gateway routine performs, and how outputs return to MATLAB.

In this example, the syntax of the MEX-file func is [C, D] = func(A,B). In the
figure, a call to func tells MATLAB to pass variables A and B to your MEX-file. C and D
are left unassigned.

The gateway routine uses the mxCreate* functions to create the MATLAB arrays for
your output arguments. It sets plhs[0] and plhs[1] to the pointers to the newly
created MATLAB arrays. It uses the mxGet* functions to extract your data from your
input arguments prhs[0] and prhs[1]. Finally, it calls your computational routine,
passing the input and output data pointers as function parameters.

MATLAB assigns plhs[0] to C and plhs[1] to D.

6 Fortran MEX-Files

6-10

A call to
MEX-file func:

tells MATLAB to
pass variables A and
B to your MEX-file.
C and D are left
unassigned.

MATLAB

[C,D]=func(A,B)

On return from
MEX-file func:

plhs(1) is assigned
to C and plhs(2) is
assigned to D.

[C,D]=func(A,B)

MATLAB

func.F

subroutine mexFunction(
nlhs, plhs, nrhs, prhs)

integer plhs(*), prhs(*),nlhs, nrhs

In the gateway routine:

Use the mxCreate functions to create
the MATLAB arrays for your output
arguments. Set plhs(1),(2),...
to the pointers to the newly created
MATLAB arrays.

Use the mxGet functions to extract
your data from prhs(1),(2),... .

Call your Fortran subroutine passing
the input and output data pointers as
function parameters using %val.

Inputs

Outputs

integer B
B = prhs(2)

integer A
A = prhs(1)

integer D
D = plhs(2)

integer C
C = plhs(1)

Fortran MEX Cycle

 User Messages

6-11

User Messages

To print a string in the MATLAB Command Window, use the mexPrintf function.
To print error and warning information in the Command Window, use the
mexErrMsgIdAndTxt and mexWarnMsgIdAndTxt functions.

For example, the following code snippet displays an error message.

 parameter(maxbuf = 100)

 character*100 input_buf

 if (status = mxGetString(prhs(1), input_buf, maxbuf) .ne. 0) then

 call mexErrMsgIdAndTxt ('MATLAB:myfunc:readError',

 + 'Error reading string.')

 endif

See Also
mexErrMsgIdAndTxt | mexPrintf | mexWarnMsgIdAndTxt

6 Fortran MEX-Files

6-12

Error Handling

The mexErrMsgIdAndTxt function prints error information and terminates your binary
MEX file. For an example, see the following code in matlabroot/extern/examples/
mx/mxcreatecellmatrixf.F.

C Check for proper number of input and output arguments

 if (nrhs .lt. 1) then

 call mexErrMsgIdAndTxt('MATLAB:mxcreatecellmatrixf:minrhs',

 + 'One input argument required.')

 end if

The mexWarnMsgIdAndTxt function prints information, but does not terminate the MEX
file. For an example, see the following code in matlabroot/extern/examples/mx/
mxgetepsf.F.

C Check for equality within eps

 do 20 j=1,elements

 if ((abs(first(j) - second(j))).gt.(abs(second(j)*eps))) then

 call mexWarnMsgIdAndTxt(

 + 'MATLAB:mxgetepsf:NotEqual',

 + 'Inputs are not the same within eps.')

 go to 21

 end if

 20 continue

See Also
mexErrMsgIdAndTxt | mexWarnMsgIdAndTxt

Related Examples
• mxcreatecellmatrixf.F
• mxgetepsf.F

 Build Fortran MEX File

6-13

Build Fortran MEX File

This example shows how to build the example MEX file, timestwo. Use this example to
verify the build configuration for your system.

To build a code example, first copy the file to a writable folder, such as c:\work, on your
path:

copyfile(fullfile(matlabroot,'extern','examples','refbook','timestwo.F'),'.','f')

Use the mex function to build the MEX file.

mex timestwo.F

This command creates the file timestwo.ext, where ext is the value returned by the
mexext function.

The timestwo function takes a scalar input and doubles it. Call timestwo as if it were a
MATLAB function.

timestwo(4)

ans =

 8

See Also
mex | mexext

More About
• “Handling Large mxArrays” on page 5-61
• “Upgrade MEX-Files to Use 64-Bit API” on page 4-36

6 Fortran MEX-Files

6-14

Create Fortran Source MEX File

This example shows how to write a MEX file to call a Fortran subroutine, timestwo, in
MATLAB using a MATLAB matrix.

timestwo multiplies an n-dimensional array, x_input, by 2, and returns the results in
array, y_output.

 subroutine timestwo(y_output, x_input)

 real*8 x_input, y_output

 y_output = 2.0 * x_input

 return

 end

Create Source File

Open MATLAB Editor, create a file, and document the MEX file with the following
information.

C==

C timestwo.f

C Computational function that takes a scalar and doubles it.

C This is a MEX file for MATLAB.

C==

Add the Fortran header file, fintrf.h, containing the MATLAB API function
declarations.

#include "fintrf.h"

Save the file on your MATLAB path, for example, in c:\work, and name it timestwo.F.
The name of your MEX file is timestwo.

Create Gateway Routine

MATLAB uses the gateway routine, mexfunction, as the entry point to a Fortran
subroutine. Add the following mexFunction code.

C Gateway routine

 subroutine mexFunction(nlhs, plhs, nrhs, prhs)

C Declarations

 Create Fortran Source MEX File

6-15

C Statements

 return

 end

Add the following statement to your mexfunction subroutine to force you to declare all
variables.

implicit none

Explicit type declaration is necessary for 64-bit arrays.

Declare mexfunction Arguments

To declare mxArray variables, use the MATLAB type, mwPointer. Add this code after
the Declarations statement.

C mexFunction arguments:

 mwPointer plhs(*), prhs(*)

 integer nlhs, nrhs

Declare Functions and Local Variables

• Declare the symbolic names and types of MATLAB API functions used in this MEX
file.

C Function declarations:

 mwPointer mxGetPr

 mwPointer mxCreateDoubleMatrix

 integer mxIsNumeric

 mwPointer mxGetM, mxGetN

To determine the type of a function, refer to the MATLAB API function reference
documentation. For example, see the documentation for mxGetPr.

• Declare local variables for the mexfunction arguments.

C Pointers to input/output mxArrays:

 mwPointer x_ptr, y_ptr

• Declare matrix variables.

C Array information:

 mwPointer mrows, ncols

 mwSize size

6 Fortran MEX-Files

6-16

Verify MEX File Input and Output Arguments

Verify the number of MEX file input and output arguments using the nrhs and nlhs
arguments. Add these statements to the mexfunction code block.

C Check for proper number of arguments.

 if(nrhs .ne. 1) then

 call mexErrMsgIdAndTxt ('MATLAB:timestwo:nInput',

 + 'One input required.')

 elseif(nlhs .gt. 1) then

 call mexErrMsgIdAndTxt ('MATLAB:timestwo:nOutput',

 + 'Too many output arguments.')

 endif

Verify the input argument type using the prhs argument.

C Check that the input is a number.

 if(mxIsNumeric(prhs(1)) .eq. 0) then

 call mexErrMsgIdAndTxt ('MATLAB:timestwo:NonNumeric',

 + 'Input must be a number.')

 endif

Create Computational Routine

Add the timestwo code. This subroutine is your computational routine, the source code
that performs the functionality you want to use in MATLAB.

C Computational routine

 subroutine timestwo(y_output, x_input)

 real*8 x_input, y_output

 y_output = 2.0 * x_input

 return

 end

A computational routine is optional. Alternatively, you can place the code within the
mexfunction function block.

Declare Variables for Computational Routine

Put the following variable declarations in mexFunction.

C Arguments for computational routine:

 Create Fortran Source MEX File

6-17

 real*8 x_input, y_output

Read Input Array

To point to the input matrix data, use the mxGetPr function.

x_ptr = mxGetPr(prhs(1))

To create a Fortran array, x_input, use the mxCopyPtrToReal8 function.

C Get the size of the input array.

 mrows = mxGetM(prhs(1))

 ncols = mxGetN(prhs(1))

 size = mrows*ncols

C Create Fortran array from the input argument.

 call mxCopyPtrToReal8(x_ptr,x_input,size)

Prepare Output Data

To create the output argument, plhs(1), use the mxCreateDoubleMatrix function.

C Create matrix for the return argument.

 plhs(1) = mxCreateDoubleMatrix(mrows,ncols,0)

Use the mxGetPr function to assign the y_ptr argument to plhs(1).

 y_ptr = mxGetPr(plhs(1))

Perform Calculation

Pass the arguments to timestwo.

C Call the computational subroutine.

 call timestwo(y_output, x_input)

Copy Results to Output Argument

C Load the data into y_ptr, which is the output to MATLAB.

 call mxCopyReal8ToPtr(y_output,y_ptr,size)

View Complete Source File

Compare your source file with timestwo.F, located in the matlabroot/extern/
examples/refbook folder. Open the file in the editor.

6 Fortran MEX-Files

6-18

Build Binary MEX File

At the MATLAB command prompt, build the binary MEX file.

mex timestwo.F

Test the MEX File

x = 99;

y = timestwo(x)

y =

 198

See Also
mexfunction | mwPointer | mwSize | mxCreateDoubleMatrix | mxGetM | mxGetN
| mxGetPr | mxIsNumeric

Related Examples
• timestwo.F

 Set Up Fortran Examples

6-19

Set Up Fortran Examples

The “Fortran Matrix Library API” provides a set of Fortran routines that handle the
types supported by MATLAB. For each data type, there is a specific set of functions that
you can use for data manipulation.

Source code for Fortran examples is located in the matlabroot/extern/examples/
refbook folder of your MATLAB installation. To build an example, first copy the file to a
writable folder, such as c:\work, on your path:

copyfile(fullfile(matlabroot,'extern','examples','refbook','filename.F'),'.','f')

where filename is the name of the example.

Make sure that you have a Fortran compiler installed. Then, at the MATLAB command
prompt, type:

mex filename.F

where filename is the name of the example.

This section looks at source code for the examples. Unless otherwise specified, the term
”MEX file” refers to a source file.

For a list of MEX example files available with MATLAB, see “Table of MEX File Source
Code Files” on page 5-24.

6 Fortran MEX-Files

6-20

Pass Scalar Values

Here is a Fortran computational routine that takes a scalar and doubles it.

 subroutine timestwo(y, x)

 real*8 x, y

C

 y = 2.0 * x

 return

 end

To see the same function written in the MEX file format (timestwo.F), open the file in
MATLAB Editor.

To build this example, at the command prompt type:

mex timestwo.F

This command creates the binary MEX file called timestwo with an extension
corresponding to the machine type on which you are running. You can now call
timestwo like a MATLAB function:

x = 2;

y = timestwo(x)

y =

 4

 Pass Strings

6-21

Pass Strings

Passing strings from MATLAB to a Fortran MEX file is straightforward. The program
revord.F accepts a string and returns the characters in reverse order. To see the
example revord.F, open the file in MATLAB Editor.

After checking for the correct number of inputs, the gateway routine mexFunction
verifies that the input was a row vector string. It then finds the size of the string and
places the string into a Fortran character array. For character strings, it is not necessary
to copy the data into a Fortran character array using mxCopyPtrToCharacter.
(mxCopyPtrToCharacter is a convenience function for working with MAT-files.)

To build this example, at the command prompt type:

mex revord.F

Type:

x = 'hello world';

y = revord(x)

y =

dlrow olleh

6 Fortran MEX-Files

6-22

Pass Arrays of Strings

Passing arrays of strings adds a complication to the example “Pass Strings” on page 6-21.
Because MATLAB stores elements of a matrix by column instead of by row, the size of
the string array must be correctly defined in the Fortran MEX file. The key point is that
the row and column sizes as defined in MATLAB must be reversed in the Fortran MEX
file. So, when returning to MATLAB, the output matrix must be transposed.

This example places a string array/character matrix into MATLAB as output arguments
rather than placing it directly into the workspace.

To build this example, at the command prompt type:

mex passstr.F

Type:

passstr

to create the 5-by-15 mystring matrix. You need to do some further manipulation.
The original string matrix is 5-by-15. Because of the way MATLAB reads and orients
elements in matrices, the size of the matrix must be defined as M=15 and N=5 in the MEX
file. After the matrix is put into MATLAB, the matrix must be transposed. The program
passstr.F illustrates how to pass a character matrix. To see the code passstr.F, open
the file in MATLAB Editor.

Type:

passstr

ans =

MATLAB

The Scientific

Computing

Environment

 by TMW, Inc.

 Pass Matrices

6-23

Pass Matrices

In MATLAB, you can pass matrices into and out of MEX files written in Fortran. You can
manipulate the MATLAB arrays by using mxGetPr and mxGetPi to assign pointers to
the real and imaginary parts of the data stored in the MATLAB arrays. You can create
new MATLAB arrays from within your MEX file by using mxCreateDoubleMatrix.

The example matsq.F takes a real 2-by-3 matrix and squares each element. To see the
source code, open the file in MATLAB Editor.

After performing error checking to ensure that the correct number of inputs and outputs
was assigned to the gateway subroutine and to verify the input was in fact a numeric
matrix, matsq.F creates a matrix. The matrix is copied to a Fortran matrix using
mxCopyPtrToReal8. Now the computational subroutine can be called, and the return
argument is placed into y_pr, the pointer to the output, using mxCopyReal8ToPtr.

To build this example, at the command prompt type:

mex matsq.F

For a 2-by-3 real matrix, type:

x = [1 2 3; 4 5 6];

y = matsq(x)

y =

 1 4 9

 16 25 36

See Also
mxCreateDoubleMatrix | mxGetPi | mxGetPr

6 Fortran MEX-Files

6-24

Pass Integers

The example matsqint8.F accepts a matrix of MATLAB type int8 and squares each
element. To see the source code, open the file in MATLAB Editor. Data of type int8, a
signed 8-bit integer, is equivalent to Fortran type integer*1, a signed 1-byte integer. To
copy values between MATLAB and Fortran arrays, use the mxCopyPtrToInteger1 and
mxCopyInteger1ToPtr functions.

To build this example, at the command prompt type:

mex matsqint8.F

Type:

B = int8([1 2; 3 4; -5 -6]);

y = matsqint8(B)

y =

 1 4

 9 16

 25 36

For information about using other integer data types, consult your Fortran compiler
manual.

See Also
mxCopyInteger1ToPtr | mxCopyPtrToInteger1

 Pass Multiple Inputs or Outputs

6-25

Pass Multiple Inputs or Outputs

The plhs and prhs parameters (see “Components of Fortran MEX File” on page 6-2) are
vectors containing pointers to the left side (output) variables and right-hand side (input)
variables. plhs(1) contains a pointer to the first left side argument, plhs(2) contains a
pointer to the second left side argument, and so on. Likewise, prhs(1) contains a pointer
to the first right-hand side argument, prhs(2) points to the second, and so on.

The example xtimesy.F multiplies an input scalar times an input scalar or matrix. To
see the source code, open the file in MATLAB Editor.

As this example shows, creating MEX file gateways that handle multiple inputs and
outputs is straightforward. Keep track of which indices of the vectors prhs and plhs
correspond to which input and output arguments of your function. In this example, the
input variable x corresponds to prhs(1) and the input variable y to prhs(2).

To build this example, at the command prompt type:

mex xtimesy.F

For an input scalar x and a real 3-by-3 matrix, type:

x = 3;

y = ones(3);

z = xtimesy(x, y)

z =

 3 3 3

 3 3 3

 3 3 3

6 Fortran MEX-Files

6-26

Handle Complex Data

MATLAB stores complex double-precision data as two vectors of numbers—one vector
contains the real data and the other contains the imaginary data. The functions
mxCopyPtrToComplex16 and mxCopyComplex16ToPtr copy MATLAB data to a native
complex*16 Fortran array.

The example convec.F takes two complex vectors (of length 3) and convolves them. To
see the source code, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex convec.F

Enter the following at the command prompt:

x = [3 - 1i, 4 + 2i, 7 - 3i];

y = [8 - 6i, 12 + 16i, 40 - 42i];

Type:

z = convec(x, y)

z =

 1.0e+02 *

 Columns 1 through 4

 0.1800 - 0.2600i 0.9600 + 0.2800i 1.3200 - 1.4400i

 3.7600 - 0.1200i

 Column 5

 1.5400 - 4.1400i

which agrees with the results the built-in MATLAB function conv.m produces.

 Dynamically Allocate Memory

6-27

Dynamically Allocate Memory

To allocate memory dynamically in a Fortran MEX file, use %val. (See “Using the
Fortran %val Construct” on page 6-6.) The example dblmat.F takes an input matrix
of real data and doubles each of its elements. To see the source code, open the file in
MATLAB Editor. compute.F is the subroutine dblmat calls to double the input matrix.
(Open the file in MATLAB Editor.)

To build this example, at the command prompt type:

mex dblmat.F compute.F

For the 2-by-3 matrix, type:

x = [1 2 3; 4 5 6];

y = dblmat(x)

y =

 2 4 6

 8 10 12

Note: The dblmat.F example, as well as fulltosparse.F and sincall.F, are split
into two parts, the gateway and the computational subroutine, because of restrictions in
some compilers.

6 Fortran MEX-Files

6-28

Handle Sparse Matrices

MATLAB provides a set of functions that allow you to create and manipulate sparse
matrices. There are special parameters associated with sparse matrices, namely ir, jc,
and nzmax. For information on how to use these parameters and how MATLAB stores
sparse matrices in general, see “Sparse Matrices” on page 4-11.

Note: Sparse array indexing is zero-based, not one-based.

The fulltosparse.F example illustrates how to populate a sparse matrix. To see
the source code, open the file in MATLAB Editor. loadsparse.F is the subroutine
fulltosparse calls to fill the mxArray with the sparse data. (Open the file in MATLAB
Editor.)

To build this example, at the command prompt type:

mex fulltosparse.F loadsparse.F

At the command prompt, type:

full = eye(5)

full =

 1 0 0 0 0

 0 1 0 0 0

 0 0 1 0 0

 0 0 0 1 0

 0 0 0 0 1

MATLAB creates a full, 5-by-5 identity matrix. Using fulltosparse on the full matrix
produces the corresponding sparse matrix:

spar = fulltosparse(full)

spar =

 (1,1) 1

 (2,2) 1

 (3,3) 1

 (4,4) 1

 (5,5) 1

 Call MATLAB Functions from Fortran MEX Files

6-29

Call MATLAB Functions from Fortran MEX Files

You can call MATLAB functions, operators, user-defined functions, and other
binary MEX files from within your Fortran source code by using the API function
mexCallMATLAB. The sincall.F example creates an mxArray, passes various pointers
to a local function to acquire data, and calls mexCallMATLAB to calculate the sine
function and plot the results. To see the source code, open the file in MATLAB Editor.
fill.F is the subroutine sincall calls to fill the mxArray with data. (Open the file in
MATLAB Editor.)

It is possible to use mexCallMATLAB (or any other API routine) from within your
computational Fortran subroutine. You can only call most MATLAB functions with
double-precision data. Some functions that perform computations, such as eig, do not
work correctly with data that is not double precision.

To build this example, at the command prompt type:

mex sincall.F fill.F

Running this example:

sincall

displays the results:

6 Fortran MEX-Files

6-30

Note: You can generate an object of type mxUNKNOWN_CLASS using mexCallMATLAB. See
the following example.

This function returns two variables but only assigns one of them a value:

function [a,b]=foo[c]

a=2*c;

If you then call foo using mexCallMATLAB, the unassigned output variable is now of
type mxUNKNOWN_CLASS.

 Debug Fortran Source MEX-Files

6-31

Debug Fortran Source MEX-Files

In this section...

“Notes on Debugging” on page 6-31
“Debugging on Microsoft Windows Platforms” on page 6-31
“Debugging on Linux Platforms” on page 6-31

Notes on Debugging

The examples show how to debug timestwo.F, found in your matlabroot/extern/
examples/refbook folder.

Binary MEX files built with the -g option do not execute on other computers because
they rely on files that are not distributed with MATLAB software. For more information
on isolating problems with MEX files, see “Troubleshoot MEX Files”.

Debugging on Microsoft Windows Platforms

For MEX files compiled with any version of the Intel® Visual Fortran compiler, you
can use the debugging tools found in your version of Microsoft Visual Studio. Refer to
the “Creating C/C++ Language MEX Files” topic “Debugging on Microsoft Windows
Platforms” on page 5-52 for instructions on using this debugger.

Debugging on Linux Platforms

The MATLAB supported Fortran compiler g95 has a -g option for building binary MEX
files with debug information. Such files can be used with gdb, the GNU Debugger. This
section describes using gdb.

GNU Debugger gdb

In this example, the MATLAB command prompt >> is shown in front of MATLAB
commands, and linux> represents a Linux prompt; your system might show a different
prompt. The debugger prompt is <gdb>.

1 To compile the source MEX file, type:

6 Fortran MEX-Files

6-32

linux> mex -g timestwo.F

2 At the Linux prompt, start the gdb debugger using the matlab -D option:

linux> matlab -Dgdb

3 Start MATLAB without the Java Virtual Machine (JVM) by using the -nojvm
startup flag:

<gdb> run -nojvm

4 In MATLAB, enable debugging with the dbmex function and run your binary MEX
file:

>> dbmex on

>> y = timestwo(4)

5 You are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

Note: The compiler might alter the function name. For example, it might append
an underscore. To determine how this symbol appears in a given MEX file, use the
Linux command nm. For example:

linux> nm timestwo.mexa64 | grep -i mexfunction

The operating system responds with something like:

0000091c T mexfunction_

Use mexFunction in the breakpoint statement. Be sure to use the correct case.

<gdb> break mexfunction_

<gdb> continue

6 Once you hit one of your breakpoints, you can make full use of any commands the
debugger provides to examine variables, display memory, or inspect registers.

To proceed from a breakpoint, type continue:

<gdb> continue

 Debug Fortran Source MEX-Files

6-33

7 After stopping at the last breakpoint, type:

<gdb> continue

timestwo finishes and MATLAB displays:

y =

 8

8 From the MATLAB prompt you can return control to the debugger by typing:

>> dbmex stop

Or, if you are finished running MATLAB, type:

>> quit

9 When you are finished with the debugger, type:

<gdb> quit

You return to the Linux prompt.

Refer to the documentation provided with your debugger for more information on its use.

More About
• “Fortran Source Files”

6 Fortran MEX-Files

6-34

Handling Large mxArrays

In this section...

“Using the 64-Bit API” on page 6-34
“Building the Binary MEX File” on page 6-36
“Caution Using Negative Values” on page 6-36
“Building Cross-Platform Applications” on page 6-36

Binary MEX-files built on 64-bit platforms can handle 64-bit mxArrays. These large
data arrays can have up to 248–1 elements. The maximum number of elements a sparse
mxArray can have is 248-2.

Using the following instructions creates platform-independent binary MEX-files as well.

Your system configuration can affect the performance of MATLAB. The 64-bit processor
requirement enables you to create the mxArray and access data in it. However, the
system memory, in particular the size of RAM and virtual memory, determine the speed
at which MATLAB processes the mxArray. The more memory available, the faster the
processing.

The amount of RAM also limits the amount of data you can process at one time in
MATLAB. For guidance on memory issues, see “Strategies for Efficient Use of Memory”.
Memory management within source MEX-files can have special considerations, as
described in “Memory Management” on page 5-65.

Using the 64-Bit API

The signatures of the API functions shown in the following table use the mwSize or
mwIndex types to work with a 64-bit mxArray. The variables you use in your source code
to call these functions must be the correct type.

mxArray Functions Using mwSize/mwIndex

mxCalcSingleSubscript mxCreateSparseLogicalMatrix 2

mxCalloc mxCreateStructArray

mxCopyCharacterToPtr1 mxCreateStructMatrix

 Handling Large mxArrays

6-35

mxCopyComplex16ToPtr1 mxGetCell

mxCopyComplex8ToPtr1 mxGetDimensions

mxCopyInteger1ToPtr1 mxGetElementSize

mxCopyInteger2ToPtr1 mxGetField

mxCopyInteger4ToPtr1 mxGetFieldByNumber

mxCopyPtrToCharacter1 mxGetIr

mxCopyPtrToComplex161 mxGetJc

mxCopyPtrToComplex81 mxGetM

mxCopyPtrToInteger11 mxGetN

mxCopyPtrToInteger21 mxGetNumberOfDimensions

mxCopyPtrToInteger41 mxGetNumberOfElements

mxCopyPtrToPtrArray1 mxGetNzmax

mxCopyPtrToReal41 mxGetProperty

mxCopyPtrToReal81 mxGetString

mxCopyReal4ToPtr1 mxMalloc

mxCopyReal8ToPtr1 mxRealloc

mxCreateCellArray mxSetCell

mxCreateCellMatrix mxSetDimensions

mxCreateCharArray mxSetField

mxCreateCharMatrixFromStrings mxSetFieldByNumber

mxCreateDoubleMatrix mxSetIr

mxCreateLogicalArray2 mxSetJc

mxCreateLogicalMatrix2 mxSetM

mxCreateNumericArray mxSetN

mxCreateNumericMatrix mxSetNzmax

mxCreateSparse mxSetProperty

1Fortran function only.

6 Fortran MEX-Files

6-36

2C function only.

Functions in this API use the mwIndex, mwSize, and mwPointer preprocessor macros.

Building the Binary MEX File

Use the mex build script option -largeArrayDims with the 64-bit API.

Caution Using Negative Values

When using the 64-bit API, mwSize and mwIndex are equivalent to INTEGER*8 in
Fortran. This type is unsigned, unlike INTEGER*4, which is the type used in the 32-
bit API. Be careful not to pass any negative values to functions that take mwSize or
mwIndex arguments. Do not cast negative INTEGER*4 values to mwSize or mwIndex; the
returned value cannot be predicted. Instead, change your code to avoid using negative
values.

Building Cross-Platform Applications

If you develop cross-platform applications (programs that can run on both 32- and 64-
bit architectures), pay attention to the upper limit of values you use for mwSize and
mwIndex. The 32-bit application reads these values and assigns them to variables
declared as INTEGER*4 in Fortran. Be careful to avoid assigning a large mwSize or
mwIndex value to an INTEGER*4 or other variable that might be too small.

 Memory Management

6-37

Memory Management

When a MEX file returns control to MATLAB, it returns the results of its computations
in the output arguments—the mxArrays contained in the left-side arguments plhs[].
These arrays must have a temporary scope, so do not pass arrays created with the
mexMakeArrayPersistent function in plhs. MATLAB destroys any mxArray created
by the MEX file that is not in plhs. MATLAB also frees any memory that was allocated
in the MEX file using the mxCalloc, mxMalloc, or mxRealloc functions.

Any misconstructed arrays left over at the end of a binary MEX file execution have the
potential to cause memory errors.

MathWorks recommends that MEX-file functions destroy their own temporary arrays
and free their own dynamically allocated memory. It is more efficient to perform
this cleanup in the source MEX-file than to rely on the automatic mechanism. For
more information on memory management techniques, see the sections “Memory
Management” on page 5-65 in Creating C/C++ Language MEX Files and “Memory
Management Issues” on page 4-67.

6 Fortran MEX-Files

6-38

MATLAB Supports Fortran 77

MATLAB supports MEX files written in Fortran 77. When troubleshooting MEX files
written in other versions of Fortran, refer to the Fortran Language Reference Manual,
http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/ docs/lrm/dflrm.htm.
This manual describes features for different versions of Fortran.

For example, the length of the following statement is less than 72 characters.

mwPointer mxGetN, mxSetM, mxSetN, mxCreateStructMatrix, mxGetM

However, when MATLAB expands the preprocessor macro, mwPointer, the length of the
statement exceeds the limit supported by Fortran 77.

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/docs/lrm/dflrm.htm

7

Calling MATLAB Engine from C/C++
and Fortran Programs

• “Introducing MATLAB Engine API for C/C++ and Fortran” on page 7-2
• “Callbacks in Applications” on page 7-4
• “Call MATLAB Functions from C/C++ Applications” on page 7-5
• “Call MATLAB Functions from Fortran Applications” on page 7-7
• “Attach to Existing MATLAB Sessions” on page 7-9
• “Build Windows Engine Application” on page 7-11
• “Run Windows Engine Application” on page 7-13
• “Set Run-Time Library Path on Windows Systems” on page 7-14
• “Register MATLAB as a COM Server” on page 7-16
• “Build Linux Engine Application” on page 7-17
• “Run Linux Engine Application” on page 7-18
• “Set Run-Time Library Path on Mac and Linux Systems” on page 7-19
• “Build Engine Applications with IDE” on page 7-21
• “Can't Start MATLAB Engine” on page 7-24
• “Debug MATLAB Functions Used in Engine Applications” on page 7-25
• “Multithreaded Applications” on page 7-26
• “User Input Not Supported” on page 7-27
• “Getting Started” on page 7-28

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-2

Introducing MATLAB Engine API for C/C++ and Fortran

The MATLAB C/C++ and Fortran engine library contains routines that allow you to call
MATLAB from your own programs, using MATLAB as a computation engine. Using the
MATLAB engine requires an installed version of MATLAB; you cannot run the MATLAB
engine on a machine that only has the MATLAB Runtime.

Engine programs are standalone programs. These programs communicate with a
separate MATLAB process via pipes, on UNIX systems, and through a Microsoft
Component Object Model (COM) interface, on Microsoft Windows systems. MATLAB
provides a library of functions that allows you to start and end the MATLAB process,
send data to and from MATLAB, and send commands to be processed in MATLAB.

Some of the things you can do with the MATLAB engine are:

• Call a math routine, for example, to invert an array or to compute an FFT from
your own program. When employed in this manner, MATLAB is a powerful and
programmable mathematical subroutine library.

• Build an entire system for a specific task. For example, the front end (user interface)
is programmed in C/C++ and the back end (analysis) is programmed in MATLAB.

The MATLAB engine operates by running in the background as a separate process from
your own program. Some advantages are:

• On UNIX systems, the engine can run on your machine, or on any other UNIX
machine on your network, including machines of a different architecture. This
configuration allows you to implement a user interface on your workstation and
perform the computations on a faster machine located elsewhere on your network. For
more information, see the engOpen reference page.

• Instead of requiring your program to link to the entire MATLAB program (a
substantial amount of code), it links to a smaller engine library.

The MATLAB engine cannot read MAT-files in a format based on HDF5. These MAT-
files save data using the -v7.3 option of the save function or are opened using the w7.3
mode argument to the C or Fortran matOpen function.

Note: To run MATLAB engine on the UNIX platform, you must have the C shell csh
installed at /bin/csh.

 Introducing MATLAB Engine API for C/C++ and Fortran

7-3

Communicating with MATLAB Software

On UNIX systems, the engine library communicates with the engine using pipes, and,
if needed, rsh for remote execution. On Microsoft Windows systems, the engine library
communicates with the engine using a Component Object Model (COM) interface.

More About
• “MATLAB COM Integration” on page 11-2
• “MATLAB Engine for Python”

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-4

Callbacks in Applications

If you have a user interface that executes many callbacks through the MATLAB engine,
force these callbacks to be evaluated in the context of the base workspace. Use evalin to
specify the base workspace for evaluating the callback expression. For example:

engEvalString(ep, "evalin('base', expression)")

Specifying the base workspace ensures MATLAB processes the callback correctly and
returns results for that call.

This advice does not apply to computational applications that do not execute callbacks.

See Also
engEvalString | evalin

 Call MATLAB Functions from C/C++ Applications

7-5

Call MATLAB Functions from C/C++ Applications

The program engdemo.c, in the matlabroot/extern/examples/eng_mat folder,
illustrates how to call the engine functions from a standalone C program. For the
Microsoft Windows version of this program, see engwindemo.c.

To see engdemo.c, open this file in MATLAB Editor.

To see the Windows version engwindemo.c, open this file.

There is a C++ version of engdemo in the matlabroot\extern\examples\eng_mat
folder. To see engdemo.cpp, open this file.

The first part of this program starts MATLAB and sends it data. MATLAB analyzes the
data and plots the results.

The program continues with:

Press Return to continue

Pressing Return continues the program:

Done for Part I.

Enter a MATLAB command to evaluate. This command should

create a variable X. This program will then determine

what kind of variable you created.

For example: X = 1:5

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-6

Entering X = 17.5 continues the program execution.

X = 17.5

X =

 17.5000

Retrieving X...

X is class double

Done!

Finally, the program frees memory, closes the MATLAB engine, and exits.

Related Examples
• “Build Windows Engine Application” on page 7-11
• “Build Linux Engine Application” on page 7-17

More About
• “Build Engine Applications with IDE” on page 7-21

 Call MATLAB Functions from Fortran Applications

7-7

Call MATLAB Functions from Fortran Applications

The program fengdemo.F, in the matlabroot/extern/examples/eng_mat folder,
illustrates how to call the engine functions from a standalone Fortran program. To see
the code, open this file.

Executing this program starts MATLAB, sends it data, and plots the results.

The program continues with:

Type 0 <return> to Exit

Type 1 <return> to continue

Entering 1 at the prompt continues the program execution:

1

 MATLAB computed the following distances:

 time(s) distance(m)

 1.00 -4.90

 2.00 -19.6

 3.00 -44.1

 4.00 -78.4

 5.00 -123.

 6.00 -176.

 7.00 -240.

 8.00 -314.

 9.00 -397.

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-8

 10.0 -490.

Finally, the program frees memory, closes the MATLAB engine, and exits.

 Attach to Existing MATLAB Sessions

7-9

Attach to Existing MATLAB Sessions

This example shows how to attach an engine program to a MATLAB session that is
already running.

On a Windows platform, start MATLAB with -automation in the command line. When
you call engOpen, it connects to this existing session. You should only call engOpen once,
because any engOpen calls now connect to this one MATLAB session.

The -automation option also causes the command window to be minimized. You must
open it manually.

On the Mac and Linux platforms, you cannot make an engine program connect to an
existing MATLAB session.

Shut down any MATLAB sessions.

From the Start button on the Windows menu bar, click Run.

In MATLAB, capture the value returned by the command:

path = fullfile(matlabroot,'bin',computer('arch'))

In the Run dialog box Open field, type the following command, replacing path with the
value from the previous step:

path\matlab.exe -automation

Click OK. This starts MATLAB.

In MATLAB, copy the engwindemo.c example to a writable folder.

copyfile(fullfile(matlabroot,'extern','examples','eng_mat','engwindemo.c'),'.', 'f')

Build the example.

mex -client engine engwindemo.c

Run the engwindemo program by typing at the MATLAB prompt:

!engwindemo

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-10

This does not start another MATLAB session, but rather uses the MATLAB session that
is already open.

More About
• “Launch MATLAB as Automation Server in Desktop Mode” on page 13-16
• “MATLAB COM Integration” on page 11-2

 Build Windows Engine Application

7-11

Build Windows Engine Application

This example shows how to verify the build process on Windows platforms using the C
example, engwindemo.c.

Start MATLAB as a user with administrator privileges. Based on your User Account
Control (UAC) settings, you might need to right-click the MATLAB icon and select Run
as administrator. If that option is not available, contact your system administrator.

Register MATLAB as a COM server.

!matlab -regserver

MATLAB displays a second, minimized command window. Close that window.

Verify your current folder is writable and copy the example.

copyfile(fullfile(matlabroot,'extern','examples','eng_mat','engwindemo.c'),'.','f')

Build the application.

mex -v -client engine engwindemo.c

Build Standalone Application with MinGW Compiler

If you have installed one of the professional editions of the Microsoft Visual Studio
compiler and want to build with the MinGW compiler, use the following command to
override the default Microsoft compiler.

mex -v -client engine -f matlabroot\bin\win64\mexopts\mingw64.xml engwindemo.c

If the only compiler on your system is the MinGW compiler, your build command is:

mex -v -client engine engwindemo.c

See Also
mex

Related Examples
• “Call MATLAB Functions from C/C++ Applications” on page 7-5
• “Run Windows Engine Application” on page 7-13

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-12

More About
• “Register MATLAB as a COM Server” on page 7-16

 Run Windows Engine Application

7-13

Run Windows Engine Application

This example shows how to run the C example, engwindemo.c, from the Windows
system prompt. You need to know the value of matlabroot (the folder where MATLAB
is installed) and the value returned by the MATLAB computer('arch') command
(arch).

Set the run-time library path by modifying the system PATH variable.

set PATH=matlabroot\bin\arch;%PATH%

Make sure that you include the ; path terminator character.

Run the example. The engwindemo application must be on your system path.

engwindemo

MATLAB Starts and displays the results.

Click Ok in the MATLAB whos window to close the application.

See Also
computer | matlabroot

Related Examples
• “Build Windows Engine Application” on page 7-11
• “Call MATLAB Functions from C/C++ Applications” on page 7-5

More About
• “Set Run-Time Library Path on Windows Systems” on page 7-14

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-14

Set Run-Time Library Path on Windows Systems

In this section...

“Change Path Each Time You Run the Application” on page 7-14
“Permanently Change Path” on page 7-14
“Troubleshooting” on page 7-15

At run time, tell the operating system where the API shared libraries reside by setting
the Path environment variable. Set the value to the path string returned by the
following MATLAB command:

res = fullfile(matlabroot,'bin',computer('arch'))

Change Path Each Time You Run the Application

To set the run-time library path from the Windows command prompt, type the following
command, where res is the string returned from the fullfile command. Set the path
every time you open the Windows Command Processor.

set PATH=res;%PATH%

You must set the path each time that you open the Windows prompt.

Permanently Change Path

To set the run-time library path permanently to res, modify the Path variable using the
Control Panel. For the setting to take effect, close the command prompt window, then
open a new command prompt window.

To remove the run-time library path, follow the same instructions, deleting the path
name from the variable.

Windows 7

• Select Computer from the Start menu.
• Choose System properties from the context menu.
• Click Advanced system settings > Advanced tab.
• Click Environment Variables.

 Set Run-Time Library Path on Windows Systems

7-15

• Under System variables, select Path and click Edit.
• Modify Path by inserting res; at the beginning of the Variable value: text field.
• Click Ok to close the dialog boxes, then close the Control Panel dialog box.

Troubleshooting

If you have multiple versions of MATLAB installed on your system, the version you
use to build your engine applications must be the first listed in your system Path
environment variable. Otherwise, MATLAB displays Can't start MATLAB engine.

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-16

Register MATLAB as a COM Server

To run the engine application on a Windows operating system, you must register
MATLAB as a COM server. Do this for every session, to ensure that the current version
of MATLAB is the registered version. If you run older versions, the registered version
could change. If there is a mismatch of version numbers, MATLAB displays Can't
start MATLAB engine.

To register MATLAB manually as a server, start MATLAB as a user with administrator
privilege. Then type:

!matlab -regserver

Close the MATLAB window that appears.

 Build Linux Engine Application

7-17

Build Linux Engine Application

This example shows how to verify the build process on a Linux platform using the C
example, engdemo.c.

Open MATLAB.

Verify your current folder is writable and copy the example.

copyfile(fullfile(matlabroot,'extern','examples','eng_mat','engdemo.c'),'.','f')

Build the application.

mex -v -client engine engdemo.c

See Also
mex

Related Examples
• “Call MATLAB Functions from C/C++ Applications” on page 7-5
• “Run Linux Engine Application” on page 7-18

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-18

Run Linux Engine Application

This example shows how to run the C example, engdemo.c, from the Linux system
prompt. You need to know the value of matlabroot, the folder where MATLAB is
installed.

Set the run-time library path.

setenv LD_LIBRARY_PATH matlabroot/bin/glnxa64:matlabroot/sys/os/glnxa64

This command replaces the value, if any, in LD_LIBRARY_PATH.

Set the path.

setenv PATH matlabroot/bin:$PATH

Make sure that you include the : path terminator character.

Run the example. The engdemo application must be on your system path.

./engdemo

MATLAB starts and displays a figure.

Press Return to close the figure.

Create variable X, for example:

X = 'hello'

MATLAB displays the results and closes.

Related Examples
• “Build Linux Engine Application” on page 7-17
• “Call MATLAB Functions from C/C++ Applications” on page 7-5

More About
• “Set Run-Time Library Path on Mac and Linux Systems” on page 7-19

 Set Run-Time Library Path on Mac and Linux Systems

7-19

Set Run-Time Library Path on Mac and Linux Systems

At run time, tell the operating system where the API shared libraries reside by setting an
environment variable. Set the path every time you run MATLAB. Alternatively, place the
commands in a MATLAB startup script.

The shell command you use and the value you provide to set the run-time library path
depend on your shell and system architecture. The following table lists the name of
the environment variable, envvar, and the value, pathspec, to assign to it. In the
pathspec string, replace matlabroot with the string returned by the matlabroot
command.

Operating System envvar pathspec

64-bit Apple Mac DYLD_LIBRARY_PATH matlabroot/bin/

maci64:matlabroot/sys/os/

maci64

64-bit Linux LD_LIBRARY_PATH matlabroot/bin/

glnxa64:matlabroot/sys/os/

glnxa64

These commands replace the existing value in envvar. If envvar is already defined,
prepend the pathspec to the existing value.

If you have multiple versions of MATLAB installed on your system, the version you
use to build your engine applications must be the first listed in your system Path
environment variable. Otherwise, MATLAB displays Can't start MATLAB engine.

C Shell

Set the library path using the following command, replacing the terms envvar and
pathspec with the appropriate values from the table.

setenv envvar pathspec

For example, for MATLAB R2015a on a Mac system:

setenv DYLD_LIBRARY_PATH /Applications/MATLAB_R2015a.app/bin/maci64:/Applications/MATLAB_R2015a.app/sys/os/maci64

You can place these commands in a startup script, such as ~/.cshrc.

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-20

Bourne Shell

Set the library path using the following command, replacing the terms envvar and
pathspec with the appropriate values from the table.

envvar = pathspec:envvar export envvar

For example, for MATLAB R2015a on a Mac system:
DYLD_LIBRARY_PATH=/Applications/MATLAB_R2015a.app/bin/maci64:/Applications/MATLAB_R2015a.app/sys/os/maci64:$DYLD_LIBRARY_PATH

export DYLD_LIBRARY_PATH

You can place these commands in a startup script such as ~/.profile.

See Also
matlabroot

 Build Engine Applications with IDE

7-21

Build Engine Applications with IDE
In this section...

“Configuring the IDE” on page 7-21
“Engine Include Files” on page 7-21
“Engine Libraries” on page 7-21
“Library Files Required by libeng” on page 7-22

Configuring the IDE

If your integrated development environment (IDE) has a MATLAB-supported compiler,
you can use the IDE to build engine applications. For an up-to-date list of supported
compilers, see the Supported and Compatible Compilers website.

Engine applications require the Engine Library libeng, the Matrix Library libmx,
and supporting include files. When you build using the mex command, MATLAB is
configured to locate these files. When you build in your IDE, you must configure the IDE
to locate them. Where these settings are depends on your IDE. Refer to your product
documentation.

Engine Include Files

Header files contain function declarations with prototypes for the routines you access in
the API libraries. These files are in the matlabroot\extern\include folder and are
the same for Windows, Mac, and Linux systems. Engine applications use:

• engine.h — function prototypes for engine routines.
• matrix.h — definition of the mxArray structure and function prototypes for matrix

access routines.

In your IDE, set the pre-processor include path to the value returned by the following
MATLAB command:

fullfile(matlabroot,'extern','include')

Engine Libraries

You need the libeng and libmx shared libraries. The name of the file is platform-
specific, as shown in the following table.

http://www.mathworks.com/support/compilers/current_release/

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-22

Library File Names by Operating System

Windowsa Linux Mac

libeng.lib libeng.so libeng.dylib

libmx.lib libmx.so libmx.dylib

a. These files are located in the folder
fullfile(matlabroot,'extern','lib',computer('arch'),'microsoft').

Add these library names to your IDE configuration. Set the library path to the value
returned by the following MATLAB command:

fullfile(matlabroot,'bin',computer('arch'))

Refer to your IDE product documentation for instructions.

Library Files Required by libeng

The libeng library requires additional third-party library files. MATLAB uses these
libraries to support Unicode character encoding and data compression in MAT-files.

These library files must reside in the same folder as the libmx library. You can
determine what these libraries are using the platform-specific commands shown in the
following table. Once you identify these files, update your IDE.

Library Dependency Commands

Windows Linux Mac

See the following
instructions for Dependency
Walker

ldd -d libeng.so otool -L libeng.dylib

On Windows systems, to find library dependencies, use the third-party product
Dependency Walker. Dependency Walker is a free utility that scans any 32-bit or 64-bit
Windows module and builds a hierarchical tree diagram of all dependent modules. For
each module found, it lists all the functions exported by that module, and which of those
functions are called by other modules. Download the Dependency Walker utility from the
website http://www.dependencywalker.com/. See http://www.mathworks.com/
matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-

mex-file-or-stand-alone-application-requires for information on using the
Dependency Walker.

http://www.dependencywalker.com/
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires

 Build Engine Applications with IDE

7-23

Drag and drop the libeng.dll file into the Depends window. Identify the dependent
libraries and add them to your IDE configuration.

Related Examples
• “Build Windows Engine Application” on page 7-11
• “Build Linux Engine Application” on page 7-17

External Websites
• How can I compile a MATLAB Engine application using Microsoft Visual Studio 9.0

or 10.0?
• How can I build an Engine application using the Xcode IDE on Mac?

http://www.mathworks.com/matlabcentral/answers/100603-how-can-i-compile-a-matlab-engine-application-using-microsoft-visual-studio-9-0-or-10-0
http://www.mathworks.com/matlabcentral/answers/100603-how-can-i-compile-a-matlab-engine-application-using-microsoft-visual-studio-9-0-or-10-0
http://www.mathworks.com/matlabcentral/answers/91611-how-can-i-build-an-engine-application-using-the-xcode-ide-on-mac

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-24

Can't Start MATLAB Engine

If you have multiple versions of MATLAB installed on your system, the version you
use to build your engine applications must be the first listed in your system Path
environment variable. Otherwise, MATLAB displays Can't start MATLAB engine.

On Windows operating systems, you also must register MATLAB as a COM server. If
you have multiple versions of MATLAB, the version you are using must be the registered
version.

Related Examples
• “Register MATLAB as a COM Server” on page 7-16

 Debug MATLAB Functions Used in Engine Applications

7-25

Debug MATLAB Functions Used in Engine Applications

When creating MATLAB functions for use in engine applications, it is good practice
to debug the functions in MATLAB before calling them through the engine library
functions.

Although you cannot use the MATLAB Editor/Debugger from an engine application, you
can use the MATLAB workspace to examine variables passed to MATLAB. For example,
you have the following MATLAB function:

function y = myfcn(x)

y = x+2;

end

Your engine application calls myfcn with your variable mycmxarray, as shown in the
following code:

engPutVariable(ep, "aVar", mycmxarray);

engEvalString(ep, "result = myfcn(aVar)");

mycmxarrayResult = engGetVariable(ep,"result");

If you do not get the expected result, you can examine two possibilities: if the input,
mycmxarray, is incorrect, or if the MATLAB function is incorrect.

To examine the input to myfcn, first modify the function to save the MATLAB workspace
to the file debugmyfcn.mat.

function y = myfcn(x)

save debugmyfcn.mat

y = x+2;

end

Execute your engine application, then start MATLAB and load debugmyfcn.mat.

load debugmyfcn.mat

whos x

Variable x contains the value from mycmxarray. If x is not what you expect, debug your
engine code. If x is correct, debug the MATLAB function. To debug myfcn, open the
function in the MATLAB Editor/Debugger, and then call the function from the MATLAB
command line:

myfcn(x)

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-26

Multithreaded Applications

MATLAB libraries are not thread-safe. If you create multithreaded applications, make
sure that only one thread accesses the engine application.

 User Input Not Supported

7-27

User Input Not Supported

A MATLAB engine application runs MATLAB as a computational server. MATLAB
functions that interact with the user or disrupt program flow are not supported.
Examples of such functions include debugging commands, input, keyboard, and pause.

7 Calling MATLAB Engine from C/C++ and Fortran Programs

7-28

Getting Started

To build an engine application, you need:

• The ability to write C/C++ or Fortran source code. You can create these files with the
MATLAB Editor.

• A compiler supported by MATLAB. For an up-to-date list of supported compilers, see
the Supported and Compatible Compilers website.

• “C/C++ Matrix Library API” or “Fortran Matrix Library API” functions.
• C and Fortran Engine Library functions.
• The mex build script with the -client engine option.
• To use your own build tools, see “Build Engine Applications with IDE” on page 7-21.

To run the application:

• “Set Run-Time Library Path on Windows Systems” on page 7-14
• “Register MATLAB as a COM Server” on page 7-16
• “Set Run-Time Library Path on Mac and Linux Systems” on page 7-19

http://www.mathworks.com/support/compilers/current_release/

8

MATLAB Engine for Python Topics

• “Get Started with MATLAB Engine for Python” on page 8-2
• “Install MATLAB Engine for Python” on page 8-5
• “Start and Stop MATLAB Engine for Python” on page 8-8
• “Connect Python to Running MATLAB Session” on page 8-10
• “Call MATLAB Functions from Python” on page 8-13
• “Call MATLAB Functions Asynchronously from Python” on page 8-15
• “Call User Script and Function from Python” on page 8-16
• “Redirect Standard Output and Error to Python” on page 8-18
• “Use MATLAB Handle Objects in Python” on page 8-19
• “Use MATLAB Engine Workspace in Python” on page 8-21
• “Pass Data to MATLAB from Python” on page 8-22
• “Handle Data Returned from MATLAB to Python” on page 8-24
• “MATLAB Arrays as Python Variables” on page 8-27
• “Use MATLAB Arrays in Python” on page 8-32
• “Sort and Plot MATLAB Data from Python” on page 8-34
• “Get Help for MATLAB Functions from Python” on page 8-38
• “Default Numeric Types in MATLAB and Python” on page 8-40
• “System Requirements for MATLAB Engine for Python” on page 8-42
• “Limitations to MATLAB Engine for Python” on page 8-44
• “Troubleshoot MATLAB Errors in Python” on page 8-45

8 MATLAB Engine for Python Topics

8-2

Get Started with MATLAB Engine for Python

The MATLAB Engine for Python provides a Python package named matlab that enables
you to call MATLAB functions from Python. You install the package once, and then you
can call the engine in your current or future Python sessions. For help on installing or
starting the engine, refer to:

• “Install MATLAB Engine for Python” on page 8-5
• “Start and Stop MATLAB Engine for Python” on page 8-8

The matlab package contains the following:

• The MATLAB Engine for Python
• A set of MATLAB array classes in Python (see “MATLAB Arrays as Python Variables”

on page 8-27)

The engine provides functions to call MATLAB, and the array classes provide functions
to create MATLAB arrays as Python objects. You can create an engine and call MATLAB
functions with matlab.engine. You can create MATLAB arrays in Python by calling
constructors of an array type (for example, matlab.double to create an array of
doubles). MATLAB arrays can be input arguments to MATLAB functions called with the
engine.

The table shows the structure of the matlab package.

Package Function or Class Description

matlab.engine start_matlab() Python function
to create a
MatlabEngine

object, and attach it
to a new MATLAB
process

matlab.engine MatlabEngine Python class to
provide methods for
calling MATLAB
functions

matlab.engine FutureResult Python class
to hold results
from a MATLAB

 Get Started with MATLAB Engine for Python

8-3

Package Function or Class Description

function called
asynchronously

matlab double Python class to hold
array of MATLAB
type double

matlab single Python class to hold
array of MATLAB
type single

matlab int8 Python class to hold
array of MATLAB
type int8

matlab int16 Python class to hold
array of MATLAB
type int16

matlab int32 Python class to hold
array of MATLAB
type int32

matlab int64 Python class to hold
array of MATLAB
type int64

matlab uint8 Python class to hold
array of MATLAB
type uint8

matlab uint16 Python class to hold
array of MATLAB
type uint16

matlab uint32 Python class to hold
array of MATLAB
type uint32

matlab uint64 Python class to hold
array of MATLAB
type uint64

8 MATLAB Engine for Python Topics

8-4

Package Function or Class Description

matlab logical Python class to hold
array of MATLAB
type logical

matlab object Python class to
hold a handle to a
MATLAB object

 Install MATLAB Engine for Python

8-5

Install MATLAB Engine for Python

To start the MATLAB engine within a Python session, you first must install the
engine as a Python package. The engine supports Python versions 2.7, 3.3, and 3.4,
and MATLAB versions R2014b and later. You can install and run the engine on any
platform that MATLAB supports. You can install the engine in a nondefault folder.
When you have multiple versions of Python on your system, or you install the engine in a
nondefault folder, use an environment variable to specify run-time paths.

Verify Python and MATLAB Installations

First, verify that your system has the correct versions of Python and MATLAB. Then,
find the path to the MATLAB folder. You need the path to the MATLAB folder to install
the MATLAB Engine for Python.

1 Check that Python is installed on your system and that you can run Python at the
operating system prompt.

• To install Python 2.7, 3.3, or 3.4, see “Install Supported Python Implementation”
on page 1-3.

2 Add the folder that contains the Python interpreter to your path, if it is not already
there.

3 Find the path to the MATLAB folder. Start MATLAB and type matlabroot in the
command window. Copy the path returned by matlabroot.

Install Engine

To install the MATLAB Engine for Python, execute the following commands where
matlabroot is the path to the MATLAB folder.

Windows system:

cd "matlabroot\extern\engines\python"

python setup.py install

Mac or Linux system:

cd "matlabroot/extern/engines/python"

python setup.py install

8 MATLAB Engine for Python Topics

8-6

MATLAB provides a standard Python setup.py file for building and installing the
engine using the distutils module. You can use the same setup.py commands to
build and install the engine on Windows, Mac, or Linux systems. For more information,
see Installing Python Modules.

Build Engine in Nondefault Folder

To build the MATLAB Engine for Python in a nondefault folder, execute the following
commands at the operating system prompt. matlabroot is the path to the MATLAB
folder. Build the engine in folder builddir. You can use these commands when you do
not have write permission to build the engine in the MATLAB folder.

cd "matlabroot\extern\engines\python"

python setup.py build --build-base="builddir" install

Install Engine in Nondefault Folder

To install the MATLAB Engine for Python in a nondefault folder, execute the following
commands at the operating system prompt. matlabroot is the path to the MATLAB
folder. Install the engine in folder installdir. You can use these commands when you
do not have write permission to install the engine in the default Python folder.

cd "matlabroot\extern\engines\python"

python setup.py install --prefix="installdir"

You must include installdir in the search path for Python packages. Add
installdir to the PYTHONPATH environment variable.

You also can combine the commands to build and install the engine in nondefault folders.

cd "matlabroot\extern\engines\python"

python setup.py build --build-base="builddir" install --prefix="installdir"

Install Engine in Your Home Folder

To install the MATLAB Engine for Python for your use only, use the --user option to
install to your home folder.

cd "matlabroot\extern\engines\python"

python setup.py install --user

When you install with --user, you do not need to add your home folder to PYTHONPATH.

https://docs.python.org/2/install/index.html

 Install MATLAB Engine for Python

8-7

Set Run-Time Paths To Python Code

You can install the engine, or Python code of your own, in nondefault folders. Add
paths to nondefault folders to the PYTHONPATH environment variable. Python searches
PYTHONPATH for modules to import.

To specify the path to the Python library, or to another library of your own, add the
library path to the appropriate environment variable. This table lists the appropriate
environment variable for each system.

Operating System Environment Variable

Windows PATH

Mac DYLD_LIBRARY_PATH

Linux LD_LIBRARY_PATH

Modify your library path to link to:

• A specific version of the engine shared library, when you have installed multiple
versions of the engine

• A specific version of the Python shared library, if your system has multiple versions of
Python

• A shared library of your own code

More About
• “System Requirements for MATLAB Engine for Python” on page 8-42

8 MATLAB Engine for Python Topics

8-8

Start and Stop MATLAB Engine for Python

In this section...

“Start MATLAB Engine for Python” on page 8-8
“Run Multiple Engines” on page 8-8
“Stop MATLAB Engine” on page 8-8
“Start Engine with Startup Options” on page 8-9

Start MATLAB Engine for Python

• Start Python at the operating system prompt.
• Import the matlab.engine package into your Python session.
• Start a new MATLAB process by calling start_matlab. The start_matlab

function returns a Python object, eng, which allows you to pass data and call
functions executed by MATLAB.

import matlab.engine

eng = matlab.engine.start_matlab()

Run Multiple Engines

Start each engine separately. Each engine starts and communicates with its own
MATLAB process.

eng1 = matlab.engine.start_matlab()

eng2 = matlab.engine.start_matlab()

Stop MATLAB Engine

Call either the exit or the quit function.

eng.quit()

If you exit Python with an engine still running, Python automatically stops the engine
and its MATLAB process.

 Start and Stop MATLAB Engine for Python

8-9

Start Engine with Startup Options

Start the engine and pass the options as an input argument string to
matlab.engine.start_matlab. For example, start MATLAB with the desktop.

eng = matlab.engine.start_matlab("-desktop")

You can define multiple startup options with a single string. For example, start the
desktop and set the numeric display format to short.

eng = matlab.engine.start_matlab("-desktop -r 'format short'")

You also can start the desktop after you start the engine.

import matlab.engine

eng = matlab.engine.start_matlab()

eng.desktop(nargout=0)

More About
• “Startup Options”
• “Commonly Used Startup Options”

8 MATLAB Engine for Python Topics

8-10

Connect Python to Running MATLAB Session

You can connect the MATLAB Engine for Python to a shared MATLAB session that
is already running on your local machine. You also can connect to multiple shared
MATLAB sessions from a single Python session. You can share a MATLAB session at any
time during the session, or at start with a startup option.

Connect to Shared MATLAB Session

First, convert your MATLAB session to a shared session. From MATLAB call
matlab.engine.shareEngine.

matlab.engine.shareEngine

Start Python at the operating system prompt. Call matlab.engine.connect_matlab
from Python to connect to the shared MATLAB session. You can call any MATLAB
function from Python.

import matlab.engine

eng = matlab.engine.connect_matlab()

eng.sqrt(4.0)

2.0

You can connect to a shared session by name. To find the name of a shared session, call
matlab.engine.find_matlab from Python.

matlab.engine.find_matlab()

('MATLAB_13232',)

matlab.engine.find_matlab returns a tuple with the names of all shared MATLAB
sessions on your local machine. In this example matlab.engine.shareEngine gave
the shared session the default name MATLAB_13232, where 13232 is the ID of the
MATLAB process. The operating system gives the MATLAB session a different process
ID whenever you start MATLAB.

Connect to the MATLAB session by name.

eng.quit()

newEngine = matlab.engine.connect_matlab('MATLAB_13232')

 Connect Python to Running MATLAB Session

8-11

If you do not specify the name of a shared session, matlab.engine.connect_matlab
connects to the first session named in the tuple returned by
matlab.engine.find_matlab.

Connect to Multiple Shared MATLAB Sessions

You can connect to multiple shared MATLAB sessions from Python.

Start a second MATLAB session. From MATLAB call matlab.engine.shareEngine.
Give a name to the second shared session. The name must be a valid MATLAB variable
name. For information on valid variable names, see “Variable Names”.

matlab.engine.shareEngine('MATLABEngine2')

From Python find all shared MATLAB sessions.

import matlab.engine

matlab.engine.find_matlab()

('MATLAB_13232','MATLABEngine2')

Call matlab.engine.connect_matlab from Python to connect to the shared MATLAB
sessions.

eng1 = matlab.engine.connect_matlab('MATLAB_13232')

eng2 = matlab.engine.connect_matlab('MATLABEngine2')

Start Shared MATLAB Sessions with Startup Options

By default MATLAB sessions are not shared. However, you can start MATLAB as a
shared session with a startup option.

Start shared MATLAB sessions at the operating system prompt.

matlab -r "matlab.engine.shareEngine"

matlab -r "matlab.engine.shareEngine('MATLABEngine3')"

You can start a session with a default name, or give a name enclosed in single quotes.

See Also
matlab.engine.connect_matlab | matlab.engine.engineName |
matlab.engine.find_matlab | matlab.engine.isEngineShared |
matlab.engine.shareEngine

8 MATLAB Engine for Python Topics

8-12

More About
• “Startup Options”
• “Commonly Used Startup Options”

 Call MATLAB Functions from Python

8-13

Call MATLAB Functions from Python

In this section...

“Return Output Argument from MATLAB Function” on page 8-13
“Return Multiple Output Arguments from MATLAB Function” on page 8-13
“Return No Output Arguments from MATLAB Function” on page 8-13
“Stop Execution of Function” on page 8-14

Return Output Argument from MATLAB Function

You can call any MATLAB function directly and return the results to Python. For
example, to determine if a number is prime, use the engine to call the isprime function.

import matlab.engine

eng = matlab.engine.start_matlab()

tf = eng.isprime(37)

print(tf)

True

Return Multiple Output Arguments from MATLAB Function

When you call a function with the engine, by default the engine returns a single output
argument. If you know that the function can return multiple arguments, use the
nargout argument to specify the number of output arguments.

To determine the greatest common denominator of two numbers, use the gcd function.
Set nargout to return the three output arguments from gcd.

import matlab.engine

eng = matlab.engine.start_matlab()

t = eng.gcd(100.0,80.0,nargout=3)

print(t)

(20.0, 1.0, -1.0)

Return No Output Arguments from MATLAB Function

Some MATLAB functions return no output arguments. If the function returns no
arguments, set nargout to 0.

8 MATLAB Engine for Python Topics

8-14

Open the MATLAB Help browser from Python.

import matlab.engine

eng = matlab.engine.start_matlab()

eng.doc(nargout=0)

The MATLAB doc function opens the browser, but does not return output arguments. If
you do not specify nargout=0, the engine raises an error.

Stop Execution of Function

To stop execution of a MATLAB function press Ctrl+C. Control returns to Python.

See Also
matlab.engine.MatlabEngine | matlab.engine.FutureResult

Related Examples
• “Call MATLAB Functions Asynchronously from Python” on page 8-15
• “Call User Script and Function from Python” on page 8-16
• “Use MATLAB Arrays in Python” on page 8-32
• “Sort and Plot MATLAB Data from Python” on page 8-34

 Call MATLAB Functions Asynchronously from Python

8-15

Call MATLAB Functions Asynchronously from Python

This example shows how to call the MATLAB sqrt function asynchronously from Python
and retrieve the square root later.

The engine calls MATLAB functions synchronously by default. Control returns to
Python only when the MATLAB function finishes. But the engine also can call functions
asynchronously. Control immediately returns to Python while MATLAB is still executing
the function. The engine stores the result in a Python variable that can be inspected after
the function finishes.

Use the async argument to call a MATLAB function asynchronously.

import matlab.engine

eng = matlab.engine.start_matlab()

future = eng.sqrt(4.0,async=True)

ret = future.result()

print(ret)

2.0

Use the done method to check if an asynchronous call finished.

tf = future.done()

print(tf)

True

To stop execution of the function before it finishes, call future.cancel().

See Also
matlab.engine.MatlabEngine | matlab.engine.FutureResult

Related Examples
• “Call MATLAB Functions from Python” on page 8-13
• “Call User Script and Function from Python” on page 8-16

8 MATLAB Engine for Python Topics

8-16

Call User Script and Function from Python

This example shows how to call a MATLAB script to compute the area of a triangle from
Python.

In your current folder, create a MATLAB script in a file named triarea.m.

b = 5;

h = 3;

a = 0.5*(b.* h)

After you save the file, start Python and call the script.

import matlab.engine

eng = matlab.engine.start_matlab()

eng.triarea(nargout=0)

a =

 7.5000

Specify nargout=0. Although the script prints output, it returns no output arguments to
Python.

Convert the script to a function and call the function from the engine. Open the MATLAB
editor to edit the file.

eng.edit('triarea',nargout=0)

Delete the three statements. Then add a function declaration and save the file.

function a = triarea(b,h)

a = 0.5*(b.* h);

Call the new triarea function from the engine.

ret = eng.triarea(1.0,5.0)

print(ret)

2.5

The triarea function returns only one output argument, so there is no need to specify
nargout.

 Call User Script and Function from Python

8-17

See Also
matlab.engine.MatlabEngine | matlab.engine.FutureResult

Related Examples
• “Call MATLAB Functions from Python” on page 8-13

8 MATLAB Engine for Python Topics

8-18

Redirect Standard Output and Error to Python

This example shows how to redirect standard output and standard error from a MATLAB
function to Python StringIO objects.

In Python 2.7, use the StringIO module to create StringIO objects. Specify stdout
and stderr to capture a warning message from dec2hex.

import matlab.engine

eng = matlab.engine.start_matlab()

import StringIO

out = StringIO.StringIO()

err = StringIO.StringIO()

ret = eng.dec2hex(2**60,stdout=out,stderr=err)

print(out.getvalue())

Warning: At least one of the input numbers is larger than the largest integer-valued floating-point number (2^52). Results may be unpredictable.

In Python 3.3 or 3.4, use the io module to create StringIO objects.

import matlab.engine

eng = matlab.engine.start_matlab()

import io

out = io.StringIO()

err = io.StringIO()

ret = eng.dec2base(2**60,16,stdout=out,stderr=err)

dec2base raises an exception when an input argument is greater than 2^52. Display the
error message captured in err.

print(err.getvalue())

Error using dec2base (line 22)

First argument must be an array of integers, 0 <= D <= 2^52.

See Also
matlab.engine.MatlabEngine | matlab.engine.FutureResult

Related Examples
• “Call MATLAB Functions from Python” on page 8-13

 Use MATLAB Handle Objects in Python

8-19

Use MATLAB Handle Objects in Python

This example shows how to create an object from a MATLAB handle class and call its
methods in Python.

In your current folder, create a MATLAB handle class in a file named Triangle.m.

classdef Triangle < handle

 properties (SetAccess = private)

 Base = 0;

 Height = 0;

 end

 methods

 function TR = Triangle(b,h)

 TR.Base = b;

 TR.Height = h;

 end

 function a = area(TR)

 a = 0.5 .* TR.Base .* TR.Height;

 end

 function setBase(TR,b)

 TR.Base = b;

 end

 function setHeight(TR,h)

 TR.Height = h;

 end

 end

end

Start Python. Create a Triangle handle object and call its area method with the
engine. Pass the handle object as the first positional argument.

import matlab.engine

eng = matlab.engine.start_matlab()

tr = eng.Triangle(5.0,3.0)

a = eng.area(tr)

print(a)

7.5

8 MATLAB Engine for Python Topics

8-20

Copy tr to the MATLAB workspace. You can use eval to access the properties of a
handle object from the workspace.

eng.workspace["wtr"] = tr

b = eng.eval("wtr.Base")

print(b)

5.0

Change the height with the setHeight method. If your MATLAB handle class defines
get and set methods for properties, you can access properties without using the MATLAB
workspace.

eng.setHeight(tr,8.0,nargout=0)

a = eng.area(tr)

print(a)

20.0

See Also
matlab.engine.MatlabEngine | matlab.engine.FutureResult

Related Examples
• “Call MATLAB Functions from Python” on page 8-13

 Use MATLAB Engine Workspace in Python

8-21

Use MATLAB Engine Workspace in Python

This example shows how to add variables to the MATLAB engine workspace in Python.

When you start the engine, it provides an interface to a collection of all MATLAB
variables. This collection, named workspace, is implemented as a Python dictionary
that is attached to the engine. The name of each MATLAB variable becomes a key in
the workspace dictionary. The keys in workspace must be valid MATLAB identifiers
(e.g., you cannot use numbers as keys). You can add variables to the engine workspace in
Python, and then you can use the variables in MATLAB functions.

Add a variable to the engine workspace.

import matlab.engine

eng = matlab.engine.start_matlab()

x = 4.0

eng.workspace['y'] = x

a = eng.eval('sqrt(y)')

print(a)

2.0

In this example, x exists only as a Python variable. Its value is assigned to a new entry in
the engine workspace, called y, creating a new MATLAB variable. You can then call the
MATLAB eval function to execute the sqrt(y) statement in MATLAB and return the
output value, 2.0, to Python.

See Also
matlab.engine.MatlabEngine | matlab.engine.FutureResult

Related Examples
• “Call MATLAB Functions from Python” on page 8-13
• “Sort and Plot MATLAB Data from Python” on page 8-34

8 MATLAB Engine for Python Topics

8-22

Pass Data to MATLAB from Python

In this section...

“Python Type to MATLAB Scalar Type Mapping” on page 8-22
“Python Container to MATLAB Array Type Mapping” on page 8-22
“Unsupported Python Types” on page 8-23

Python Type to MATLAB Scalar Type Mapping

When you pass Python data as input arguments to MATLAB functions, the MATLAB
Engine for Python converts the data into equivalent MATLAB data types.

Python Input Argument Type —
Scalar Values Only

Resulting MATLAB Data Type

float double

complex Complex double
int int64

long (Python 2.7 only) int64

float(nan) NaN

float(inf) Inf

bool logical

str char

unicode (Python 2.7 only) char

dict Structure if all keys are strings
not supported otherwise

Python Container to MATLAB Array Type Mapping

Python Input Argument Type —
Container

Resulting MATLAB Data Type

matlab numeric array object (see
“MATLAB Arrays as Python Variables” on
page 8-27)

Numeric array

 Pass Data to MATLAB from Python

8-23

Python Input Argument Type —
Container

Resulting MATLAB Data Type

bytearray uint8 array
bytes (Python 3.3 and 3.4)
bytes (Python 2.7)

uint8 array
char array

list Cell array
set Cell array
tuple Cell array

Unsupported Python Types

The following Python types are not supported by the MATLAB Engine for Python:

• array.array (use MATLAB numeric array objects instead; see “MATLAB Arrays as
Python Variables” on page 8-27)

• None

• module.type object

8 MATLAB Engine for Python Topics

8-24

Handle Data Returned from MATLAB to Python

In this section...

“MATLAB Scalar Type to Python Type Mapping” on page 8-24
“MATLAB Array Type to Python Type Mapping” on page 8-25
“Unsupported MATLAB Types” on page 8-25

MATLAB Scalar Type to Python Type Mapping

When MATLAB functions return output arguments, the MATLAB Engine for Python
converts the data into equivalent Python data types.

MATLAB Output Argument Type —
Scalar Values Only

Resulting Python Data Type

double float

single float

Complex (any numeric type) complex

int8 int

uint8 int

int16 int

uint16 int

int32 int

uint32 int (Python 3.3 and 3.4)
long (Python 2.7)

int64 int (Python 3.3 and 3.4)
long (Python 2.7)

uint64 int (Python 3.3 and 3.4)
long (Python 2.7)

NaN float(nan)

Inf float(inf)

logical bool

char returned to Python 3.3 or 3.4 str

 Handle Data Returned from MATLAB to Python

8-25

MATLAB Output Argument Type —
Scalar Values Only

Resulting Python Data Type

char returned to Python 2.7 str (when MATLAB char value is less
than or equal to intmax('uint8'))
unicode (when MATLAB char value is
greater than intmax('uint8'))

Structure dict

MATLAB handle object (such as the
containers.Map type)

matlab.object

MATLAB Array Type to Python Type Mapping

MATLAB Output Argument Type —
Array

Resulting Python Data Type

Numeric array matlab numeric array object (see
“MATLAB Arrays as Python Variables” on
page 8-27)

char array (1-by-N, N-by-1) returned to
Python 3.3 or 3.4

str

char array (1-by-N, N-by-1) returned to
Python 2.7

str (when MATLAB char array
has values less than or equal to
intmax('uint8'))
unicode (when MATLAB char array has
any value greater than intmax('uint8'))

Row or column cell array list

Unsupported MATLAB Types

The following MATLAB data types are not supported by the MATLAB Engine for Python:

• Categorical array
• char array (M-by-N)
• Cell array (M-by-N)
• Function handle
• Sparse array

8 MATLAB Engine for Python Topics

8-26

• Structure array
• Table
• MATLAB value objects (for a discussion of handle and value classes see “Comparison

of Handle and Value Classes”)
• Non-MATLAB objects (such as Java objects)

 MATLAB Arrays as Python Variables

8-27

MATLAB Arrays as Python Variables

In this section...

“Create MATLAB Arrays in Python” on page 8-27
“MATLAB Array Attributes and Methods in Python” on page 8-29
“Multidimensional MATLAB Arrays in Python” on page 8-29
“Index Into MATLAB Arrays in Python” on page 8-29
“Slice MATLAB Arrays in Python” on page 8-30
“Reshape MATLAB Arrays in Python” on page 8-31

The matlab Python package provides array classes to represent arrays of MATLAB
numeric types as Python variables so that MATLAB arrays can be passed between
Python and MATLAB.

Create MATLAB Arrays in Python

You can create MATLAB numeric arrays in a Python session by calling constructors from
the matlab Python package (for example, matlab.double, matlab.int32). The name
of the constructor indicates the MATLAB numeric type. You can pass MATLAB arrays
as input arguments to functions called with the MATLAB Engine for Python. When a
MATLAB function returns a numeric array as an output argument, the engine returns
the array to Python.

You can initialize the array with an optional initializer input argument that contains
numbers. initializer must be a Python sequence type such as a list, tuple, or other
sequence type. The optional size input argument sets the array size from a sequence.
You can create multidimensional arrays by specifying initializer to contain multiple
sequences of numbers, or by specifying size to be multidimensional. You can create a
MATLAB array of complex numbers by setting the optional is_complex input argument
to True. The matlab package provides the MATLAB array constructors listed in the
table.

matlab Class Constructor Call in Python

matlab.double matlab.double(initializer=None,

size=None, is_complex=False)

8 MATLAB Engine for Python Topics

8-28

matlab Class Constructor Call in Python

matlab.single matlab.single(initializer=None,

size=None, is_complex=False)

matlab.int8 matlab.int8(initializer=None,

size=None, is_complex=False)

matlab.int16 matlab.int16(initializer=None,

size=None, is_complex=False)

matlab.int32 matlab.int32(initializer=None,

size=None, is_complex=False)

matlab.int64a matlab.int64(initializer=None,

size=None, is_complex=False)

matlab.uint8 matlab.uint8(initializer=None,

size=None, is_complex=False)

matlab.uint16 matlab.uint16(initializer=None,

size=None, is_complex=False)

matlab.uint32 matlab.uint32(initializer=None,

size=None, is_complex=False)

matlab.uint64b matlab.uint64(initializer=None,

size=None, is_complex=False)

matlab.logical matlab.logical(initializer=None,

size=None)c

matlab.object No constructor. When a function returns
a handle to a MATLAB object, the engine
returns a matlab.object to Python.

a. In Python 2.7 on Windows, matlab.int64 is converted to int32 in MATLAB. Also, MATLAB cannot
return an int64 array to Python.

b. In Python 2.7 on Windows, matlab.uint64 is converted to uint32 in MATLAB. Also, MATLAB cannot
return a uint64 array to Python.

c. Logicals cannot be made into an array of complex numbers.

When you create an array with N elements, the size is 1-by-N because it is a MATLAB
array.

import matlab.engine

A = matlab.int8([1,2,3,4,5])

print(A.size)

 MATLAB Arrays as Python Variables

8-29

(1, 5)

The initializer is a Python list containing five numbers. The MATLAB array size is 1-
by-5, indicated by the tuple, (1,5).

MATLAB Array Attributes and Methods in Python

All MATLAB arrays created with matlab package constructors have the attributes and
methods listed in this table.

Attribute or Method Purpose

size Size of array returned as a tuple
reshape(size) Reshape array as specified by sequence

size

Multidimensional MATLAB Arrays in Python

In Python, you can create multidimensional MATLAB arrays of any numeric type. Use
two Python list variables to create a 2-by-5 MATLAB array of doubles.

import matlab.engine

A = matlab.double([[1,2,3,4,5], [6,7,8,9,10]])

print(A)

[[1.0,2.0,3.0,4.0,5.0],[6.0,7.0,8.0,9.0,10.0]]

The size attribute of A shows that it is a 2-by-5 array.

print(A.size)

(2, 5)

Index Into MATLAB Arrays in Python

You can index into MATLAB arrays just as you can index into Python list and tuple
variables.

import matlab.engine

A = matlab.int8([1,2,3,4,5])

print(A[0])

8 MATLAB Engine for Python Topics

8-30

[1,2,3,4,5]

The size of the MATLAB array is (1,5); therefore, A[0] is [1,2,3,4,5]. Index into the
array to get 3.

print(A[0][2])

3

Python indexing is zero-based. When you access elements of MATLAB arrays in a Python
session, use zero-based indexing.

Index into a multidimensional MATLAB array.

A = matlab.double([[1,2,3,4,5], [6,7,8,9,10]])

print(A[1][2])

8.0

Slice MATLAB Arrays in Python

You can slice MATLAB arrays the same way you slice Python list and tuple variables.

import matlab.engine

A = matlab.int8([1,2,3,4,5])

print(A[0][1:4])

[2,3,4]

You can assign data to a slice. This code shows assignment from a Python list to a slice
of an array.

A = matlab.double([[1,2,3,4],[5,6,7,8]]);

A[0] = [10,20,30,40]

print(A)

[[10.0,20.0,30.0,40.0],[5.0,6.0,7.0,8.0]]

You can assign data from another MATLAB array, or from any Python iterable that
contains numbers.

You can specify slices for assignment as shown here.

A = matlab.int8([1,2,3,4,5,6,7,8]);

A[0][2:4] = [30,40]

 MATLAB Arrays as Python Variables

8-31

A[0][6:8] = [70,80]

print(A)

[[1,2,30,40,5,6,70,80]]

Note: Slicing MATLAB arrays behaves differently from slicing a Python list. Slicing a
MATLAB array returns a view instead of a shallow copy.

Given a MATLAB array and a Python list with the same values, assigning a slice
results in different results as shown below.

A = matlab.int32([[1,2],[3,4],[5,6]])

L = [[1,2],[3,4],[5,6]]

A[0] = A[0][::-1]

L[0] = L[0][::-1]

print(A)

[[2,2],[3,4],[5,6]]

print(L)

[[2, 1], [3, 4], [5, 6]]

Reshape MATLAB Arrays in Python

You can reshape a MATLAB array in Python with the reshape method. Input argument
size must be a sequence that preserves the number of elements. Use reshape to change
a 1-by-9 MATLAB array to 3-by-3.

import matlab.engine

A = matlab.int8([1,2,3,4,5,6,7,8,9])

A.reshape((3,3))

print(A)

[[1,4,7],[2,5,8],[3,6,9]]

8 MATLAB Engine for Python Topics

8-32

Use MATLAB Arrays in Python

This example shows how to create a MATLAB array in Python and pass it as the input
argument to the MATLAB sqrt function.

The matlab package provides constructors to create MATLAB arrays in Python. The
MATLAB Engine for Python can pass such arrays as input arguments to MATLAB
functions, and can return such arrays as output arguments to Python. You can create
arrays of any MATLAB numeric or logical type from Python sequence types.

Create a MATLAB array from a Python list. Call the sqrt function on the array.

import matlab.engine

eng = matlab.engine.start_matlab()

a = matlab.double([1,4,9,16,25])

b = eng.sqrt(a)

print(b)

[[1.0,2.0,3.0,4.0,5.0]]

The engine returns b, which is a 1-by-5 matlab.double array.

Create a multidimensional array. The magic function returns a 2-D matlab.double
array to Python. Use a for loop to print each row on a separate line. (Press Enter again
when you see the ... prompt to close the loop and print.)

a = eng.magic(6)

for x in a: print(x)

...

[35.0,1.0,6.0,26.0,19.0,24.0]

[3.0,32.0,7.0,21.0,23.0,25.0]

[31.0,9.0,2.0,22.0,27.0,20.0]

[8.0,28.0,33.0,17.0,10.0,15.0]

[30.0,5.0,34.0,12.0,14.0,16.0]

[4.0,36.0,29.0,13.0,18.0,11.0]

Call the tril function to get the lower triangular portion of a. Print each row on a
separate line.

b = eng.tril(a)

for x in b: print(x)

...

 Use MATLAB Arrays in Python

8-33

[35.0,0.0,0.0,0.0,0.0,0.0]

[3.0,32.0,0.0,0.0,0.0,0.0]

[31.0,9.0,2.0,0.0,0.0,0.0]

[8.0,28.0,33.0,17.0,0.0,0.0]

[30.0,5.0,34.0,12.0,14.0,0.0]

[4.0,36.0,29.0,13.0,18.0,11.0]

Related Examples
• “Call MATLAB Functions from Python” on page 8-13

More About
• “MATLAB Arrays as Python Variables” on page 8-27

8 MATLAB Engine for Python Topics

8-34

Sort and Plot MATLAB Data from Python

This example shows how to sort data about patients into lists of smokers and
nonsmokers in Python and plot blood pressure readings for the patients with MATLAB.

Start the engine, and read data about a set of patients into a MATLAB table. MATLAB
provides a sample comma-delimited file, patients.dat, which contains information on
100 different patients.

import matlab.engine

eng = matlab.engine.start_matlab()

eng.eval("T = readtable('patients.dat');",nargout=0)

The MATLAB readtable function reads the data into a table. The engine does not
support the MATLAB table data type. However, with the MATLAB table2struct
function you can convert the table to a scalar structure, which is a data type the engine
does support.

eng.eval("S = table2struct(T,'ToScalar',true);",nargout=0)

eng.eval("disp(S)",nargout=0)

 LastName: {100x1 cell}

 Gender: {100x1 cell}

 Age: [100x1 double]

 Location: {100x1 cell}

 Height: [100x1 double]

 Weight: [100x1 double]

 Smoker: [100x1 double]

 Systolic: [100x1 double]

 Diastolic: [100x1 double]

 SelfAssessedHealthStatus: {100x1 cell}

You can pass S from the MATLAB workspace into your Python session. The engine
converts S to a Python dictionary, D.

D = eng.workspace["S"]

S has fields that contain arrays. The engine converts cell arrays to Python list
variables, and numeric arrays to MATLAB arrays. Therefore, D["LastName"] is of data
type list, and D["Age"] is of data type matlab.double.

Sort blood pressure readings into lists of smokers and nonsmokers. In patients.dat,
the column Smoker indicated a smoker with logical 1 (true), and a nonsmoker with a
logical 0 (false). Convert D["Smoker"] to a matlab.logical array for sorting.

 Sort and Plot MATLAB Data from Python

8-35

smoker = matlab.logical(D["Smoker"])

Convert the Diastolic blood pressure readings and Smoker indicators into 1-by-100
MATLAB arrays for sorting.

pressure = D["Diastolic"]

pressure.reshape((1,100))

pressure = pressure[0]

smoker.reshape((1,100))

smoker = smoker[0]

Sort the pressure array into lists of blood pressure readings for smokers and
nonskmokers. Python list comprehensions provide a compact method for iterating over
sequences. With the Python zip function, you can iterate over multiple sequences in a
single for loop.

sp = [p for (p,s) in zip(pressure,smoker) if s is True]

nsp = [p for (p,s) in zip(pressure,smoker) if s is False]

Display the length of sp, the blood pressure readings for smokers in a list.

print(len(sp))

34

Display the length of nsp, the list of readings for nonsmokers.

print(len(nsp))

66

Calculate the mean blood pressure readings for smokers and nonsmokers. Convert sp
and nsp to MATLAB arrays before passing them to the MATLAB mean function.

sp = matlab.double(sp)

nsp = matlab.double(nsp)

print(eng.mean(sp))

89.9117647059

Display the mean blood pressure for the nonsmokers.

print(eng.mean(nsp))

79.3787878788

8 MATLAB Engine for Python Topics

8-36

Plot blood pressure readings for the smokers and nonsmokers. Call the MATLAB
linspace function to define two x-axes for plotting. You can plot the 34 smokers and 66
nonsmokers on the same scatter plot.

sdx = eng.linspace(1.0,34.0,34)

nsdx = eng.linspace(1.0,34.0,66)

Show the axes boundaries with the box function.

eng.figure(nargout=0)

eng.hold("on",nargout=0)

eng.box("on",nargout=0)

You must call the figure, hold, and box functions with nargout=0, because these
functions do not return output arguments.

Plot the blood pressure readings for the smokers and nonsmokers, and label the plot.
For many MATLAB functions, the engine can return a handle to a MATLAB graphics
object. You can store a handle to a MATLAB object in a Python variable, but you cannot
manipulate the object’s properties in Python. You can pass MATLAB objects as input
arguments to other MATLAB functions.

eng.scatter(sdx,sp,10,'blue')

<matlab.object object at 0x22d1510>

In the rest of this example, assign the output argument of MATLAB functions to h as a
placeholder.

h = eng.scatter(nsdx,nsp,10,'red')

h = eng.xlabel("Patient (Anonymized)")

h = eng.ylabel("Diastolic Blood Pressure (mm Hg)")

h = eng.title("Blood Pressure Readings for All Patients")

h = eng.legend("Smokers","Nonsmokers")

Draw lines to show the average blood pressure readings for smokers and nonsmokers.

x = matlab.double([0,35])

y = matlab.double([89.9,89.9])

h = eng.line(x,y,"Color","blue")

h = eng.text(21.0,88.5,"89.9 (Smoker avg.)","Color","blue")

y = matlab.double([79.4,79.4])

h = eng.line(x,y,"Color","red")

h = eng.text(5.0,81.0,"79.4 (Nonsmoker avg.)","Color","red")

 Sort and Plot MATLAB Data from Python

8-37

8 MATLAB Engine for Python Topics

8-38

Get Help for MATLAB Functions from Python

In this section...

“How to Find MATLAB Help” on page 8-38
“Open MATLAB Help Browser from Python” on page 8-38
“Display MATLAB Help at Python Prompt” on page 8-39

How to Find MATLAB Help

From Python, you can access supporting documentation for all MATLAB functions. This
documentation includes examples and describes input arguments, output arguments, and
calling syntax for each function.

The MATLAB Engine for Python enables you to use the MATLAB doc and help
functions. Use doc to open the MATLAB Help browser. Use help to get a brief
description of a MATLAB function at the Python prompt.

Open MATLAB Help Browser from Python

From Python, you can use the Help browser to open MATLAB function reference pages
and search the documentation.

For example, display the reference page for the MATLAB plot function. (Since doc
returns no output arguments, you must set nargout=0 .)

import matlab.engine

eng = matlab.engine.start_matlab()

eng.doc("plot",nargout=0)

The reference page includes a description of the function, examples, and links to related
documentation.

Note: Click an example title, or on the arrow next to a title, if you do not see the
examples on a MATLAB reference page. Examples can be collapsed or expanded within a
page.

If you call eng.doc with no positional arguments, it opens the Help browser. (You still
must set the keyword argument nargout=0).

 Get Help for MATLAB Functions from Python

8-39

eng.doc(nargout=0)

To search the MATLAB documentation, type an expression in the search box at the top of
any page in the Help browser. The browser returns a list of search results, highlighting
words that match the expression.

Alternatively, you can search the documentation with the docsearch function. For
example, search for pages that mention plot.

eng.docsearch("plot",nargout=0)

Display MATLAB Help at Python Prompt

Call the MATLAB help function to display help text for a function at the Python prompt.
For example, display the help text for erf.

import matlab.engine

eng = matlab.engine.start_matlab()

eng.help("erf",nargout=0)

 ERF Error function.

 Y = ERF(X) is the error function for each element of X. X must be

 real. The error function is defined as:

 erf(x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt.

 See also ERFC, ERFCX, ERFINV, ERFCINV.

 Other functions named erf:

 codistributed/erf

 gpuArray/erf

 sym/erf

 Reference page in Help browser

 doc erf

The output displays the help text, but does not include any links to help for other
MATLAB functions that might be mentioned.

8 MATLAB Engine for Python Topics

8-40

Default Numeric Types in MATLAB and Python

MATLAB stores all numeric values as double-precision floating point numbers by
default. This differs from Python, which stores some numbers as integers by default.
Because of this difference, you might pass integers as input arguments to MATLAB
functions that expect double-precision numbers.

Consider these variable assignments in MATLAB:

x = 4;

y = 4.0;

Both x and y are of data type double. Now consider the same assignments in Python:

x = 4

y = 4.0

x and y are of different numeric data types.

print(type(x))

<type 'int'>

print(type(y))

<type 'float'>

Most MATLAB functions take numeric input arguments of data type double. The best
practice is to ensure that numbers you pass as input arguments to MATLAB functions
are of Python data type float, not Python data type int. You can ensure that Python
variables are floating point numbers if you:

• Make literals floating point numbers. For example, type 4.0 instead of 4.
• Convert to data type float. For example, x = float(4) casts the number to data

type float.
• Create a matlab.double array from a number or sequence. For example, x =

matlab.double([1,2,3,4,5]) creates an array of MATLAB data type double
from a list of Python integers.

When you pass an integer to a MATLAB function that takes an input argument of
data type double, the engine raises an error. See “MatlabExecutionError: Undefined
Function” on page 8-45 for an example.

 Default Numeric Types in MATLAB and Python

8-41

When you call a MATLAB function that does take integers as numeric input arguments,
you can pass input arguments of Python data type int to the function.

8 MATLAB Engine for Python Topics

8-42

System Requirements for MATLAB Engine for Python

In this section...

“Python Version Support” on page 8-42
“64-bit or 32-bit Versions of Python and MATLAB” on page 8-43
“Requirements for Building Python from Source” on page 8-43

Python Version Support

To use the MATLAB Engine for Python, you must have a supported version of the
reference Python implementation (also known as CPython) installed on your system. The
engine supports the following versions:

• version 2.7
• version 3.3
• version 3.4

To download and install Python, see “Install Supported Python Implementation” on page
1-3.

Note: For 64-bit MATLAB on Microsoft Windows systems, select the 64-bit Python
version, called Windows x86-64 MSI installer.

To call Python from your operating system prompt, you must either add the full path to
Python to your PATH environment variable, or include the full path when you call the
Python interpreter.

To determine if you are calling a supported version, type python -V at your operating
system prompt to display the Python version number.

For help on the Python language, see www.python.org/doc in the python.org
documentation. For help on third-party or user-defined modules, refer to the product
documentation.

https://www.python.org/doc

 System Requirements for MATLAB Engine for Python

8-43

64-bit or 32-bit Versions of Python and MATLAB

The architecture of MATLAB must match the architecture of Python. This means if you
run a 64-bit version of Python, you can call only a 64-bit version of MATLAB with the
engine. Likewise, if you are running a 32-bit version of Python, you can call only a 32-bit
version of MATLAB.

On the Python download site, downloads for Microsoft Windows platforms are 32-bit
versions by default. To download the 64-bit version, choose options with the name
Windows x86-64 MSI installer.

To test whether your version of Python is 32-bit or 64-bit, type the following code at the
Python prompt:

import sys

print(sys.maxsize > 2**32)

This code returns True if the Python interpreter is 64-bit, and False if it is 32-bit. (See
Cross Platform for more details.)

To test whether your version of MATLAB is 32-bit or 64-bit, from the MATLAB
Command Window select Help > About MATLAB or use the computer function at the
command prompt.

Requirements for Building Python from Source

If you build Python from source on a Linux or Mac system, configure the build with the
--enable-shared option. The MATLAB Engine for Python must link to the Python
shared library. The library builds only if you set the --enable-shared option.

To enable wide-unicode support for Python 2.7 on Linux, configure the build with the --
enable-unicode=ucs4 option. This configure option is not needed when you build any
version of Python on Mac systems, or Python 3.3 or 3.4 on Linux.

https://docs.python.org/2/library/platform.html#cross-platform

8 MATLAB Engine for Python Topics

8-44

Limitations to MATLAB Engine for Python

• The engine cannot start or connect to MATLAB on a remote machine.
• Python keyword arguments cannot be input arguments to MATLAB functions called

with the engine. The engine passes only positional arguments to MATLAB functions.
• A recursive data structure cannot be passed as an input argument to a MATLAB

function, or put into an engine workspace. (A recursive data structure is a Python
data structure that includes itself as a value.)

• The MATLAB Engine for Python is not thread-safe.

 Troubleshoot MATLAB Errors in Python

8-45

Troubleshoot MATLAB Errors in Python

In this section...

“MATLAB Errors in Python” on page 8-45
“MatlabExecutionError: Undefined Function” on page 8-45
“SyntaxError: Expression Not Valid Target” on page 8-46
“SyntaxError: Invalid Syntax” on page 8-46

MATLAB Errors in Python

When a MATLAB function raises an error, the MATLAB Engine for Python stops the
function and catches the exception raised by MATLAB. The engine copies the error
message to a new Python exception. The engine raises the Python exception.

If the Python interpreter catches the exception, the interpreter displays the error
message that came from MATLAB. You also can handle exceptions raised by
the engine in your Python code. See the matlab.engine.MatlabEngine and
matlab.engine.FutureResult reference pages for the types of exceptions that the
engine can raise.

MatlabExecutionError: Undefined Function

Call the MATLAB sqrt function on an integer from Python. (This code sample omits the
Python traceback and shows the error message only.)

import matlab.engine

eng = matlab.engine.start_matlab()

print(eng.sqrt(4))

matlab.engine.MatlabExecutionError: Undefined function 'sqrt' for input arguments of type 'int64'.

MATLAB defines a sqrt function, but expects the input argument to be of data type
double, not an integer. However, the input argument is 4, and before it is passed to
MATLAB, Python interprets 4 as an integer. The engine converts the Python integer to
an int64 MATLAB data type.

MATLAB and Python define different default types for numbers. If you type x = 4 at
the MATLAB command line, x is a MATLAB double. If you type x = 4 at the Python
command line, x is a Python int.

8 MATLAB Engine for Python Topics

8-46

To avoid this error, specify input arguments that are of Python data type float. The
engine converts this type to MATLAB double.

print(eng.sqrt(4.0))

2.0

SyntaxError: Expression Not Valid Target

You can call the MATLAB eval function from Python to create MATLAB variables. (This
code sample omits the Python traceback and shows the error message only.)

import matlab.engine

eng = matlab.engine.start_matlab()

eng.eval("x = 4;")

SyntaxError: Error: The expression to the left of the equals sign is not a valid target for an assignment.

When the engine calls eval, it passes a statement to MATLAB for execution. When you
do not specify the input argument nargout input argument, the engine expects one
output argument. However, this MATLAB statement returns no output arguments.

To avoid this error, specify nargout as 0 whenever the MATLAB function you call
returns no output arguments.

eng.eval("x = 4;",nargout=0)

SyntaxError: Invalid Syntax

Call the MATLAB print function from Python 2.7 to print a plot you create with the
MATLAB surf function.

import matlab.engine

eng = matlab.engine.start_matlab()

eng.eval("surf(peaks)",nargout=0)

eng.print("-djpeg","surf",nargout=0)

 File "<stdin>", line 1

 eng.print("-djpeg","surf",nargout=0)

 ^

SyntaxError: invalid syntax

MATLAB and Python functions can have the same name. When this happens, the engine
calls the MATLAB function.

 Troubleshoot MATLAB Errors in Python

8-47

However, the engine cannot directly call a MATLAB function that has a name that also is
a reserved word in the Python language. For example, in Python 2.7, print is a reserved
word. (In Python 3.3 and 3.4, the above code runs because print is a built-in function,
not a reserved word.)

To avoid this error, call the MATLAB function with eval.

eng.eval("print('-djpeg','surf');",nargout=0)

If the MATLAB function is a function that you created, you can rename it so that its
name is no longer a Python reserved word. The Python documentation lists reserved
words:

• Python 2.7 reserved words (https://docs.python.org/2/reference/
lexical_analysis.html#keywords)

• Python 3.3 and 3.4 reserved words (https://docs.python.org/3/reference/
lexical_analysis.html#keywords)

https://docs.python.org/2/reference/lexical_analysis.html#keywords
https://docs.python.org/2/reference/lexical_analysis.html#keywords
https://docs.python.org/3/reference/lexical_analysis.html#keywords
https://docs.python.org/3/reference/lexical_analysis.html#keywords

9

Using Java Libraries from MATLAB

• “Call Method on Java Object” on page 9-2
• “Java Libraries” on page 9-3
• “Bring Java Classes into MATLAB Workspace” on page 9-5
• “Convert Java String to Uppercase” on page 9-12
• “Use Class in Java JAR File on Static Class Path” on page 9-13
• “Call User-Defined Java Class on Dynamic Class Path” on page 9-14
• “Java Objects” on page 9-15
• “Java Object Methods” on page 9-23
• “Java Arrays” on page 9-31
• “Pass Data to Java Methods” on page 9-48
• “Handle Data Returned from Java Methods” on page 9-58
• “Read URL” on page 9-64
• “Find Internet Protocol Address” on page 9-66
• “Create and Use Phone Book” on page 9-68
• “Java Heap Memory Preferences” on page 9-80

9 Using Java Libraries from MATLAB

9-2

Call Method on Java Object

MATLAB loads Java class definitions from files that are on the Java class path.

Use one of the following syntaxes to call method on Java object obj.

• MATLAB syntax:

package.class.method(obj,arg1,...,argn)

• Java syntax:

obj.method(arg1,...,argn)

• Use the following when the method name exceeds the maximum length of a MATLAB
identifier.

javaMethod(method,obj,arg1,...,argn)

You do not need to load or import the Java class. Use the MATLAB import function to
simplify the Java class name in a command.

See Also
import | javaclasspath

More About
• “Java Class Path” on page 9-5
• “Simplifying Java Class Names Using import Function” on page 9-9

 Java Libraries

9-3

Java Libraries

In this section...

“Java Software Is Integral to MATLAB” on page 9-3
“When to Use Java Libraries in MATLAB” on page 9-3
“To Learn More About Java Programming Language” on page 9-4
“Platform Support for JVM Software” on page 9-4

Java Software Is Integral to MATLAB

Every installation of MATLAB includes Java Virtual Machine (JVM) software. You can
use the Java interpreter via MATLAB commands, and you can create and run programs
that create and access Java objects.

From MATLAB, you can:

• Access Java API (application programming interface) class packages that support
essential activities such as I/O and networking. For example, the URL class provides
convenient access to resources on the Internet.

• Access third-party Java classes
• Easily construct Java objects in MATLAB workspace
• Call Java object methods, using either Java or MATLAB syntax
• Pass data between MATLAB variables and Java objects

When to Use Java Libraries in MATLAB

The MATLAB Java interface is intended for MATLAB users who want to take advantage
of the special capabilities of the Java programming language.

• You need to access, from MATLAB, the capabilities of available Java classes.
• You are familiar with object-oriented programming in Java or in another language,

such as C++.
• You are familiar with the MATLAB Class System, or with “MEX File Creation API”.

9 Using Java Libraries from MATLAB

9-4

To Learn More About Java Programming Language

For a complete description of the Java language and for guidance in object-oriented
software design and programming, consult outside resources.

Platform Support for JVM Software

To find out which version of JVM software MATLAB uses on your platform, type the
following at the MATLAB prompt:

version -java

Related Examples
• “Convert Java String to Uppercase” on page 9-12
• “Call Method on Java Object” on page 9-2

 Bring Java Classes into MATLAB Workspace

9-5

Bring Java Classes into MATLAB Workspace

In this section...

“Introduction” on page 9-5
“Defining New Java Classes” on page 9-5
“Java Class Path” on page 9-5
“Making Java Classes Available in MATLAB Workspace” on page 9-7
“Loading Java Class Definitions” on page 9-9
“Simplifying Java Class Names Using import Function” on page 9-9
“Locating Native Method Libraries” on page 9-10

Introduction

You can draw from an extensive collection of existing Java classes or create your
own class definitions to use with MATLAB. This topic explains how to find the class
definitions that you need or how to create classes of your own design. This topic also
describes how to specify the native method libraries used by Java code.

Defining New Java Classes

To define new Java classes and subclasses of existing classes, use a Java Development
Kit external to MATLAB. For information on supported versions of JDK™ software, see
the Supported and Compatible Compilers website.

After you create class definitions in .java files, use your Java compiler to produce
.class files from them. The next step is to make the class definitions in those .class
files available for you to use in MATLAB.

Java Class Path

• “Static Path” on page 9-6
• “Dynamic Path” on page 9-7

MATLAB loads Java class definitions from files that are on the Java class path. The class
path is a series of file and folder specifications that MATLAB uses to locate third-party
and user-defined class definitions. When loading a Java class, MATLAB searches files

http://www.mathworks.com/support/compilers/current_release/

9 Using Java Libraries from MATLAB

9-6

and folders in the order they occur on the class path. The search ends when MATLAB
finds a file that contains the class definition.

MATLAB segments the Java class path into a static path and a dynamic path. MATLAB
provides the dynamic path as a convenience for when you develop your own Java classes.
After you develop and debug a Java class, add the class to the static path.

To view the two path segments, use the javaclasspath function.

Static Path

Use the static path if you want the class functionality to run the same way it does in
Java. Also, the static path offers better class loading performance than the dynamic path.

To add files to the static path, create a javaclasspath.txt file:

1 Create an ASCII text file and name the file javaclasspath.txt.
2 Enter the name of a Java class folder or jar file, one per line. For example:

c:\work\javaclasses

3 To simplify folder specifications in cross-platform environments, use these macros:
$matlabroot, $arch, and $jre_home.

4 Save the file in your preferences folder. To view the location of the preferences folder,
type:

prefdir

Alternatively, save the javaclasspath.txt file in your MATLAB startup folder.
Classes specified in this file override classes specified in the javaclasspath.txt
file in the preferences folder.

5 Restart MATLAB.

MATLAB reads the static class path only at startup. If you edit javaclasspath.txt
or change your .class files while MATLAB is running, restart MATLAB to put those
changes into effect.

If you do not want MATLAB to use the entries in the javaclasspath.txt file, start
MATLAB with the -nouserjavapath option.

Note: Do not put Java classes on the static path if they have dependencies on classes on
the dynamic path.

 Bring Java Classes into MATLAB Workspace

9-7

Dynamic Path

You can change class definitions on the dynamic path without restarting MATLAB.
Therefore, it is useful to put a user-defined Java class definition on the dynamic path
while you develop and debug the class.

MATLAB always searches the static path before the dynamic path.

To add a class to the dynamic path, use the javaclasspath and javaaddpath
functions. To remove an entry, use the javarmpath function. These functions clear all
existing variables and global variables in the workspace.

The dynamic path offers greater flexibility in changing the path. However, Java classes
on the dynamic path might load more slowly than classes on the static path. Also, classes
on the dynamic path might not behave identical to classes on the static path. If your class
does not behave as expected, use the static path.

After developing a Java class, put the class on the static path.

Making Java Classes Available in MATLAB Workspace

To make third-party and user-defined Java classes available to MATLAB, place them on
either the static or dynamic Java class path.

• “Making Individual (Unpackaged) Classes Available” on page 9-7
• “Making Entire Packages Available” on page 9-8
• “Making Classes in a JAR File Available” on page 9-8
• “Loading a Class Using Java Class.forName Method” on page 9-8

Making Individual (Unpackaged) Classes Available

You can use individual classes (classes that are not part of a package) in MATLAB. To
make them available, specify the full path to the folder you want to use for the .class
files.

For example, to make available your compiled Java classes in the file d:\work
\javaclasses\test.class, add the following entry to the static or dynamic class
path:

d:\work\javaclasses

9 Using Java Libraries from MATLAB

9-8

To put this folder on the static class path, edit the javaclasspath.txt file.

To put this folder on the dynamic class path, use the following command:

javaaddpath d:\work\javaclasses

Making Entire Packages Available

You can access classes in a package. To make a package available to MATLAB, specify
the full path to the parent folder of the highest level folder of the package path. This
folder is the first component in the package name.

For example, if your Java class package com.mw.tbx.ini has its classes in folder d:
\work\com\mw\tbx\ini, add the following folder to your static or dynamic class path:

d:\work

Making Classes in a JAR File Available

You can use the jar (Java Archive) tool to create a JAR file, containing multiple Java
classes and packages in a compressed ZIP format. For information on jar and JAR files,
consult your Java development documentation.

To make the contents of a JAR file available for use in MATLAB, specify the full path,
including full file name, for the JAR file. You also can put the JAR file on the MATLAB
path.

Note: The path requirement for JAR files is different from the requirement for .class
files and packages, for which you do not specify any file name.

For example, to make available the JAR file e:\java\classes\utilpkg.jar, add the
following file specification to your static or dynamic class path:

e:\java\classes\utilpkg.jar

You can now call the public methods in the JAR file. For information about these
methods, refer to the JAR file documentation.

Loading a Class Using Java Class.forName Method

Use the javaObjectEDT function instead of the Java Class.forName method. For
example, replace the following statement:

 Bring Java Classes into MATLAB Workspace

9-9

java.lang.Class.forName('xyz.myapp.MyClass')

with:

javaObjectEDT('xyz.myapp.MyClass')

Loading Java Class Definitions

Normally, MATLAB loads a Java class automatically when your code first uses it, for
example, when you call its constructor. However, be aware of the following exception.
When you use the which function on methods defined by Java classes, the function only
acts on the classes currently loaded into the MATLAB workspace. In contrast, which
always operates on MATLAB classes, whether they are loaded.

Determining Which Classes Are Loaded

At any time during a MATLAB session, you can obtain a listing of all the Java classes
that are currently loaded. To do so, use the inmem function as follows:

[M,X,J] = inmem

This function returns the list of Java classes in the output argument J. (It also returns
the names of all currently loaded MATLAB functions in M, and the names of all currently
loaded MEX-files in X.)

Here is a sample of output from the inmem function:

[m,x,j] = inmem;

j

MATLAB displays:

j =

 'java.util.Date'

 'com.mathworks.ide.desktop.MLDesktop'

Simplifying Java Class Names Using import Function

Your MATLAB commands can refer to any Java class by its fully qualified name, which
includes its package name. For example, the following are fully qualified names:

• java.lang.String

9 Using Java Libraries from MATLAB

9-10

• java.util.Enumeration

A fully qualified name can be long, making commands and functions, such as
constructors, cumbersome to edit and to read. To refer to classes by the class name alone
(without a package name), first import the fully qualified name into MATLAB.

MATLAB adds all classes that you import to a list called the import list. To see what
classes are on that list, type import. Your code can refer to any class on the list by class
name alone.

When called from a function, import adds the specified classes to the import list in effect
for that function. When invoked at the command prompt, import uses the base import
list for your MATLAB platform.

For example, suppose that a function contains the following statements:

import java.lang.String

import java.util.* java.awt.*

import java.util.Enumeration

Any code that follows these import statements can refer to the String, Frame, and
Enumeration classes without using the package names. For example:

str = String('hello'); % Create java.lang.String object

frm = Frame; % Create java.awt.Frame object

methods Enumeration % List java.util.Enumeration methods

To remove the list of imported Java classes, type:

clear import

Locating Native Method Libraries

Java classes can dynamically load native methods using the Java method
java.lang.System.loadLibrary("LibFile"). In order for the JVM software to
locate the specified library file, the folder containing it must be on the Java Library Path.
This path is established when the MATLAB runs the JVM software at startup.

You can augment the search path for native method libraries by creating an ASCII text
file named javalibrarypath.txt in your preferences folder. Follow these guidelines
when editing this file:

• Specify each new folder on a line by itself.

 Bring Java Classes into MATLAB Workspace

9-11

• Specify only the folder names, not the names of the DLL files. The loadLibrary call
reads the file names.

• To simplify the specification of directories in cross-platform environments, use any of
these macros: $matlabroot, $arch, and $jre_home.

You also can create a javalibrarypath.txt file in your MATLAB startup folder.
Libraries specified in this file override libraries specified in the javalibrarypath.txt
file in the preferences folder.

To disable using the javalibrarypath.txt file, execute MATLAB with the -
nouserjavapath option.

See Also
import | inmem | javaclasspath

Related Examples
• “Use Class in Java JAR File on Static Class Path” on page 9-13
• “Call User-Defined Java Class on Dynamic Class Path” on page 9-14

9 Using Java Libraries from MATLAB

9-12

Convert Java String to Uppercase

This example shows how to call a built-in Java String class method, toUpperCase.

Create a Java string using the built-in class java.lang.String.

str = java.lang.String('hello');

Display methods for the string.

methods(str)

Methods for class java.lang.String:

String getBytes replaceAll

charAt getChars replaceFirst

codePointAt getClass split

codePointBefore hashCode startsWith

codePointCount indexOf subSequence

compareTo intern substring

compareToIgnoreCase isEmpty toCharArray

concat lastIndexOf toLowerCase

contains length toString

contentEquals matches toUpperCase

copyValueOf notify trim

endsWith notifyAll valueOf

equals offsetByCodePoints wait

equalsIgnoreCase regionMatches

format replace

Call the toUpperCase method.

toUpperCase(str)

ans =

HELLO

 Use Class in Java JAR File on Static Class Path

9-13

Use Class in Java JAR File on Static Class Path

This example shows how to call a class method in a Java Archive (JAR) file. The
example uses a JAR file named mylibrary.jar in the folder C:\Documents\MATLAB\,
containing a method, package.class.mymethod(params). Substitute your own JAR
file name and path, and read the documentation to call your own method.

This example puts the JAR file on the static Java class path, making the classes always
available in MATLAB. If you only want to use the classes in the current MATLAB
session, add the JAR file to the dynamic class path using the javaaddpath function.

Copy the mylibrary.jar file to the C:\Documents\MATLAB\ folder.

Add the JAR file to the static class path. Open the javaclasspath.txt file.

cd(prefdir)

edit javaclasspath.txt

Add the following text on a new line in the file.

C:\Documents\MATLAB\mylibrary.jar

Save and close the file. From now on, the JAR file is available to MATLAB.

Restart MATLAB.

Call the method.

package.class.mymethod(params)

See Also
javaaddpath | javaclasspath

Related Examples
• “Call User-Defined Java Class on Dynamic Class Path” on page 9-14

More About
• “Java Class Path” on page 9-5

9 Using Java Libraries from MATLAB

9-14

Call User-Defined Java Class on Dynamic Class Path

This example shows how to call a method in your own Java class. The example uses a
class file named myclass.class in the folder C:\Documents\MATLAB\, containing a
method, package.myclass.mymethod(params). Substitute your own class file name
and path, and call the method with the appropriate parameter list.

This example puts the class file on the dynamic Java class path, making the class
available in the current MATLAB session only. MATLAB provides the dynamic path as
a convenience for when you develop your own Java classes. To make the class always
available in MATLAB, use the static class path by editing the javaclasspath.txt file
in your prefdir folder.

Add the class to the dynamic Java class path.

javaaddpath('C:\Documents\MATLAB\')

To access the class, you must modify the Java path every time you start MATLAB.

Call the method.

package.myclass.mymethod(params)

See Also
javaaddpath | javaclasspath

Related Examples
• “Use Class in Java JAR File on Static Class Path” on page 9-13

More About
• “Java Class Path” on page 9-5

 Java Objects

9-15

Java Objects

In this section...

“Overview” on page 9-15
“Constructing Java Objects” on page 9-15
“Concatenating Java Objects” on page 9-17
“Saving and Loading Java Objects to MAT-Files” on page 9-18
“Finding the Public Data Fields of an Object” on page 9-19
“Accessing Private and Public Data” on page 9-20
“Determining the Class of an Object” on page 9-21

Overview

You create a Java object in the MATLAB workspace by calling one of the constructors of
that class. You then use commands and programming statements to perform operations
on these objects. You also can save your Java objects to a MAT-file and, in subsequent
sessions, reload them into MATLAB.

Constructing Java Objects

You construct Java objects in the MATLAB workspace by calling the Java class
constructor, which has the same name as the class. For example, the following
constructor creates a myDate object:

myDate = java.util.Date

myDate =

Thu Aug 23 12:58:54 EDT 2007

MATLAB displays information for your system.

Using the javaObjectEDT Function

Under certain circumstances, use the javaObjectEDT function to construct a Java
object. The following syntax invokes the Java constructor for class, class_name, with
the argument list that matches x1,...,xn, and returns a new object, J.

9 Using Java Libraries from MATLAB

9-16

J = javaObjectEDT('class_name',x1,...,xn);

For example, to construct and return a Java object of class java.lang.String, type:

jstr = javaObjectEDT('java.lang.String','hello');

With the javaObjectEDT function you can:

• Use classes that have names that exceed the maximum length of a MATLAB
identifier. (Call the namelengthmax function to obtain the maximum identifier
length.)

• Specify the class for an object at run time, for example, as input from an application
user

The default MATLAB constructor syntax requires that no segment of the input class
name can be longer than namelengthmax characters. (A class name segment is any
portion of the class name before, between, or after a dot. For example, there are three
segments in class, java.lang.String.) MATLAB truncates any class name segment
that exceeds namelengthmax characters. In the rare case where you use a class name of
this length, use javaObjectEDT to instantiate the class.

The javaObjectEDT function also allows you to specify the Java class for the object
being constructed at run time. In this situation, you call javaObjectEDT with a string
variable in place of the class name argument.

class = 'java.lang.String';

text = 'hello';

jstr = javaObjectEDT(class, text);

In the usual case, when the class to instantiate is known at development time, it is
more convenient to use the MATLAB constructor syntax. For example, to create a
java.lang.String object, type:

jstr = java.lang.String('hello');

Use the javaObjectEDT function instead of the Java Class.forName method. For
example, replace the following statement:

java.lang.Class.forName('xyz.myapp.MyClass')

with:

javaObjectEDT('xyz.myapp.MyClass')

 Java Objects

9-17

Note: Typically, you do not need to use javaObjectEDT. The default MATLAB syntax
for instantiating a Java class is simpler and is preferable for most applications. Use
javaObjectEDT primarily for the previously described cases.

Java Objects Are References in MATLAB Applications

In MATLAB, Java objects are references and do not adhere to MATLAB copy-on-
assignment and pass-by-value rules. For example:

myDate = java.util.Date;

setHours(myDate,10)

newDate = myDate;

In this example, the variable newDate is a reference to myDate, not a copy of the object.
Any change to the object referenced by newDate also changes the object at myDate.
Either MATLAB code or Java code might change the object.

The following example shows that myDate and newDate are references to the same
object. When you change the hour via one reference (newDate), the change is reflected
through the other reference (myDate), as well.

setHours(newDate,8)

getHours(myDate)

ans =

 8

Concatenating Java Objects

You can concatenate Java objects in the same way that you concatenate native MATLAB
types. You use either the cat function or the [] operators to tell MATLAB to assemble
the enclosed objects into a single object.

Concatenating Objects of the Same Class

If concatenate objects of the same Java class, the concatenation is an array of objects
from the same class.

In the following example, the cat function concatenates two objects of the class
java.awt.Integer. The class of the result is also java.awt.Integer.

value1 = java.lang.Integer(88);

value2 = java.lang.Integer(45);

9 Using Java Libraries from MATLAB

9-18

cat(1, value1, value2)

ans =

java.lang.Integer[]:

 [88]

 [45]

Concatenating Objects of Unlike Classes

If you concatenate objects of unlike classes, MATLAB finds one class from which all of
the input objects inherit. The concatenation is an instance of this class. MATLAB selects
the lowest common parent in the Java class hierarchy as the output class.

For example, concatenating objects of java.lang.Byte, java.lang.Integer, and
java.lang.Double creates an object of the common parent to the three input classes,
java.lang.Number.

byte = java.lang.Byte(127);

integer = java.lang.Integer(52);

double = java.lang.Double(7.8);

[byte integer double]

ans =

java.lang.Number[]:

 [127]

 [52]

 [7.8000]

If there is no common, lower-level parent, then the resultant class is
java.lang.Object, which is the root of the entire Java class hierarchy.

byte = java.lang.Byte(127);

point = java.awt.Point(24,127);

[byte point]

ans =

java.lang.Object[]:

 [127]

 [1x1 java.awt.Point]

Saving and Loading Java Objects to MAT-Files

Use the save function to save a Java object to a MAT-file. To load it back into MATLAB
from that MAT-file, use the load function. When you save or load a Java object, the
object and its class must meet all of the following criteria.

 Java Objects

9-19

• The class implements the Serializable interface (part of the Java API), either
directly or by inheriting it from a parent class. Any embedded or otherwise referenced
objects must also implement Serializable.

• The definition of the class is not changed between saving and loading the object. Any
change to the data fields or methods of a class prevents the loading (deserialization) of
an object that was constructed with the old class definition.

• Either the class does not have any transient data fields, or the values in transient
data fields of the object to be saved are not significant. Values in transient data fields
are never saved with the object.

If you define your own Java classes, or subclasses of existing classes, follow this criteria
to enable saving and loading objects of the class in MATLAB. For details on defining
classes to support serialization, consult your Java development documentation.

Finding the Public Data Fields of an Object

To list the public fields that belong to a Java object, use the fieldnames function, which
takes either of these forms.

names = fieldnames(obj)

names = fieldnames(obj,'-full')

Calling fieldnames without -full returns the names of all the data fields (including
inherited) on the object. With the -full qualifier, fieldnames returns the full
description of the data fields defined for the object, including type, attributes, and
inheritance information.

For example, create an Integer object with the command:

value = java.lang.Integer(0);

To see a full description of the data fields of value, type:

fieldnames(value,'-full')

ans =

 'static final int MIN_VALUE'

 'static final int MAX_VALUE'

 'static final java.lang.Class TYPE'

 'static final int SIZE'

9 Using Java Libraries from MATLAB

9-20

Accessing Private and Public Data

Java API classes provide accessor methods you can use to read from and, where allowed,
to modify private data fields. These methods are sometimes referred to as get and set
methods, respectively.

Some Java classes have public data fields, which your code can read or modify directly.
To access these fields, use the syntax object.field.

Examples

The java.awt.Frame class provides an example of access to both private and public
data fields. This class has the read accessor method getSize, which returns a
java.awt.Dimension object. The Dimension object has data fields height and width,
which are public and therefore directly accessible. For example, to access this data, type:

frame = java.awt.Frame;

frameDim = getSize(frame);

height = frameDim.height;

frameDim.width = 42;

The sample code for “Find Internet Protocol Address” on page 9-66 uses calls to data
field accessors on a java.net.InetAddress object.

hostname = address.getHostName;

ipaddress = address.getHostAddress;

Accessing Data from a Static Field

In a Java language program, a static data field is a field that applies to an entire class
of objects. Static fields are most commonly accessed in relation to the class name itself.
For example, the following code accesses the TYPE field of the Integer class using the
package and class names, java.lang.Integer.

thisType = java.lang.Integer.TYPE;

In MATLAB, you can use that same syntax. Or you can refer to the TYPE field as an
instance of the class. The following example creates an instance of java.lang.Integer
called value, and then accesses the TYPE field using the name value rather than the
package and class names.

value = java.lang.Integer(0);

thatType = value.TYPE

 Java Objects

9-21

thatType =

int

Assigning to a Static Field

Assign values to static fields using the static set method of the class. Alternatively,
assign values using an instance of the class. For more information, see “Accessing
Data from a Static Field” on page 9-20. You can assign value to the field
staticFieldName in the following example by referring to this field as an instance of
the class.

objectName = java.className;

objectName.staticFieldName = value;

Note: MATLAB does not allow assignment to static fields using the class name itself.

Determining the Class of an Object

To find the class of a Java object, use the query form of the class function. After
execution of the following example, myClass contains the name of the package and class
that the object value instantiates.

value = java.lang.Integer(0);

myClass = class(value)

myClass =

java.lang.Integer

Because this form of class also works on MATLAB objects, it does not, in itself, tell you
whether it is a Java class. To determine the type of class, use the isjava function, which
returns 1 if obj is a Java object, and 0 if it is not. For example, type:

isjava(value)

ans =

 1

To find out if an object is an instance of a specified class, use the isa function. The class
can be a MATLAB built-in or user-defined class, as well as a Java class. For example,
type:

isa(value, 'java.lang.Integer')

9 Using Java Libraries from MATLAB

9-22

ans =

 1

 Java Object Methods

9-23

Java Object Methods

In this section...

“Calling Syntax” on page 9-23
“Obtaining Method Information” on page 9-25
“Java Methods That Affect MATLAB Commands” on page 9-28
“How MATLAB Handles Undefined Methods” on page 9-29
“Handling Java Exceptions” on page 9-30
“Method Execution in MATLAB” on page 9-30

Calling Syntax

To call methods on Java objects, you can use either Java calling syntax or MATLAB
calling syntax. Under certain circumstances, use the MATLAB javaMethod function.

• “Java Calling Syntax” on page 9-23
• “MATLAB Calling Syntax” on page 9-23
• “Using the javaMethod Function” on page 9-24
• “Calling Syntax for Static Methods of Java Classes” on page 9-24

Java Calling Syntax

To call methods on Java objects, use the Java syntax:

object.method(arg1,...,argn)

MATLAB Calling Syntax

To call methods on Java objects, use the MATLAB syntax:

method(object,arg1,...,argn)

For example, to call the getHours and setHours methods using MATLAB syntax:

mlDate = java.util.Date;

setHours(mlDate,3)

getHours(mlDate)

ans =

9 Using Java Libraries from MATLAB

9-24

 3

Using the javaMethod Function

Note: The MATLAB syntax is the preferred syntax for invoking a Java method. Use
javaMethod for these special cases only.

Use the MATLAB javaMethod function to:

• Use Java methods with names that exceed the maximum length of a MATLAB
identifier. (Call the namelengthmax function to obtain the maximum identifier
length.)

• Specify a Java method to invoke at run time.

For example, your code calls javaMethod with a string variable in place of the
method argument. When you use javaMethod to invoke a static method, you also can
use a string variable in place of the class name argument.

• Call the constructor of or a static method in an inner class. In the javaMethod and
javaObject functions, specify the class name, using the $ character, as OuterClass
$InnerClass.

For example, suppose class com.ams.MyClass contains class MyInnerClass with
static method methodname. In Java, the calling syntax is:

out = com.ams.MyClass.MyInnerClass.methodname(arg);

In MATLAB, type:

out = javaMethod('methodname','com.ams.MyClass$MyInnerClass',arg)

Calling Syntax for Static Methods of Java Classes

To invoke a static method on a Java class, use the Java syntax:

class.method(arg1,...,argn)

For example, call the static method, isNaN:

java.lang.Double.isNaN(2.2)

ans =

 0

 Java Object Methods

9-25

Obtaining Method Information

MATLAB provides the methods and methodsview functions to obtain information about
the Java methods you are using. You also can request a listing of every Java class that
you loaded into MATLAB that implements a specified method.

• “Using methods to Display Method Names and Arguments” on page 9-25
• “Using methodsview to Display Argument Types and Exceptions” on page 9-26
• “Using which to Determine What Classes Define a Method” on page 9-27

Using methods to Display Method Names and Arguments

The methods function returns information on methods of MATLAB and Java classes.

To return the names of all the methods (including inherited methods) of the class, use
methods without the '-full' qualifier. Names of overloaded methods are listed only
once.

With the '-full' qualifier, methods returns a listing of the method names (including
inherited methods) along with attributes, argument lists, and inheritance information on
each. Each overloaded method is listed separately.

For example, display a full description of all methods of the java.awt.Dimension
object.

methods java.awt.Dimension -full

Methods for class java.awt.Dimension:

Dimension()

Dimension(java.awt.Dimension)

Dimension(int,int)

java.lang.Class getClass() % Inherited from java.lang.Object

int hashCode() % Inherited from java.lang.Object

boolean equals(java.lang.Object)

java.lang.String toString()

void notify() % Inherited from java.lang.Object

void notifyAll() % Inherited from java.lang.Object

void wait(long) throws java.lang.InterruptedException

 % Inherited from java.lang.Object

void wait(long,int) throws java.lang.InterruptedException

 % Inherited from java.lang.Object

void wait() throws java.lang.InterruptedException

 % Inherited from java.lang.Object

9 Using Java Libraries from MATLAB

9-26

java.awt.Dimension getSize()

void setSize(java.awt.Dimension)

void setSize(int,int)

Using methodsview to Display Argument Types and Exceptions

To see methods implemented by a particular Java (or MATLAB) class, use the
methodsview function. Specify the class name (along with its package name, for Java
classes) in the command line. If you have imported the package that defines this class,
then the class name alone suffices.

The following command lists information on all methods in the java.awt.MenuItem
class. Type:

methodsview java.awt.MenuItem

A new window appears, listing one row of information for each method in the class.

 Java Object Methods

9-27

Each row in the window displays up to six fields of information describing the method.
The following table lists the fields displayed in the methodsview window along with a
description and examples of each field type.

Fields Displayed in methodsview Window

Field Name Description Examples

Qualifiers Method type qualifiers abstract, synchronized
Return Type Type returned by the

method
void, java.lang.String

Name Method name addActionListener,
dispatchEvent

Arguments Types of arguments passed
to method

boolean, java.lang.Object

Other Other relevant information throws java.io.IOException
Inherited From Parent of the specified

class
java.awt.MenuComponent

Using which to Determine What Classes Define a Method

Use the which function to display the fully qualified name (package and class name) of a
method implemented by a loaded Java class. To find all classes that define the specified
method, use the which function with the -all qualifier.

For example, suppose you want to find the package and class name for the concat
method. Type:

which concat

If the java.lang.String class is loaded, MATLAB displays:

concat is a Java method % java.lang.String method

If the String class has not been loaded, MATLAB displays:

concat not found.

Suppose that you loaded the Java String and java.awt.Frame classes. Both of these
classes have an equals method. Type:

which -all equals

9 Using Java Libraries from MATLAB

9-28

The MATLAB display includes entries like the following:

equals is a Java method % java.lang.String method

equals is a Java method % java.awt.Frame.equals

equals is a Java method % com.mathworks.jmi.MatlabPath method

The which function operates differently on Java classes than it does on MATLAB
classes. which always displays MATLAB classes, whether they are loaded. which only
displays Java classes that are loaded. You can find out which Java classes are currently
loaded by using the command [m,x,j]=inmem, described in “Determining Which
Classes Are Loaded” on page 9-9.

For a description of how Java classes are loaded, see “Making Java Classes Available in
MATLAB Workspace” on page 9-7.

Java Methods That Affect MATLAB Commands

MATLAB commands that operate on Java objects and arrays use the methods that are
implemented within, or inherited by, these objects' classes. There are some MATLAB
commands that you can alter in behavior by changing the Java methods that they use.

Changing the Effect of disp and display

You are calling the disp function when you:

• Display the value of a variable or an expression in MATLAB.
• Terminate a command line without a semicolon.
• Display a Java object in MATLAB.

When calling disp on a Java object, MATLAB formats the output using the object
toString method. If the class does not implement this method, then MATLAB uses
an inherited toString method. If no intermediate ancestor classes define this method,
MATLAB uses the toString method defined by the java.lang.Object class.

To change the way MATLAB displays an object, implement your own toString method
in your class definition.

Changing the Effect of isequal

The MATLAB isequal function compares two or more arrays for equality in type, size,
and contents. Also, you can use this function to test Java objects for equality.

 Java Object Methods

9-29

When you compare two Java objects using isequal, MATLAB performs the comparison
using the Java method, equals. MATLAB first determines the class of the objects
specified in the command, and then uses the equals method implemented by that class.
If equals is not implemented in this class, then MATLAB uses an inherited equals
method. If no intermediate ancestor classes define this method, MATLAB uses the
equals method defined by the java.lang.Object class.

To change the way MATLAB compares members of a class, implement your own equals
method in your class definition.

Changing the Effect of double and char

You can change the output of the MATLAB double and char functions by defining your
own Java methods, toDouble and toChar. For more information, see “Converting to the
MATLAB double Type” on page 9-60 and “Converting to the MATLAB char Type” on
page 9-61.

How MATLAB Handles Undefined Methods

If your MATLAB command invokes a nonexistent method on a Java object, MATLAB
looks for a function with the same name. If MATLAB finds a function of that name, it
attempts to invoke it. If MATLAB does not find a function with that name, it displays a
message stating that it cannot find a method by that name for the class.

For example, MATLAB has a function named size, and the Java API java.awt.Frame
class also has a size method. If you call size on a Frame object, the size method
defined by java.awt.Frame is executed. However, if you call size on an object of
java.lang.String, MATLAB does not find a size method for this class. It executes
the MATLAB size function instead.

string = java.lang.String('hello');

size(string)

ans =

 1 1

Note: When you define a Java class for use in MATLAB, avoid giving any of its methods
the same name as a MATLAB function.

9 Using Java Libraries from MATLAB

9-30

Handling Java Exceptions

Use the matlab.exception.JavaException class to handle Java exceptions.

Method Execution in MATLAB

When calling a main method from MATLAB, the method returns when it executes
its last statement, even if the method creates a thread that is still executing. In other
environments, the main method does not return until the thread completes execution.

You, therefore, be cautious when calling main methods from MATLAB, particularly main
methods that start a user interface. main methods are written assuming they are the
entry point to application code. When called from MATLAB this is not the case, and the
fact that other Java UI code might be already running can lead to problems.

 Java Arrays

9-31

Java Arrays

In this section...

“Introduction” on page 9-31
“How MATLAB Represents the Java Array” on page 9-31
“Creating an Array of Objects in MATLAB” on page 9-35
“Accessing Elements of a Java Array” on page 9-38
“Assigning to a Java Array” on page 9-41
“Concatenating Java Arrays” on page 9-44
“Creating a New Array Reference” on page 9-45
“Creating a Copy of a Java Array” on page 9-46

Introduction

You can pass singular Java objects to and from methods or you can pass them in an
array, providing the method expects them in that form. This array must either be a Java
array (returned from another method call or created within the MATLAB) or, under
certain circumstances, a MATLAB cell array. This section describes how to create and
manipulate Java arrays in MATLAB. Later sections describe how to use MATLAB cell
arrays in calls to Java methods.

Note: The term dimension refers to the number of subscripts required to address the
elements of an array. Dimension is not a measure of length, width, and height. For
example, a 5-by-1 array is one-dimensional, as its individual elements can be indexed
using one subscript.

How MATLAB Represents the Java Array

The term Java array refers to any array of Java objects returned from a call to a Java
class constructor or method. You can also construct a Java array within MATLAB using
the javaArray function. The structure of a Java array is different from the structure
of a MATLAB matrix or array. MATLAB hides these differences whenever possible,
allowing you to operate on the arrays using the usual MATLAB command syntax. Just
the same, keep in mind the following differences as you work with Java arrays.

9 Using Java Libraries from MATLAB

9-32

• “Representing More Than One Dimension” on page 9-32
• “Array Indexing” on page 9-33
• “The Shape of the Java Array” on page 9-34
• “Interpreting the Size of a Java Array” on page 9-34
• “Interpreting the Number of Dimensions of a Java Arrays” on page 9-35

Representing More Than One Dimension

An array in the Java language is strictly a one-dimensional structure because it is
measured only in length. If you want to work with a two-dimensional array, you can
create an equivalent structure using an array of arrays. To add further dimensions, you
add more levels to the array, making it an array of arrays of arrays, and so on. You can
use such multilevel arrays when working in MATLAB, as it is a matrix and array-based
programming language.

MATLAB makes it easy for you to work with multilevel Java arrays by treating them
like the matrices and multidimensional arrays that are a part of the language itself. You
access elements of an array of arrays using the same MATLAB syntax that you use if
you are handling a matrix. If you add more levels to the array, MATLAB can access and
operate on the structure as if it is a multidimensional MATLAB array.

The left side of the following figure shows Java arrays of one, two, and three dimensions.
To the right of each representation is the same array represented in MATLAB. Single-
dimension arrays are represented as column vectors.

 Java Arrays

9-33

Array Indexing

Java array indexing is different than MATLAB array indexing. Java array indices are
zero-based, MATLAB array indices are one-based. In Java programming, you access the
elements of array y of length N using y[0] through y[N-1]. When working with this
array in MATLAB, you access these same elements using the MATLAB indexing style of
y(1) through y(N). Thus, if you have a Java array of 10 elements, the seventh element
is obtained using y(7), and not y[6] as you use when writing a Java language program.

9 Using Java Libraries from MATLAB

9-34

The Shape of the Java Array

A Java array can be different from a MATLAB array in its overall shape. A two-
dimensional MATLAB array maintains a rectangular shape, as each row is of equal
length and each column of equal height. The Java counterpart, an array of arrays, does
not necessarily hold to this rectangular form. Each individual lower level array might
have a different length.

The following picture shows an array of three underlying arrays of different lengths.
The terms jagged or ragged are commonly used to describe this arrangement of array
elements as the array ends do not match up evenly. When a Java method returns an
array with this type of structure, it is stored in a cell array by MATLAB.

Interpreting the Size of a Java Array

Calling the MATLAB size function on a Java array returns the length of the Java array.
The number of columns is always 1.

Determining the size of a Java array of arrays is not so simple. The potentially ragged
shape of an array returned from a Java method makes it impossible to size the array
in the same way as for a rectangular matrix. In a ragged Java array, there is no single
value that represents the size of the lower-level arrays.

When the size function is applied to a Java array of arrays, the resulting value
describes the top level of the specified array. For the Java array:

size(A) returns the dimensions of the highest array level of A. The highest level of the
array has a size of 3-by-1.

 Java Arrays

9-35

size(A)

ans =

 3 1

To find the size of a lower-level array, say the five-element array in row 3, refer to the
row explicitly.

size(A(3))

ans =

 5 1

You can specify a dimension in the size command using the following syntax. However,
this is useful only for sizing the first dimension, dim=1, the only non-unary dimension.

m = size(X,dim)

size(A, 1)

ans =

 3

Interpreting the Number of Dimensions of a Java Arrays

The MATLAB ndims function always returns a value of 2 for the number of dimensions
in a Java array. This is the number of dimensions in the top-level array.

Creating an Array of Objects in MATLAB

To call a Java method that has one or more arguments defined as an array of Java
objects, you must, under most circumstances, pass your objects in a Java array. You can
construct an array of objects in a call to a Java method or constructor. Or you can create
the array within MATLAB.

The MATLAB javaArray function lets you create a Java array structure that can be
handled in MATLAB as a single multidimensional array. You specify the number and
size of the array dimensions along with the class of objects you intend to store in it. Using
the one-dimensional Java array as its primary building block, MATLAB then builds an
array structure that satisfies the dimensions requested in the javaArray command.

• “Using the javaArray Function” on page 9-36
• “Using MATLAB Syntax” on page 9-36

9 Using Java Libraries from MATLAB

9-36

Using the javaArray Function

To create a Java object array, use the MATLAB javaArray function, which has the
following syntax:

A = javaArray('element_class', m, n, p, ...)

The first argument is the 'element_class' string, which names the class of the
elements in the array. Specify the fully qualified name (package and class name). The
remaining arguments (m, n, p, ...) are the number of elements in each dimension of
the array.

An array that you create with javaArray is equivalent to the array that you create with
the Java code.

A = new element_class[m][n][p]...;

The following command builds a Java array of four lower-level arrays, each capable of
holding five objects of the java.lang.Double class.

dblArray = javaArray('java.lang.Double',4,5);

The javaArray function does not deposit any values into the array elements that it
creates. You must do this separately. The following MATLAB code stores objects of the
java.lang.Double type in the Java array dblArray that was created.

for m = 1:4

 for n = 1:5

 dblArray(m,n) = java.lang.Double((m*10) + n);

 end

end

dblArray

dblArray =

java.lang.Double[][]:

 [11] [12] [13] [14] [15]

 [21] [22] [23] [24] [25]

 [31] [32] [33] [34] [35]

 [41] [42] [43] [44] [45]

Using MATLAB Syntax

You also can create an array of Java objects using syntax that is more typical to
MATLAB. For example, the following syntax creates a 4-by-5 MATLAB array of type
double and assigns zero to each element of the array.

 Java Arrays

9-37

matlabArr(4,5) = 0;

You use similar syntax to create a Java array in MATLAB, except that you specify the
Java class name. The value being assigned, 0 in this example, is stored in the final
element of the array, javaArr(4,5). All other elements of the array receive the empty
matrix.

javaArr(4,5) = java.lang.Double(0)

javaArr =

java.lang.Double[][]:

 [] [] [] [] []

 [] [] [] [] []

 [] [] [] [] []

 [] [] [] [] [0]

Note: You cannot change the number of dimensions of an existing Java array as you can
with a MATLAB array. The same restriction exists when working with Java arrays in
the Java language. See the following example.

This example first creates a scalar MATLAB array, and then changes it to a 2D array.

matlabArr = 0;

matlabArr(4,5) = 0

matlabArr =

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

When you try this technique with a Java array, you get an error message.

javaArr = java.lang.Double(0);

javaArr(4,5) = java.lang.Double(0);

Index exceeds Java array dimensions.

Similarly, you cannot create an array of Java arrays from a Java array.

9 Using Java Libraries from MATLAB

9-38

Accessing Elements of a Java Array

• “MATLAB Array Indexing” on page 9-38
• “Single Subscript Indexing” on page 9-38
• “Colon Operator Indexing” on page 9-39
• “Using END in a Subscript” on page 9-40
• “Elements of java.lang.Object Arrays Are Converted to MATLAB Types” on page

9-41

MATLAB Array Indexing

You can access elements of a Java object array by using the MATLAB array indexing
syntax, A(row,col). For example, to access the element of array dblArray at row 3,
column 4, use:

row3_col4 = dblArray(3,4)

row3_col4 =

34.0

To access this element in a Java language program, use dblArray[2][3].

You also can use MATLAB array indexing syntax to access an element in the data
field of an object. Suppose that myMenuObj is an instance of a window menu class.
This user-supplied class has a data field, menuItemArray, which is a Java array of
java.awt.menuItem. To get element 3 of this array, use the following command.

currentItem = myMenuObj.menuItemArray(3)

Single Subscript Indexing

Elements of a MATLAB matrix are most commonly referenced using both row and
column subscripts. For example, you use x(3,4) to reference the array element at the
intersection of row 3 and column 4. Sometimes it is more advantageous to use just a
single subscript. MATLAB provides this capability (see the section on “Linear Indexing”
in MATLAB Mathematics).

Indexing into a MATLAB matrix using a single subscript references one element of the
matrix. Using the MATLAB matrix shown here, matlabArr (3) returns a single element
of the matrix.

matlabArr = [11 12 13 14 15; 21 22 23 24 25; ...

 Java Arrays

9-39

 31 32 33 34 35; 41 42 43 44 45]

matlabArr =

 11 12 13 14 15

 21 22 23 24 25

 31 32 33 34 35

 41 42 43 44 45

matlabArr(3)

ans =

 31

Indexing this way into a Java array of arrays references an entire subarray of the
overall structure. Using the dblArray Java array, that looks the same as matlabArr,
dblArray(3) returns the 5-by-1 array that makes up the entire third row.

row3 = dblArray(3)

row3 =

java.lang.Double[]:

 [31]

 [32]

 [33]

 [34]

 [35]

This feature allows you to specify an entire array from a larger array structure, and then
manipulate it as an object.

Colon Operator Indexing

Use of the MATLAB colon operator (:) is supported in subscripting Java array
references. This operator works just the same as when referencing the contents of a
MATLAB array. Using the Java array of java.lang.Double objects shown here, the
statement dblArray(2,2:4) refers to a portion of the lower-level array, dblArray(2).
A new array, row2Array, is created from the elements in columns 2 through 4.

dblArray

dblArray =

java.lang.Double[][]:

 [11] [12] [13] [14] [15]

 [21] [22] [23] [24] [25]

 [31] [32] [33] [34] [35]

 [41] [42] [43] [44] [45]

9 Using Java Libraries from MATLAB

9-40

row2Array = dblArray(2,2:4)

row2Array =

java.lang.Double[]:

 [22]

 [23]

 [24]

You also can use the colon operator in single-subscript indexing, as covered in “Single
Subscript Indexing” on page 9-38. By making your subscript a colon rather than a
number, you can convert an array of arrays into one linear array. The following example
converts the 4-by-5 array dblArray into a 20-by-1 linear array.

linearArray = dblArray(:)

linearArray =

java.lang.Double[]:

 [11]

 [12]

 [13]

 [14]

 [15]

 [21]

 [22]

 .

 .

 .

This method also works on an N-dimensional Java array structure. Using the colon
operator as a single subscripted index into the array produces a linear array composed of
all of the elements of the original array.

Note: Java and MATLAB arrays are stored differently in memory. This is reflected in
the order they are given in a linear array. Java array elements are stored in an order
that matches the rows of the matrix (linearArray elements 11, 12, 13, ...). MATLAB
array elements are stored in an order that matches the columns (elements 11, 21, 31,
...).

Using END in a Subscript

You can use the end keyword in the first subscript of an access statement. The first
subscript references the top-level array in a multilevel Java array structure.

 Java Arrays

9-41

Note: Using end on lower-level arrays is not valid due to the potentially ragged nature of
these arrays (see “The Shape of the Java Array” on page 9-34). In this case, there is
no consistent end value to be derived.

The following example displays data from the third to the last row of Java array
dblArray.

last2rows = dblArray(3:end, :)

last2rows =

java.lang.Double[][]:

 [31] [32] [33] [34] [35]

 [41] [42] [43] [44] [45]

Elements of java.lang.Object Arrays Are Converted to MATLAB Types

When you access an element of a java.lang.Object array, MATLAB converts the
element to a MATLAB type, according to the table in “Conversion of Java Object Return
Types” on page 9-59. MATLAB does not convert elements of any other type of Java
array.

For example, if a java.lang.Object array contains a java.lang.Double element,
MATLAB converts the element to MATLAB double. But MATLAB does not convert a
java.lang.Double element in a java.lang.Double array; MATLAB returns it as
java.lang.Double.

Assigning to a Java Array

• “Using Single Subscript Indexing for Array Assignment” on page 9-42
• “Assigning to a Linear Array” on page 9-42
• “Assigning the Empty Matrix” on page 9-43
• “Subscripted Deletion” on page 9-43

You assign values to objects in a Java array in essentially the same way as you do
in a MATLAB array. Although Java and MATLAB arrays are structured differently,
you use the same command syntax to specify which elements you want to assign to.
See “Introduction” on page 9-31 for more information on Java and MATLAB array
differences.

The following example assigns the value 300 in the dblArray element at row 3, column
2. In a Java language program, this is dblArray[2][1].

9 Using Java Libraries from MATLAB

9-42

dblArray(3,2) = java.lang.Double(300)

dblArray =

java.lang.Double[][]:

 [11] [12] [13] [14] [15]

 [21] [22] [23] [24] [25]

 [31] [300] [33] [34] [35]

 [41] [42] [43] [44] [45]

Use the same syntax to assign to an element to the data field of an object. Continuing
with the myMenuObj example shown in “Accessing Elements of a Java Array” on page
9-38, assign to the third menu item in menuItemArray as follows.

myMenuObj.menuItemArray(3) = java.lang.String('Save As...');

Using Single Subscript Indexing for Array Assignment

You can use a single-array subscript to index into a Java array structure that has
more than one dimension. Refer to “Single Subscript Indexing” on page 9-38 for a
description of this feature as used with Java arrays.

You can use single-subscript indexing to assign values to an array as well. The following
example assigns a one-dimensional Java array, onedimArray, to a row of a two-
dimensional Java array, dblArray. Start out by creating the one-dimensional array.

onedimArray = javaArray('java.lang.Double', 5);

for k = 1:5

 onedimArray(k) = java.lang.Double(100 * k);

end

Since dblArray(3) refers to the 5-by-1 array displayed in the third row of dblArray,
you can assign the entire, similarly dimensioned, 5-by-1 onedimArray to it.

dblArray(3) = onedimArray

dblArray =

java.lang.Double[][]:

 [11] [12] [13] [14] [15]

 [21] [22] [23] [24] [25]

 [100] [200] [300] [400] [500]

 [41] [42] [43] [44] [45]

Assigning to a Linear Array

You can assign a value to every element of a multidimensional Java array by treating
the array structure as if it were a single linear array. This entails replacing the single,

 Java Arrays

9-43

numerical subscript with the MATLAB colon operator. If you start with the dblArray
array, you can initialize the contents of every object in the two-dimensional array with
the following statement.

dblArray(:) = java.lang.Double(0)

dblArray =

java.lang.Double[][]:

 [0] [0] [0] [0] [0]

 [0] [0] [0] [0] [0]

 [0] [0] [0] [0] [0]

 [0] [0] [0] [0] [0]

You can use the MATLAB colon operator as you would when working with MATLAB
arrays. The following statements assign given values to each of the four rows in the Java
array, dblArray. Remember that each row actually represents a separate Java array in
itself.

dblArray(1,:) = java.lang.Double(125);

dblArray(2,:) = java.lang.Double(250);

dblArray(3,:) = java.lang.Double(375);

dblArray(4,:) = java.lang.Double(500)

dblArray =

java.lang.Double[][]:

 [125] [125] [125] [125] [125]

 [250] [250] [250] [250] [250]

 [375] [375] [375] [375] [375]

 [500] [500] [500] [500] [500]

Assigning the Empty Matrix

When working with MATLAB arrays, you can assign the empty matrix, (that is, the
0-by-0 array denoted by []) to an element of the array. For Java arrays, you also can
assign [] to array elements. This stores the null value, rather than a 0-by-0 array, in
the Java array element.

Subscripted Deletion

When you assign the empty matrix value to an entire row or column of a MATLAB array,
you find that MATLAB actually removes the affected row or column from the array. In
the example below, the empty matrix is assigned to all elements of the fourth column
in the MATLAB matrix, matlabArr. Thus, the fourth column is eliminated from the
matrix. This changes its dimensions from 4-by-5 to 4-by-4.

9 Using Java Libraries from MATLAB

9-44

matlabArr = [11 12 13 14 15; 21 22 23 24 25; ...

 31 32 33 34 35; 41 42 43 44 45]

matlabArr =

 11 12 13 14 15

 21 22 23 24 25

 31 32 33 34 35

 41 42 43 44 45

matlabArr(:,4) = []

matlabArr =

 11 12 13 15

 21 22 23 25

 31 32 33 35

 41 42 43 45

You can assign the empty matrix to a Java array, but the effect is different. The next
example shows that, when the same operation is performed on a Java array, the
structure is not collapsed; it maintains its 4-by-5 dimensions.

dblArray(:,4) = []

dblArray =

java.lang.Double[][]:

 [125] [125] [125] [] [125]

 [250] [250] [250] [] [250]

 [375] [375] [375] [] [375]

 [500] [500] [500] [] [500]

The dblArray data structure is actually an array of five-element arrays of
java.lang.Double objects. The empty array assignment placed the null value in the
fourth element of each of the lower-level arrays.

Concatenating Java Arrays

You can concatenate arrays of Java objects in the same way as arrays of other
types. Java objects, however, can only be catenated along the first or second axis. To
understand how scalar Java objects are concatenated in MATLAB, see “Concatenating
Java Objects” on page 9-17.

Use either the cat function or the square bracket ([]) operators. This example
horizontally concatenates two Java arrays: d1 and d2.

 Java Arrays

9-45

% Construct a 2-by-3 array of java.lang.Double.

d1 = javaArray('java.lang.Double',2,3);

for m = 1:2

 for n = 1:3

 d1(m,n) = java.lang.Double(n*2 + m-1);

 end

end

d1

d1 =

java.lang.Double[][]:

 [2] [4] [6]

 [3] [5] [7]

% Construct a 2-by-2 array of java.lang.Double.

d2 = javaArray('java.lang.Double',2,2);

for m = 1:2

 for n = 1:2

 d2(m,n) = java.lang.Double((n+3)*2 + m-1);

 end

end

d2

d2 =

java.lang.Double[][]:

 [8] [10]

 [9] [11]

% Concatenate the two along the second dimension.

d3 = cat(2,d1,d2)

d3 =

java.lang.Double[][]:

 [2] [4] [6] [8] [10]

 [3] [5] [7] [9] [11]

Creating a New Array Reference

Because Java arrays in MATLAB are references, assigning an array variable to another
variable results in a second reference to the array.

Consider the following example where two separate array variables reference a common
array. The original array, origArray, is created and initialized. The statement

9 Using Java Libraries from MATLAB

9-46

newArrayRef = origArray creates a copy of this array variable. Changes made to the
array referred to by newArrayRef also show up in the original array.

origArray = javaArray('java.lang.Double', 3, 4);

for m = 1:3

 for n = 1:4

 origArray(m,n) = java.lang.Double((m * 10) + n);

 end

end

origArray

origArray =

java.lang.Double[][]:

 [11] [12] [13] [14]

 [21] [22] [23] [24]

 [31] [32] [33] [34]

% Make a copy of the array reference

newArrayRef = origArray;

newArrayRef(3,:) = java.lang.Double(0);

origArray

origArray =

java.lang.Double[][]:

 [11] [12] [13] [14]

 [21] [22] [23] [24]

 [0] [0] [0] [0]

Creating a Copy of a Java Array

You can create an entirely new array from an existing Java array by indexing into the
array to describe a block of elements, or subarray, and assigning this subarray to a
variable. The assignment copies the values in the original array to the corresponding
cells of the new array.

As with the example in section “Creating a New Array Reference” on page 9-45,
an original array is created and initialized. But, this time, a copy is made of the array
contents rather than copying the array reference. Changes made using the reference to
the new array do not affect the original.

origArray = javaArray('java.lang.Double', 3, 4);

for m = 1:3

 Java Arrays

9-47

 for n = 1:4

 origArray(m,n) = java.lang.Double((m * 10) + n);

 end

end

origArray

origArray =

java.lang.Double[][]:

 [11] [12] [13] [14]

 [21] [22] [23] [24]

 [31] [32] [33] [34]

% ----- Make a copy of the array contents -----

newArray = origArray(:,:);

newArray(3,:) = java.lang.Double(0);

origArray

origArray =

java.lang.Double[][]:

 [11] [12] [13] [14]

 [21] [22] [23] [24]

 [31] [32] [33] [34]

9 Using Java Libraries from MATLAB

9-48

Pass Data to Java Methods

In this section...

“Introduction” on page 9-48
“Conversion of MATLAB Argument Data” on page 9-48
“Passing Built-In Types” on page 9-50
“Converting Numbers to Integer Arguments” on page 9-51
“Passing String Arguments” on page 9-52
“Passing Java Objects” on page 9-52
“Other Data Conversion Topics” on page 9-55
“Passing Data to Overloaded Methods” on page 9-56

Introduction

When you call a Java method, MATLAB types you pass in the call are converted to types
native to the Java language. MATLAB performs this conversion on each argument that is
passed, except for those arguments that are already Java objects. This section describes
the conversion that is performed on specific MATLAB types and, at the end, also looks at
how argument types affect calls made to overloaded methods.

If the method returns data, MATLAB converts the data to the appropriate MATLAB
format. This process is covered in “Handle Data Returned from Java Methods” on page
9-58.

Conversion of MATLAB Argument Data

MATLAB converts MATLAB data, passed as arguments to Java methods, into types
that best represent the data to the Java language. The following table shows all of
the MATLAB base types for passed arguments and the Java types defined for the
parameters. Each row shows a MATLAB type followed by the possible Java argument
matches, from left to right in order of closeness of the match. The MATLAB types (except
cell arrays) can all be scalar (1-by-1) arrays or matrices. All of the Java types can be
scalar values or arrays.

Conversion of MATLAB Types to Java Types

 Pass Data to Java Methods

9-49

Java Parameter Type (Scalar or Array)MATLAB
Argument Closest Type <———————————————————————> Least Close Type

logical boolean byte short int long float double

double double float long int short byte boolean

single float double
char (1-by-1
scalar)

String char

char (1-by-n or
n-by-1, n>1)

String char[]

char(m-by-n,
m,n>1)

String[]

uint8

int8

byte short int long float double

uint16

int16

short int long float double

uint32

int32

int long float double

uint64

int64

long float double

cell array of
strings

String[]

Java object Object
cell array of
object

Object[]

MATLAB object Unsupported

For more information about type conversion of arguments passed to Java code, see:

• “Passing Built-In Types” on page 9-50
• “Passing String Arguments” on page 9-52
• “Passing Java Objects” on page 9-52

9 Using Java Libraries from MATLAB

9-50

Passing Built-In Types

The Java language has eight types that are intrinsic to the language and are not
represented as Java objects. These are often referred to as built in, or elemental, types
and they include boolean, byte, short, long, int, double, float, and char.
MATLAB converts its own types to these Java built-in types according to the table,
Conversion of MATLAB Types to Java Types. Built-in types are in the first 10 rows of the
table.

When a Java method you are calling expects one of these types, you can pass it the type
of MATLAB argument shown in the leftmost column of the table. If the method takes an
array of one of these types, you can pass a MATLAB array of the type. MATLAB converts
the type of the argument to the type assigned in the method declaration.

The following MATLAB code creates a top-level window frame and sets its dimensions.
The call to setBounds passes four MATLAB scalars of the double type to the inherited
Java Frame method, setBounds, that takes four arguments of the int type. MATLAB
converts each 64-bit double type to a 32-bit integer before calling the method.

The setBounds method declaration:

public void setBounds(int x, int y, int width, int height)

The MATLAB code that calls the method:

frame = java.awt.Frame;

setBounds(frame,200,200,800,400)

setVisible(frame,1)

Passing Built-In Types in an Array

To call a Java method with an argument defined as an array of a built-in type, you can
create and pass a MATLAB matrix with a compatible base type. The following code
defines a polygon by sending four x and y coordinates to the Polygon constructor. Two
1-by-4 MATLAB arrays of double are passed to java.awt.Polygon, which expects
integer arrays in the first two arguments. Shown here is the Java method declaration
followed by MATLAB code that calls the method, and then verifies the set coordinates.

public Polygon(int xpoints[], int ypoints[], int npoints)

poly = java.awt.Polygon([14 42 98 124], [55 12 -2 62], 4);

[poly.xpoints poly.ypoints] % Verify the coordinates

 Pass Data to Java Methods

9-51

ans =

14 55

42 12

98 -2

124 62

MATLAB Arrays Are Passed by Value

Since MATLAB arrays are passed by value, any changes that a Java method makes
to them are not visible to your MATLAB code. To access changes that a Java method
makes to an array, then, rather than passing a MATLAB array, create and pass a Java
array, which is a reference. For a description of using Java arrays in MATLAB, see “Java
Arrays” on page 9-31.

Note: Generally, it is preferable to have methods return data that has been modified
using the return argument mechanism as opposed to passing a reference to that data in
an argument list.

Converting Numbers to Integer Arguments

When passing an integer type to a Java method that takes a Java integer parameter,
the MATLAB conversion is the same as the Java conversion between integer types.
In particular, if the integer is out-of-range (does not fit into the number of bits of the
parameter type), MATLAB discards all lowest n bits, where n is the number of bits in the
parameter type. This is unlike conversion between MATLAB integer types, where out-
of-range integers are converted to the maximum or minimum value represented by the
destination type.

If the argument is floating point, MATLAB does not convert to an integer in the same
manner as Java. A floating point number is first converted to a 64-bit signed integer with
the fractional part truncated and then processed as if it were an int64 argument.

When a floating point number is too large to be represented in a 64-bit integer (outside
the range from -263–263), MATLAB converts the value as follows:

• Convert int, short, and byte parameter values to 0.
• Convert long parameter values to java.lang.Long.MIN_VALUE.
• Convert Inf and -Inf values to -1.
• Convert NaN values to 0.

9 Using Java Libraries from MATLAB

9-52

Passing String Arguments

To call a Java method that has an argument defined as an object of class
java.lang.String, you can pass either a String object that was returned from an
earlier Java call or a MATLAB 1-by-n character array. If you pass the character array,
MATLAB converts the array to a Java object of java.lang.String for you.

For a programming example, see “Read URL” on page 9-64. This example shows
a MATLAB character array that holds a URL being passed to the Java URL class
constructor. The following constructor expects a Java String argument.

public URL(String spec) throws MalformedURLException

In the MATLAB call to this constructor, a character array specifying the URL is passed.
MATLAB converts this array to a Java String object before calling the constructor.

url = java.net.URL('http://archive.ncsa.uiuc.edu/demoweb/')

Passing Strings in an Array

When the method you are calling expects an argument of an array of type String, you
can create such an array by packaging the strings together in a MATLAB cell array. The
strings can be of varying lengths since you are storing them in different cells of the array.
As part of the method call, MATLAB converts the cell array to a Java array of String
objects.

In the following example, the echoPrompts method of a user-written class accepts a
string array argument that MATLAB converted from its original format as a cell array of
strings. The parameter list in the Java method appears as follows:

public String[] echoPrompts(String s[])

You create the input argument by storing both strings in a MATLAB cell array.
MATLAB converts this structure to a Java array of String.

myaccount.echoPrompts({'Username: ','Password: '})

ans =

'Username: '

'Password: '

Passing Java Objects

When calling a method that has a parameter belonging to a Java class (other than
java.lang.Object), you must pass a Java object that is an instance of that class.

 Pass Data to Java Methods

9-53

MATLAB does not automatically convert MATLAB types to Java Object types. Unlike
Java, MATLAB does not do autoboxing for numbers, such as converting double to
Double.

In the example below, the add method belonging to the java.awt.Menu class requires,
as an argument, an object of the java.awt.MenuItem class. The method declaration is:

public MenuItem add(MenuItem mi)

The example operates on the frame created in the previous example in “Passing Built-
In Types” on page 9-50. The second, third, and fourth lines of code shown here add
items to a menu to be attached to the existing window frame. In each of these calls to
menu1.add, an object that is an instance of the java.awt.MenuItem Java class is
passed.

menu1 = java.awt.Menu('File Options');

menu1.add(java.awt.MenuItem('New'));

menu1.add(java.awt.MenuItem('Open'));

menu1.add(java.awt.MenuItem('Save'));

menuBar=java.awt.MenuBar;

menuBar.add(menu1);

frame.setMenuBar(menuBar);

Handling Objects of Class java.lang.Object

A special case exists when the method being called takes an argument of the
java.lang.Object class. Since this class is the root of the Java class hierarchy, you
can pass objects of any class in the argument. When passing a MATLAB argument,
the argument is automatically converted to the closest Java Object type, which might
include Java-style autoboxing, as shown in the following table.

MATLAB Argument Java Object

logical Boolean

double Double

single Float

char (1-by-1 scalar) Character

char (1-by-n or n-by-1, n>1) String

uint8

int8

Byte

9 Using Java Libraries from MATLAB

9-54

MATLAB Argument Java Object

uint16

int16

Short

uint32

int32

Integer

uint64

int64

Long

cell array of strings String[]

Java object Object

cell array of object Object[]

MATLAB object Unsupported

Passing Objects in an Array

The only types of object arrays that you can pass to Java methods are Java arrays
and MATLAB cell arrays. MATLAB automatically converts the cell array elements
to java.lang.Object class objects. In order for a cell array to be passed from
MATLAB, the corresponding argument in the Java method signature must specify
java.lang.Object or an array of java.lang.Object.

If the objects are already in a Java array, either an array returned from a Java
constructor or constructed in MATLAB by the javaArray function, then you simply pass
it as the argument to the method being called. MATLAB does not convert the argument,
because the argument is already a Java array.

The following example shows the mapPoints method of a user-written class accepting an
array of java.awt.Point objects. The declaration for this method is:

public Object mapPoints(java.awt.Point p[])

The following MATLAB code creates a 4-by-1 array containing four Java Point objects.
When the array is passed to the mapPoints method, no conversion is necessary because
the javaArray function created a Java array of java.awt.Point objects.

pointObj = javaArray('java.awt.Point',4);

pointObj(1) = java.awt.Point(25,143);

pointObj(2) = java.awt.Point(31,147);

pointObj(3) = java.awt.Point(49,151);

pointObj(4) = java.awt.Point(52,176);

 Pass Data to Java Methods

9-55

testData.mapPoints(pointObj);

Handling a Cell Array of Java Objects

You create a cell array of Java objects by using the MATLAB syntax {a1,a2,...}. You
index into a cell array of Java objects in the usual way, with the syntax a{m,n,...}.

The following example creates a cell array of two Frame objects, frame1 and frame2,
and assigns it to variable frameArray.

frame1 = java.awt.Frame('Frame A');

frame2 = java.awt.Frame('Frame B');

frameArray = {frame1, frame2}

frameArray =

[1x1 java.awt.Frame] [1x1 java.awt.Frame]

The next statement assigns element {1,2} of the cell array frameArray to variable f.

f = frameArray {1,2}

f =

java.awt.Frame[frame2,0,0,0x0,invalid,hidden,layout =

java.awt.BorderLayout,resizable,title=Frame B]

Other Data Conversion Topics

There are several remaining items of interest regarding the way MATLAB converts its
data to a compatible Java type. This includes how MATLAB matches array dimensions,
and how it handles empty matrices and empty strings.

How Array Dimensions Affect Conversion

The term dimension refers to the number of subscripts required to address the elements
of an array. For example, a 5-by-1 array has one dimension, because you can index
individual elements using only one array subscript.

In converting MATLAB to Java arrays, MATLAB handles dimension in a special
manner. For a MATLAB array, dimension can be considered as the number of
nonsingleton dimensions in the array. For example, a 10-by-1 array has dimension 1,
and a 1-by-1 array has dimension 0. In Java code, dimension is determined solely by the

9 Using Java Libraries from MATLAB

9-56

number of nested arrays. For example, double[][] has dimension 2, and double has
dimension 0.

If the number of dimensions of the Java array exactly matches the MATLAB array's
number of dimensions n, the conversion results in a Java array with n dimensions. If
the Java array has fewer than n dimensions, the conversion drops singleton dimensions,
starting with the first one, until the number of remaining dimensions matches the
number of dimensions in the Java array.

Empty Matrices and Nulls

An empty matrix is converted to a Java null. The empty string ('') in MATLAB
translates into an empty (not null) String object in Java code. Empty (0-length) Java
arrays remain unchanged.

Passing Data to Overloaded Methods

When you invoke an overloaded method on a Java object, MATLAB determines which
method to invoke by comparing the arguments your call passes to the arguments defined
for the methods. In this discussion, the term method includes constructors. When it
determines the method to call, MATLAB converts the calling arguments to Java method
types according to Java conversion rules, except for conversions involving objects or cell
arrays. See “Passing Objects in an Array” on page 9-54.

How MATLAB Determines the Method to Call

When your MATLAB function calls a Java method, MATLAB:

1 Checks to make sure that the object (or class, for a static method) has a method by
that name.

2 Determines whether the invocation passes the same number of arguments of at least
one method with that name.

3 Makes sure that each passed argument can be converted to the Java type defined for
the method.

If all of the preceding conditions are satisfied, MATLAB calls the method.

In a call to an overloaded method, if there is more than one candidate, MATLAB selects
the one with arguments that best fit the calling arguments. First, MATLAB rejects all
methods that have any argument types that are incompatible with the passed arguments

 Pass Data to Java Methods

9-57

(for example, if the method has a double argument and the passed argument is a char
type).

Among the remaining methods, MATLAB selects the one with the highest fitness value,
which is the sum of the fitness values of all its arguments. The fitness value for each
argument is the fitness of the base type minus the difference between the MATLAB
array dimension and the Java array dimension. (Array dimensionality is explained in
“How Array Dimensions Affect Conversion” on page 9-55.) If two methods have the
same fitness, the first one defined in the Java class is chosen.

Example — Calling an Overloaded Method

Suppose that a function constructs a java.io.OutputStreamWriter object, osw, and
then invokes a method on the object.

osw.write('Test data', 0, 9);

MATLAB finds that the class java.io.OutputStreamWriter defines three write
methods.

public void write(int c);

public void write(char[] cbuf, int off, int len);

public void write(String str, int off, int len);

MATLAB rejects the first write method, because it takes only one argument. Then,
MATLAB assesses the fitness of the remaining two write methods. These differ only in
their first argument, as explained below.

In the first of these two write methods, the first argument is defined with base type,
char. The table, Conversion of MATLAB Types to Java Types, shows that for the type
of the calling argument (MATLAB char), Java type, char, has a value of 6. There is no
difference between the dimension of the calling argument and the Java argument. So the
fitness value for the first argument is 6.

In the other write method, the first argument has Java type String, which has a
fitness value of 7. The dimension of the Java argument is 0, so the difference between
it and the calling argument dimension is 1. Therefore, the fitness value for the first
argument is 6.

Because the fitness value of those two write methods is equal, MATLAB calls the one
listed first in the class definition, with char[] first argument.

9 Using Java Libraries from MATLAB

9-58

Handle Data Returned from Java Methods

In this section...

“Introduction” on page 9-58
“Conversion of Java Return Types” on page 9-58
“Conversion of Java Object Return Types” on page 9-59
“Built-In Types” on page 9-59
“Converting Objects to MATLAB Types” on page 9-60

Introduction

In many cases, data returned from a Java method is incompatible with the types
operated on in the MATLAB platform. When this is the case, MATLAB converts the
returned value to a type native to the MATLAB language. This section describes the
conversion performed on the various types that can be returned from a call to a Java
method.

Conversion of Java Return Types

The following table lists Java return types and the resulting MATLAB types. For some
Java base return types, MATLAB treats scalar and array returns differently. For
information about java.lang.Object type, see “Conversion of Java Object Return
Types” on page 9-59.

Conversion of Java Types to MATLAB Types

Java Return Type If Scalar Return, Resulting
MATLAB Type

If Array Return, Resulting
MATLAB Type

boolean logical logical

byte double int8

short double int16

int double int32

long double int64

float double single

double double double

 Handle Data Returned from Java Methods

9-59

Java Return Type If Scalar Return, Resulting
MATLAB Type

If Array Return, Resulting
MATLAB Type

char char char

Note: MATLAB converts rectangular Java arrays to arrays of the resulting type. When
Java returns a nonrectangular (jagged) array, MATLAB converts it to a cell array. For
more information, see “How MATLAB Represents the Java Array” on page 9-31.

Conversion of Java Object Return Types

When a method call returns data of type java.lang.Object, MATLAB converts its
value, depending on its actual type, according to the following table. Other object types,
including Object arrays, are not converted; they remain Java objects. However, if you
index into a returned Object array, the value will be converted according to the table.
For more information, see “Elements of java.lang.Object Arrays Are Converted to
MATLAB Types” on page 9-41.

Conversion of java.lang.Object Type to MATLAB Types

Actual Java Type Return Scalar MATLAB Type

java.lang.Boolean logical

java.lang.Byte double

java.lang.Short double

java.lang.Integer double

java.lang.Long double

java.lang.Float double

java.lang.Double double

java.lang.Character char

java.lang.String char

Built-In Types

Java built-in types are described in “Passing Built-In Types” on page 9-50. This type
includes boolean, byte, short, long, int, double, float, and char. When the value

9 Using Java Libraries from MATLAB

9-60

returned from a method call is one of these types, MATLAB converts it according to the
table Conversion of Java Types to MATLAB Types.

A single numeric or boolean value converts to a 1-by-1 matrix of double, which
is convenient for use in MATLAB. An array of a numeric or boolean return values
converts each member of the array to the closest base type to minimize the required
storage space. Array member conversions are listed in the right-hand column of the table.

A return value of Java type char converts to a 1-by-1 matrix of char. An array of Java
char converts to a MATLAB array of that type.

Converting Objects to MATLAB Types

Except for objects of class Object, MATLAB does not convert Java objects returned from
method calls to a native MATLAB type. If you want to convert Java object data to a form
more readily usable in MATLAB, there are a few MATLAB functions that enable you to
do this. These are described in the following sections.

• “Converting to the MATLAB double Type” on page 9-60
• “Converting to the MATLAB char Type” on page 9-61
• “Converting to a MATLAB Structure” on page 9-61
• “Converting to a MATLAB Cell Array” on page 9-62

Converting to the MATLAB double Type

Using the double function in MATLAB, you can convert any Java object or array of
objects to the MATLAB double type. The action taken by the double function depends
on the class of the object you specify:

• If the object is an instance of a numeric class (java.lang.Number or one of the
classes that inherit from that class), MATLAB uses a preset conversion algorithm to
convert the object to a MATLAB double.

• If the object is not an instance of a numeric class, MATLAB checks the class definition
to see if it implements a method called toDouble. MATLAB uses toDouble to
perform its conversion of Java objects to the MATLAB double type. If such a method
is implemented for this class, MATLAB executes it to perform the conversion.

• If you are using a class of your own design, you can write your own toDouble method
to perform conversions on objects of that class to a MATLAB double. This enables
you to specify your own means of type conversion for objects belonging to your own
classes.

 Handle Data Returned from Java Methods

9-61

Note: If the class of the specified object is not java.lang.Number, does not inherit
from that java.lang.Number, and does not implement a toDouble method, then an
attempt to convert the object using the double function results in a MATLAB error
message.

The syntax for the double command is as follows, where object is a Java object or Java
array of objects:

double(object);

Converting to the MATLAB char Type

With the MATLAB char function, you can convert java.lang.String objects and
arrays to MATLAB character arrays.

The syntax for the char command is as follows, where object is a Java object or Java
array of objects:

char(object);

If the object specified in the char command is not an instance of the java.lang.String
class, MATLAB checks its class to see if it implements a method named toChar. If so,
MATLAB executes the toChar method of the class to perform the conversion. If you
write your own class definitions, you can use this feature by writing a toChar method
that performs the conversion according to your own needs.

Note: If the class of the specified object is not java.lang.String and it does not
implement a toChar method, an attempt to convert the object using the char function
results in a MATLAB error message.

Converting to a MATLAB Structure

Java objects are similar to the MATLAB struct type in that many of an object's
characteristics are accessible via field names defined within the object. You might want
to convert a Java object into a MATLAB struct to facilitate the handling of its data in
MATLAB. Use the MATLAB struct function to do this.

The syntax for the struct command is as follows, where object is a Java object or a
Java array of objects:

9 Using Java Libraries from MATLAB

9-62

struct(object);

The following example converts a java.awt.Polygon object into a MATLAB struct.
You can access the fields of the object directly using MATLAB struct operations. The
last line indexes into the array, pstruct.xpoints, to deposit a new value into the third
array element.

polygon = java.awt.Polygon([14 42 98 124], [55 12 -2 62], 4);

pstruct = struct(polygon)

pstruct =

 npoints: 4

 xpoints: [4x1 int32]

 ypoints: [4x1 int32]

pstruct.xpoints

ans =

 14

 42

 98

 124

pstruct.xpoints(3) = 101;

Converting to a MATLAB Cell Array

Use the cell function to convert a Java array or Java object into a MATLAB cell array.
Elements of the resulting cell array are of the MATLAB type (if any) closest to the Java
array elements or Java object.

The syntax for the cell command is as follows, where object is a Java object or a Java
array of objects.

cell(object);

The following example uses the cell command to create a MATLAB cell array in which
each cell holds an array of a different type.
import java.lang.* java.awt.*;

% Create a Java array of double

dblArray = javaArray('java.lang.Double', 1, 10);

for m = 1:10

 dblArray(1, m) = Double(m * 7);

end

 Handle Data Returned from Java Methods

9-63

% Create a Java array of points

ptArray = javaArray('java.awt.Point', 3);

ptArray(1) = Point(7.1, 22);

ptArray(2) = Point(5.2, 35);

ptArray(3) = Point(3.1, 49);

% Create a Java array of strings

strArray = javaArray('java.lang.String', 2, 2);

strArray(1,1) = String('one'); strArray(1,2) = String('two');

strArray(2,1) = String('three'); strArray(2,2) = String('four');

% Convert each to cell arrays

cellArray = {cell(dblArray), cell(ptArray), cell(strArray)}

cellArray =

 {1x10 cell} {3x1 cell} {2x2 cell}

cellArray{1,1} % Array of type double

ans =

 [7] [14] [21] [28] [35] [42] [49] [56] [63] [70]

cellArray{1,2} % Array of type Java.awt.Point

ans =

 [1x1 java.awt.Point]

 [1x1 java.awt.Point]

 [1x1 java.awt.Point]

cellArray{1,3} % Array of type char array

ans =

 'one' 'two'

 'three' 'four'

9 Using Java Libraries from MATLAB

9-64

Read URL

In this section...

“Overview” on page 9-64
“Description of URLdemo” on page 9-64
“Running the Example” on page 9-65

Overview

This program, URLdemo, opens a connection to a website specified by a URL (Uniform
Resource Locator) to read text from a file at that site.

URLdemo constructs an object of the Java API class, java.net.URL, which enables
convenient handling of URLs. Then, it calls a method on the URL object, to open a
connection.

To read and display the lines of text at the site, URLdemo uses classes from the Java
I/O package java.io. It creates an InputStreamReader object, and then uses
that object to construct a BufferedReader object. Finally, it calls a method on the
BufferedReader object to read the specified number of lines from the site.

Description of URLdemo

The major tasks performed by URLdemo are:

1 Construct a URL object.

The example first calls a constructor on java.net.URL and assigns the resulting
object to variable url. The URL constructor takes a single argument, the name of the
URL to be accessed, as a string. The constructor checks whether the input URL has a
valid form.

url = java.net.URL('http://www.mathworks.com')

2 Open a connection to the URL.

The second statement of the example calls the method, openStream, on the URL
object url, to establish a connection with the website named by the object. The
method returns an InputStream object to variable, is, for reading bytes from the
site.

 Read URL

9-65

is = openStream(url);

3 Set up a buffered stream reader.

The next two lines create a buffered stream reader for characters. The
java.io.InputStreamReader constructor is called with the input stream
is, to return to variable isr an object that can read characters. Then, the
java.io.BufferedReader constructor is called with isr, to return a
BufferedReader object to variable br. A buffered reader provides for efficient
reading of characters, arrays, and lines.

isr = java.io.InputStreamReader(is);

br = java.io.BufferedReader(isr);

4 Read and display lines of text.

The following statements read the lines of HTML text from the site, looking for
text beginning with a paragraph tag, <p>. Within the MATLAB while loop, the
BufferedReader method readLine reads each line of text (terminated by a
return and/or line feed character) from the site.

p1 = java.lang.String('<p>');

p2 = java.lang.String('</p>');

s = readLine(br);

while ~(s.startsWith(p1))

 s = readLine(br);

end

5 Display the text.

disp(s.substring(p1.length,s.length-p2.length))

Running the Example

When you run this example, you see output similar to the following.

Explore products for MATLAB, the language of technical computing, and Simulink, for simulation and Model-Based Design.

9 Using Java Libraries from MATLAB

9-66

Find Internet Protocol Address

In this section...

“Overview” on page 9-66
“Description of resolveip” on page 9-66
“Running the Example” on page 9-67

Overview

The resolveip function returns either the name or address of an IP (internet
protocol) host. If you pass resolveip a host name, it returns the IP address. If you
pass resolveip an IP address, it returns the host name. The function uses the
java.net.InetAddress class, which enables you to find an IP address for a host name,
or the host name for a given IP address, without making DNS calls.

resolveip calls a static method on the InetAddress class to obtain an
InetAddress object. Then, it calls accessor methods on the InetAddress object to get
the host name and IP address for the input argument. It displays either the host name or
the IP address, depending on the program input argument.

Description of resolveip

The major tasks performed by resolveip are:

1 Create an InetAddress object.

Instead of constructors, the java.net.InetAddress class has static methods
that return an instance of the class. The try statement calls one of those methods,
getByName, passing the input argument that the user has passed to resolveip.
The input argument can be either a host name or an IP address. If getByName fails,
the catch statement displays an error message.

function resolveip(input)

try

 address = java.net.InetAddress.getByName(input);

catch

 error(sprintf('Unknown host %s.', input))

end

2 Retrieve the host name and IP address.

 Find Internet Protocol Address

9-67

The example uses calls to the getHostName and getHostAddress accessor
functions on the java.net.InetAddress object, to obtain the host name
and IP address, respectively. These two functions return objects of class
java.lang.String; use the char function to convert them to character arrays.

hostname = char(address.getHostName);

ipaddress = char(address.getHostAddress);

3 Display the host name or IP address.

The example uses the MATLAB strcmp function to compare the input argument
to the resolved IP address. If it matches, MATLAB displays the host name for the
internet address. If the input does not match, MATLAB displays the IP address.

if strcmp(input,ipaddress)

 disp(sprintf('Host name of %s is %s', input, hostname))

else

 disp(sprintf('IP address of %s is %s', input, ipaddress))

end

Running the Example

Here is an example of calling the resolveip function with a host name.

resolveip ('www.mathworks.com')

IP address of www.mathworks.com is 144.212.100.10

Here is a call to the function with an IP address.

resolveip ('144.212.100.10')

Host name of 144.212.100.10 is www.mathworks.com

9 Using Java Libraries from MATLAB

9-68

Create and Use Phone Book
In this section...

“Overview” on page 9-68
“Description of Function phonebook” on page 9-69
“Description of Function pb_lookup” on page 9-73
“Description of Function pb_add” on page 9-73
“Description of Function pb_remove” on page 9-74
“Description of Function pb_change” on page 9-75
“Description of Function pb_listall” on page 9-76
“Description of Function pb_display” on page 9-77
“Description of Function pb_keyfilter” on page 9-77
“Running the phonebook Program” on page 9-78

Overview

The main function, phonebook, can be called either with no arguments, or with one
argument, which is the key of an entry that exists in the phone book. The function first
determines the folder to use for the phone book file.

If no phone book file exists, it creates one by constructing a
java.io.FileOutputStream object, and then closing the output stream. Next, it
creates a data dictionary by constructing an object of java.util.Properties, which is
a subclass of java.util.Hashtable, for storing key/value pairs in a hash table. For the
phonebook program, the key is a name, and the value is one or more telephone numbers.

The phonebook function creates and opens an input stream for reading by constructing
a java.io.FileInputStream object. It calls load on that object to load the hash table
contents, if it exists. If the user passed the key to an entry to look up, it looks up the
entry by calling pb_lookup, which finds and displays it. Then, the phonebook function
returns.

If phonebook was called without the name argument, it then displays a textual menu of
the available phone book actions:

• Look up an entry
• Add an entry

 Create and Use Phone Book

9-69

• Remove an entry
• Change the phone number(s) in an entry
• List all entries

The menu also has a selection to exit the program. The function uses MATLAB functions
to display the menu and to input the user selection.

The phonebook function iterates accepting user selections and performing the requested
phone book action until the user selects the menu entry to exit. The phonebook function
then opens an output stream for the file by constructing a java.io.FileOutputStream
object. It calls save on the object to write the current data dictionary to the phone book
file. It finally closes the output stream and returns.

Description of Function phonebook

The major tasks performed by phonebook are:

1 Determine the data folder and full file name.

The first statement assigns the phone book file name, 'myphonebook', to the variable
pbname. If the phonebook program is running on a Windows system, it calls the
java.lang.System static method getProperty to find the location of the
data dictionary. This is set to the user's current working folder. Otherwise, it uses
MATLAB function getenv to determine the location, using the system variable
HOME, which you can define beforehand to anything you like. It then assigns to
pbname the full path, consisting of the data folder and file name 'myphonebook'.

function phonebook(varargin)

pbname = 'myphonebook'; % name of data dictionary

if ispc

 datadir = char(java.lang.System.getProperty('user.dir'));

else

 datadir = getenv('HOME');

end

pbname = fullfile(datadir, pbname);

2 If needed, create a file output stream.

If the phonebook file does not exist, phonebook asks the user whether to create a
new one. If the user answers y, phonebook creates a phone book by constructing a
FileOutputStream object. In the try clause of a try/catch block, the argument
pbname passed to the FileOutputStream constructor is the full name of the file

9 Using Java Libraries from MATLAB

9-70

that the constructor creates and opens. The next statement closes the file by calling
close on the FileOutputStream object FOS. If the output stream constructor fails,
the catch statement prints a message and terminates the program.

if ~exist(pbname)

 disp(sprintf('Data file %s does not exist.', pbname))

 r = input('Create a new phone book (y/n)?','s');

 if r == 'y',

 try

 FOS = java.io.FileOutputStream(pbname);

 FOS.close

 catch

 error(sprintf('Failed to create %s', pbname))

 end

 else

 return

 end

end

3 Create a hash table.

The example constructs a java.util.Properties object to serve as the hash table
for the data dictionary.

pb_htable = java.util.Properties;

4 Create a file input stream.

In a try block, the example invokes a FileInputStream constructor with the
name of the phone book file, assigning the object to FIS. If the call fails, the catch
statement displays an error message and terminates the program.

try

 FIS = java.io.FileInputStream(pbname);

catch

 error(sprintf('Failed to open %s for reading.', pbname))

end

5 Load the phone book keys and close the file input stream.

The example calls load on the FileInputStream object FIS, to load the phone
book keys and their values (if any) into the hash table. It then closes the file input
stream.

pb_htable.load(FIS)

FIS.close

 Create and Use Phone Book

9-71

6 Display the Action menu and get the user's selection.

Within a while loop, several disp statements display a menu of actions that the
user can perform on the phone book. Then, an input statement requests the user's
typed selection.

while 1

 disp ' '

 disp ' Phonebook Menu:'

 disp ' '

 disp ' 1. Look up a phone number'

 disp ' 2. Add an entry to the phone book'

 disp ' 3. Remove an entry from the phone book'

 disp ' 4. Change the contents of an entry in the phone book'

 disp ' 5. Display entire contents of the phone book'

 disp ' 6. Exit this program'

 disp ' '

 s = input('Please type the number for a menu selection: ','s');

7 Invoke the function to perform a phone book action

Still within the while loop, a switch statement provides a case to handle each user
selection s. Each of the first five cases invokes the function to perform a phone book
action.

switch s

Case 1 prompts for a name that is a key to an entry. It calls isempty to determine
whether the user has entered a name. If a name has not been entered, it calls disp
to display an error message. If a name has been input, it passes it to pb_lookup.
The pb_lookup routine looks up the entry and, if it finds it, displays the entry
contents.

case '1',

 name = input('Enter name to look up: ','s');

 if isempty(name)

 disp 'No name entered'

 else

 pb_lookup(pb_htable, name)

 end

Case 2 calls pb_add, which prompts the user for a new entry and then adds it to the
phone book.

9 Using Java Libraries from MATLAB

9-72

case '2',

 pb_add(pb_htable)

Case 3 uses input to prompt for the name of an entry to remove. If a name has not
been entered, it calls disp to display an error message. If a name has been entered,
it passes it to pb_remove.

case '3',

 name = input('Enter name of entry to remove: ', 's');

 if isempty(name)

 disp 'No name entered'

 else

 pb_remove(pb_htable, name)

 end

Case 4 uses input to prompt for the name of an entry to change. If a name has not
been entered, it calls disp to display an error message. If a name has been entered,
it passes it to pb_change.

case '4',

 name = input('Enter name of entry to change: ', 's');

 if isempty(name)

 disp 'No name entered'

 else

 pb_change(pb_htable, name)

end

Case 5 calls pb_listall to display all entries.

case '5',

 pb_listall(pb_htable)

8 Exit by creating an output stream and saving the phone book.

If the user has selected case 6 to exit the program, a try statement calls the
constructor for a FileOuputStream object, passing it the name of the phone book. If
the constructor fails, the catch statement displays an error message.

If the object is created, the next statement saves the phone book data by calling save
on the Properties object pb_htable, passing the FileOutputStream object FOS
and a descriptive header string. It then calls close on the FileOutputStream
object, and returns.

 Create and Use Phone Book

9-73

case '6',

 try

 FOS = java.io.FileOutputStream(pbname);

 catch

 error(sprintf('Failed to open %s for writing.',pbname))

 end

 pb_htable.save(FOS,'Data file for phonebook program')

 FOS.close

 return

otherwise

 disp 'That selection is not on the menu.'

end

end % switch

Description of Function pb_lookup

Arguments passed to pb_lookup are the Properties object pb_htable and the name
key for the requested entry. The pb_lookup function first calls get on pb_htable with
the name key, on which support function pb_keyfilter is called to change spaces to
underscores. The get method returns the entry (or null, if the entry is not found) to
variable entry. get takes an argument of type java.lang.Object and also returns an
argument of that type. In this invocation, the key passed to get and the entry returned
from it are actually character arrays.

pb_lookup then calls isempty to determine whether entry is null. If it is, it uses
disp to display a message stating that the name was not found. If entry is not null, it
calls pb_display to display the entry.

function pb_lookup(pb_htable,name)

entry = pb_htable.get(pb_keyfilter(name));

if isempty(entry),

 disp(sprintf('The name %s is not in the phone book',name))

else

 pb_display(entry)

end

Description of Function pb_add

1 Input the entry to add.

9 Using Java Libraries from MATLAB

9-74

The pb_add function takes one argument, the Properties object pb_htable.
pb_add uses disp to prompt for an entry. Using the up arrow (^) character as a
line delimiter, input inputs a name to the variable entry. Then, within a while
loop, it uses input to get another line of the entry into variable line. If the line is
empty, indicating that the user has finished the entry, the code breaks out of the
while loop. If the line is not empty, the else statement appends line to entry and
then appends the line delimiter. At the end, the strcmp checks the possibility that
no input was entered and, if that is the case, returns.

function pb_add(pb_htable)

disp 'Type the name for the new entry, followed by Enter.'

disp 'Then, type the phone number(s), one per line.'

disp 'To complete the entry, type an extra Enter.'

name = input(':: ','s');

entry = [name '^'];

while 1

 line = input(':: ','s');

 if isempty(line)

 break

 else

 entry = [entry line '^'];

 end

end

if strcmp(entry, '^')

 disp 'No name entered'

 return

end

2 Add the entry to the phone book.

After the input has completed, pb_add calls put on pb_htable with the hash
key name (on which pb_keyfilter is called to change spaces to underscores) and
entry. It then displays a message that the entry has been added.

pb_htable.put(pb_keyfilter(name),entry)

disp ' '

disp(sprintf('%s has been added to the phone book.', name))

Description of Function pb_remove

1 Look for the key in the phone book.

 Create and Use Phone Book

9-75

Arguments passed to pb_remove are the Properties object pb_htable and the
name key for the entry to remove. The pb_remove function calls containsKey on
pb_htable with the name key, on which support function pb_keyfilter is called
to change spaces to underscores. If name is not in the phone book, disp displays a
message and the function returns.

function pb_remove(pb_htable,name)

if ~pb_htable.containsKey(pb_keyfilter(name))

 disp(sprintf('The name %s is not in the phone book',name))

 return

end

2 Ask for confirmation and if given, remove the key.

If the key is in the hash table, pb_remove asks for user confirmation. If the user
confirms the removal by entering y, pb_remove calls remove on pb_htable with
the (filtered) name key, and displays a message that the entry has been removed. If
the user enters n, the removal is not performed and disp displays a message that
the removal has not been performed.
r = input(sprintf('Remove entry %s (y/n)? ',name), 's');

if r == 'y'

 pb_htable.remove(pb_keyfilter(name))

 disp(sprintf('%s has been removed from the phone book',name))

else

 disp(sprintf('%s has not been removed',name))

end

Description of Function pb_change

1 Find the entry to change, and confirm.

Arguments passed to pb_change are the Properties object pb_htable and
the name key for the requested entry. The pb_change function calls get on
pb_htable with the name key, on which pb_keyfilter is called to change spaces
to underscores. The get method returns the entry (or null, if the entry is not found)
to variable entry. pb_change calls isempty to determine whether the entry is
empty. If the entry is empty, pb_change displays a message that the name is added
to the phone book, and allows the user to enter the phone number for the entry.

If the entry is found, in the else clause, pb_change calls pb_display to display
the entry. It then uses input to ask the user to confirm the replacement. If the user
enters anything other than y, the function returns.

9 Using Java Libraries from MATLAB

9-76

function pb_change(pb_htable,name)

entry = pb_htable.get(pb_keyfilter(name));

if isempty(entry)

 disp(sprintf('The name %s is not in the phone book', name))

 return

else

 pb_display(entry)

 r = input('Replace phone numbers in this entry (y/n)? ','s');

 if r ~= 'y'

 return

 end

end

2 Input new phone numbers and change the phone book entry.

pb_change uses disp to display a prompt for new phone numbers. Then,
pb_change inputs data into variable entry, with the same statements described in
“Description of Function pb_lookup” on page 9-73.

Then, to replace the existing entry with the new one, pb_change calls put on
pb_htable with the (filtered) key name and the new entry. It then displays a
message that the entry has been changed.

disp 'Type in the new phone number(s), one per line.'

disp 'To complete the entry, type an extra Enter.'

disp(sprintf(':: %s', name))

entry = [name '^'];

while 1

 line = input(':: ','s');

 if isempty(line)

 break

 else

 entry = [entry line '^'];

 end

end

pb_htable.put(pb_keyfilter(name),entry)

disp ' '

disp(sprintf('The entry for %s has been changed', name))

Description of Function pb_listall

The pb_listall function takes one argument, the Properties object pb_htable.
The function calls propertyNames on the pb_htable object to return to enum a

 Create and Use Phone Book

9-77

java.util.Enumeration object, which supports convenient enumeration of all
the keys. In a while loop, pb_listall calls hasMoreElements on enum, and if it
returns true, pb_listall calls nextElement on enum to return the next key. It then
calls pb_display to display the key and entry, which it retrieves by calling get on
pb_htable with the key.

function pb_listall(pb_htable)

enum = pb_htable.propertyNames;

while enum.hasMoreElements

 key = enum.nextElement;

 pb_display(pb_htable.get(key))

end

Description of Function pb_display

The pb_display function takes an argument entry, which is a phone book entry. After
displaying a horizontal line, pb_display calls MATLAB function strtok to extract the
first line of the entry, up to the line delimiter (^), into t and the remainder into r. Then,
within a while loop that terminates when t is empty, it displays the current line in t.
Then it calls strtok to extract the next line from r, into t. When all lines have been
displayed, pb_display indicates the end of the entry by displaying another horizontal
line.

function pb_display(entry)

disp ' '

disp '-------------------------'

[t,r] = strtok(entry,'^');

while ~isempty(t)

 disp(sprintf(' %s',t))

 [t,r] = strtok(r,'^');

end

disp '-------------------------'

Description of Function pb_keyfilter

The pb_keyfilter function takes an argument key, which is a name used as a key in
the hash table, and either filters it for storage or unfilters it for display. The filter, which
replaces each space in the key with an underscore (_), makes the key usable with the
methods of java.util.Properties.

function out = pb_keyfilter(key)

if ~isempty(strfind(key,' '))

9 Using Java Libraries from MATLAB

9-78

 out = strrep(key,' ','_');

else

 out = strrep(key,'_',' ');

end

Running the phonebook Program

In this sample run, a user invokes phonebook with no arguments. The user selects
menu action 5, which displays the two entries currently in the phone book (all entries
are fictitious). Then, the user selects 2, to add an entry. After adding the entry, the user
again selects 5, which displays the new entry along with the other two entries.

Phonebook Menu:

 1. Look up a phone number

 2. Add an entry to the phone book

 3. Remove an entry from the phone book

 4. Change the contents of an entry in the phone book

 5. Display entire contents of the phone book

 6. Exit this program

Please type the number for a menu selection: 5

 Sylvia Woodland

 (508) 111-3456

 Russell Reddy

 (617) 999-8765

Phonebook Menu:

 1. Look up a phone number

 2. Add an entry to the phone book

 3. Remove an entry from the phone book

 4. Change the contents of an entry in the phone book

 5. Display entire contents of the phone book

 6. Exit this program

Please type the number for a menu selection: 2

 Create and Use Phone Book

9-79

Type the name for the new entry, followed by Enter.

Then, type the phone number(s), one per line.

To complete the entry, type an extra Enter.

:: BriteLites Books

:: (781) 777-6868

::

BriteLites Books has been added to the phone book.

Phonebook Menu:

 1. Look up a phone number

 2. Add an entry to the phone book

 3. Remove an entry from the phone book

 4. Change the contents of an entry in the phone book

 5. Display entire contents of the phone book

 6. Exit this program

Please type the number for a menu selection: 5

 BriteLites Books

 (781) 777-6868

 Sylvia Woodland

 (508) 111-3456

 Russell Reddy

 (617) 999-8765

9 Using Java Libraries from MATLAB

9-80

Java Heap Memory Preferences

You can adjust the amount of memory that MATLAB software allocates for Java objects.

Note: The default heap size is sufficient for most cases.

To adjust the Java heap size:

1 On the Home tab, in the Environment section, click Preferences. Select
MATLAB > General > Java Heap Memory.

2 Select a Java heap size value using the slider or spin box.

Note: Increasing the Java heap size decreases the amount of memory available for
storing data in arrays.

3 Click OK.
4 Restart MATLAB.

If the amount of memory you specified is not available upon restart, MATLAB resets the
value to the default, and displays an error dialog box. To readjust the value, repeat the
previous steps.

If increasing the heap size does not eliminate memory errors, check your Java code
for memory leaks. Eliminate references to objects that are no longer useful. For
more information, see the Java SE Troubleshooting guide at http://www.oracle.com/
technetwork/java/javase/index-138283.html.

http://www.oracle.com/technetwork/java/javase/index-138283.html
http://www.oracle.com/technetwork/java/javase/index-138283.html

10

Using .NET Libraries from MATLAB

• “Read Cell Arrays of Excel Spreadsheet Data” on page 10-4
• “Access a Simple .NET Class” on page 10-6
• “Load a Global .NET Assembly” on page 10-11
• “Work with Microsoft Excel Spreadsheets Using .NET” on page 10-12
• “Work with Microsoft Word Documents Using .NET” on page 10-14
• “Assembly is Library of .NET Classes” on page 10-15
• “Limitations to .NET Support” on page 10-16
• “System Requirements for Using MATLAB Interface to .NET” on page 10-18
• “Using .NET from MATLAB” on page 10-19
• “Using a .NET Object” on page 10-21
• “Build a .NET Application for MATLAB Examples” on page 10-23
• “Troubleshooting Security Policy Settings From Network Drives” on page 10-24
• “.NET Terminology” on page 10-25
• “Simplify .NET Class Names” on page 10-26
• “Use import in MATLAB Functions” on page 10-27
• “Nested Classes” on page 10-28
• “Handle .NET Exceptions” on page 10-29
• “Pass Numeric Arguments” on page 10-30
• “Pass System.String Arguments” on page 10-31
• “Pass System.Enum Arguments” on page 10-33
• “Pass System.Nullable Arguments” on page 10-35
• “Pass Cell Arrays of .NET Data” on page 10-39
• “Pass Jagged Arrays” on page 10-42
• “Convert Nested System.Object Arrays” on page 10-45
• “Pass Data to .NET Objects” on page 10-46

10 Using .NET Libraries from MATLAB

10-2

• “Handle Data Returned from .NET Objects” on page 10-53
• “Use Arrays with .NET Applications” on page 10-58
• “Convert .NET Arrays to Cell Arrays” on page 10-60
• “Limitations to Support of .NET Arrays” on page 10-63
• “Set Static .NET Properties” on page 10-64
• “Using .NET Properties” on page 10-66
• “MATLAB Does Not Display Protected Properties” on page 10-68
• “Work with .NET Methods Having Multiple Signatures” on page 10-69
• “Call .NET Methods With out Keyword” on page 10-71
• “Call .NET Methods With ref Keyword” on page 10-73
• “Call .NET Methods With params Keyword” on page 10-75
• “Call .NET Methods with Optional Arguments” on page 10-77
• “Calling .NET Methods” on page 10-80
• “Calling .NET Methods with Optional Arguments” on page 10-83
• “Calling .NET Extension Methods” on page 10-84
• “Call .NET Properties That Take an Argument” on page 10-85
• “How MATLAB Represents .NET Operators” on page 10-87
• “Limitations to Support of .NET Methods” on page 10-88
• “Use .NET Events in MATLAB” on page 10-89
• “Call .NET Delegates in MATLAB” on page 10-92
• “Create Delegates from .NET Object Methods” on page 10-94
• “Create Delegate Instances Bound to .NET Methods” on page 10-95
• “Call Delegates With out and ref Type Arguments” on page 10-97
• “Combine and Remove .NET Delegates” on page 10-98
• “.NET Delegates” on page 10-100
• “Calling .NET Methods Asynchronously” on page 10-101
• “Limitations to Support of .NET Events” on page 10-105
• “Limitations to Support of .NET Delegates” on page 10-106
• “Use Bit Flags with .NET Enumerations” on page 10-107
• “Read Special System Folder Path” on page 10-111

 Using .NET Libraries from MATLAB

10-3

• “.NET Enumerations in MATLAB” on page 10-112
• “Default Methods for an Enumeration” on page 10-113
• “NetDocEnum Example Assembly” on page 10-115
• “Work with Members of a .NET Enumeration” on page 10-116
• “Refer to a .NET Enumeration Member” on page 10-118
• “Display .NET Enumeration Members as Character Strings” on page 10-120
• “Convert .NET Enumeration Values to Type Double” on page 10-121
• “Iterate Through a .NET Enumeration” on page 10-122
• “Use .NET Enumerations to Test for Conditions” on page 10-124
• “Underlying Enumeration Values” on page 10-126
• “Limitations to Support of .NET Enumerations” on page 10-127
• “Create .NET Collections” on page 10-128
• “Convert .NET Collections to MATLAB Arrays” on page 10-130
• “Create .NET Arrays of Generic Type” on page 10-131
• “Display .NET Generic Methods Using Reflection” on page 10-132
• “.NET Generic Classes” on page 10-135
• “Accessing Items in .NET Collections” on page 10-136
• “Call .NET Generic Methods” on page 10-137

10 Using .NET Libraries from MATLAB

10-4

Read Cell Arrays of Excel Spreadsheet Data

This example shows how to convert columns of Microsoft Excel® spreadsheet data to
MATLAB types. MATLAB reads a range of .NET values as a System.Object[,] type.
Use the cell function to convert System.String values to MATLAB strings and
System.DateTime values to datetime objects.

Create a file in Excel that contains the following data.

Date Weight

10/31/96 174.8

11/29/96 179.3

12/30/96 190.4

01/31/97 185.7

Right-click the Date column, select Format Cells, and then the Number tab. Verify
that the value for Category: is Date.

Name the file weight.xls in the H:\Documents\MATLAB folder. Close the file.

In MATLAB, read the data from the spreadsheet.

NET.addAssembly('microsoft.office.interop.excel');

app = Microsoft.Office.Interop.Excel.ApplicationClass;

book = app.Workbooks.Open('H:\Documents\MATLAB\weight.xls');

sheet = Microsoft.Office.Interop.Excel.Worksheet(book.Worksheets.Item(1));

range = sheet.UsedRange;

arr = range.Value;

Convert the data to MATLAB types.

data = cell(arr,'ConvertTypes',{'all'});

Display the dates.

cellfun(@disp,data(:,1))

Date

 31-Oct-1996 00:00:00

 29-Nov-1996 00:00:00

 30-Dec-1996 00:00:00

 Read Cell Arrays of Excel Spreadsheet Data

10-5

 31-Jan-1997 00:00:00

Quit the Excel program.

Close(book)

Quit(app)

Related Examples
• “Read Spreadsheet Data Using Excel as Automation Server” on page 11-23

More About
• “Convert .NET Arrays to Cell Arrays” on page 10-60
• “Spreadsheets”

10 Using .NET Libraries from MATLAB

10-6

Access a Simple .NET Class

In this section...

“System.DateTime Example” on page 10-6
“Create .NET Object From Constructor” on page 10-7
“View Information About .NET Object” on page 10-7
“Introduction to .NET Data Types” on page 10-9

System.DateTime Example

This example shows how to access functionality already loaded on your system. The
topics following the example introduce some key steps and ideas to help you get started
using .NET in MATLAB.

The Microsoft .NET Framework class library contains classes, such as
System.DateTime, you can use in MATLAB. The following code creates an object and
uses DateTime properties and methods to display information about the current date
and time.

% Create object for current date and time

netDate = System.DateTime.Now;

% Display properties

netDate.DayOfWeek

netDate.Hour

% Call methods

ToShortTimeString(netDate)

AddDays(netDate,7);

% Call static method

System.DateTime.DaysInMonth(netDate.Year,netDate.Month)

The following topics provide more information about creating and viewing information
about objects and an introduction to .NET data types.

For information about the .NET Framework class library, refer to the third party
documentation described in “To Learn More About the .NET Framework” on page
10-20.

 Access a Simple .NET Class

10-7

Create .NET Object From Constructor

The example in the previous section uses the Now property to create a DateTime
object. The following example shows how to create an object using one of the DateTime
constructors.

myDate = System.DateTime(2000,1,31);

To call this constructor, or any method, you need to know its argument list, or function
signature. Your vendor product documentation shows the function signatures. You
can also display the signatures using the MATLAB methodsview function. Type
methodsview('System.DateTime') and search the list for DateTime entries, such as
shown in the following table.

Return Type Name Arguments

System.DateTime obj DateTime (int32 scalar year, etc.

From the .NET Class Framework documentation, the following signature initializes a
new instance of the DateTime structure to the specified year, month, and day, which is
the information required for the myDate variable.

Return Type Name Arguments

System.DateTime obj DateTime (int32 scalar year,

int32 scalar month,

int32 scalar day)

For more information, see “Reading Method Signatures” on page 10-81.

View Information About .NET Object

Although the vendor documentation contains information about DateTime objects, you
can use MATLAB commands, like properties and methods, to display information
about .NET objects. For example:

% Display an object

netDate = System.DateTime.Now

% Display its properties

properties System.DateTime

% Display its methods

methods System.DateTime

10 Using .NET Libraries from MATLAB

10-8

MATLAB displays the following information. (The property values reflect your specific
date and time.)

Display of DateTime Object

netDate =

 System.DateTime

 Package: System

 Properties:

 Date: [1x1 System.DateTime]

 Day: 11

 DayOfWeek: [1x1 System.DayOfWeek]

 DayOfYear: 11

 Hour: 12

 Kind: [1x1 System.DateTimeKind]

 Millisecond: 413

 Minute: 31

 Month: 1

 Now: [1x1 System.DateTime]

 UtcNow: [1x1 System.DateTime]

 Second: 38

 Ticks: 634303458984133595

 TimeOfDay: [1x1 System.TimeSpan]

 Today: [1x1 System.DateTime]

 Year: 2011

 MinValue: [1x1 System.DateTime]

 MaxValue: [1x1 System.DateTime]

 Methods, Superclasses

Display of DateTime Properties

Properties for class System.DateTime:

 Date

 Day

 DayOfWeek

 DayOfYear

 Hour

 Kind

 Millisecond

 Minute

 Month

 Now

 UtcNow

 Access a Simple .NET Class

10-9

 Second

 Ticks

 TimeOfDay

 Today

 Year

 MinValue

 MaxValue

Display of DateTime Methods

Methods for class System.DateTime:

Add GetType ToUniversalTime

AddDays GetTypeCode addlistener

AddHours IsDaylightSavingTime delete

AddMilliseconds Subtract eq

AddMinutes ToBinary findobj

AddMonths ToFileTime findprop

AddSeconds ToFileTimeUtc ge

AddTicks ToLocalTime gt

AddYears ToLongDateString isvalid

CompareTo ToLongTimeString le

DateTime ToOADate lt

Equals ToShortDateString ne

GetDateTimeFormats ToShortTimeString notify

GetHashCode ToString

Static methods:

Compare Parse op_GreaterThan

DaysInMonth ParseExact op_GreaterThanOrEqual

FromBinary SpecifyKind op_Inequality

FromFileTime TryParse op_LessThan

FromFileTimeUtc TryParseExact op_LessThanOrEqual

FromOADate op_Addition op_Subtraction

IsLeapYear op_Equality

For more information, see:

• “Using .NET Properties” on page 10-66
• “Calling .NET Methods” on page 10-80

Introduction to .NET Data Types

To use .NET objects in MATLAB, you need to understand how MATLAB treats .NET
data types. For example, the following DateTime properties and methods create
variables of various .NET types:

netDate = System.DateTime.Now;

10 Using .NET Libraries from MATLAB

10-10

thisDay = netDate.DayOfWeek;

thisHour = netDate.Hour;

thisDate = ToLongDateString(netDate);

thisTime = ToShortTimeString(netDate);

monthSz = System.DateTime.DaysInMonth(netDate.Year,netDate.Month);

whos

Name Size Bytes Class

netDate 1x1 112 System.DateTime

monthSz 1x1 4 int32

thisDate 1x1 112 System.String

thisDay 1x1 104 System.DayOfWeek

thisHour 1x1 4 int32

thisTime 1x1 112 System.String

MATLAB displays the type as a class name.

To use these variables in MATLAB, consider the following:

• Numeric values (int32) — MATLAB preserves .NET numeric types by mapping them
into equivalent MATLAB types. In the following example, h is type int32.

h = thisHour + 1;

For more information, see “.NET Type to MATLAB Type Mapping” on page 10-53
and “Numeric Types”.

• Strings (System.String) — Use the char function to convert a System.String
object to a MATLAB string:

disp(['The time is ' char(thisTime)])

• Objects (System.DateTime) — Refer to the .NET Framework class library
documentation for information about using a DateTime object.

• Enumerations (System.DayOfWeek) — According to the DateTime documentation,
DayOfWeek is an enumeration. To display the enumeration members, type:

enumeration(thisDay)

For more information, see “Enumerations”.

For a complete list of supported types and mappings, see “Handle Data Returned
from .NET Objects” on page 10-53.

 Load a Global .NET Assembly

10-11

Load a Global .NET Assembly

This example shows you how to make .NET classes visible to MATLAB by loading a
global assembly using the NET.addAssembly function.

The speech synthesizer class (available in .NET Framework Version 3.0 and above)
provides ready-to-use text-to-speech features. For example, type:

NET.addAssembly('System.Speech');

speak = System.Speech.Synthesis.SpeechSynthesizer;

speak.Volume = 100;

Speak(speak,'You can use .NET Libraries in MATLAB')

The speech synthesizer class, like any .NET class, is part of an assembly. To work with
the class, call NET.addAssembly to load the assembly into MATLAB. Your vendor
documentation contains the assembly name. For example, search the Microsoft .NET
Framework website for the System.SpeechSynthesizer class. The assembly name is
System.Speech.

NET.addAssembly('System.Speech');

The System.Speech assembly is a global assembly. If your assembly is a private
assembly, use the full path for the input to NET.addAssembly.

The “System.DateTime Example” on page 10-6 does not call NET.addAssembly because
MATLAB dynamically loads its assembly (mscorlib) at startup.

Note: You cannot unload an assembly in MATLAB.

For more information, see:

• “Assembly is Library of .NET Classes” on page 10-15

10 Using .NET Libraries from MATLAB

10-12

Work with Microsoft Excel Spreadsheets Using .NET

This example creates a spreadsheet, copies some MATLAB
data to it, and closes it. The example uses classes from the
Microsoft.Office.Interop.Excel.ApplicationClass class. For information
about the class and using the interface with different versions of Excel, refer to
documentation on the MSDN website http://msdn.microsoft.com/.

To create a workbook, type:

NET.addAssembly('microsoft.office.interop.excel');

app = Microsoft.Office.Interop.Excel.ApplicationClass;

books = app.Workbooks;

newWB = Add(books);

app.Visible = true;

Create a new sheet:

sheets = newWB.Worksheets;

newSheet = Item(sheets,1);

newSheet is a System.__ComObject because sheets.Item can return different types,
such as a Chart or a Worksheet. To make the sheet a Worksheet, use the command:

newWS = Microsoft.Office.Interop.Excel.Worksheet(newSheet);

Create MATLAB data and write columns 1 and 2 to a range of cells.

excelArray = rand(10);

newRange = Range(newWS,'A1');

newRange.Value2 = 'Data from Location A';

newRange = Range(newWS,'A3:B12');

newRange.Value2 = excelArray;

Add three text strings to column C.

% Create a 3x1 System.Object

strArray = NET.createArray('System.Object',3,1);

strArray(1,1) = 'Add';

strArray(2,1) = 'text';

strArray(3,1) = 'to column C';

newRange = Range(newWS,'C3:C5');

newRange.Value2 = strArray;

http://msdn.microsoft.com/

 Work with Microsoft Excel Spreadsheets Using .NET

10-13

Modify cell format and name the worksheet:

newFont = newRange.Font;

newFont.Bold = 1;

newWS.Name = 'Test Data';

If this is a new spreadsheet, use the SaveAs method:

SaveAs(newWB,'mySpreadsheet.xlsx');

Close and quit:

Close(newWB)

Quit(app)

10 Using .NET Libraries from MATLAB

10-14

Work with Microsoft Word Documents Using .NET

This example uses classes from the
Microsoft.Office.Interop.Word.ApplicationClass class. For information about
the class and using the interface with different versions of Microsoft Word, refer to
documentation on the MSDN website http://msdn.microsoft.com/.

The following code creates a new Word document:

NET.addAssembly('microsoft.office.interop.word');

wordApp = Microsoft.Office.Interop.Word.ApplicationClass;

wordDoc = wordApp.Documents;

newDoc = Add(wordDoc);

If you want to type directly into the document, type the MATLAB command:

wordApp.Visible = true;

Put the cursor into the document window and enter text.

To name the document myDocument.docx and save it in the My Documents folder,
type:

SaveAs(newDoc,'myDocument.docx');

When you are finished, to close the document and application, type:

Save(newDoc);

Close(newDoc);

Quit(wordApp);

http://msdn.microsoft.com/

 Assembly is Library of .NET Classes

10-15

Assembly is Library of .NET Classes

Assemblies are the building blocks of .NET Framework applications; they form the
fundamental unit of deployment, version control, reuse, activation scoping, and security
permissions. An assembly is a collection of types and resources built to work together and
form a logical unit of functionality.

To work with a .NET application, you need to make its assemblies visible to MATLAB.
How you do this depends on how the assembly is deployed, either privately or globally.

• global assembly—Shared among applications and installed in a common directory,
called the Global Assembly Cache (GAC).

• private assembly—Used by a single application.

To load a global assembly into MATLAB, use the short name of the assembly, which is
the file name without the extension. To load a private assembly, you need the full path
(folder and file name with extension) of the assembly. This information is in the vendor
documentation for the assembly. Refer to the vendor documentation for information
about using your product.

The following assemblies from the .NET Framework class library are available at
startup. MATLAB dynamically loads them the first time you type “NET.” or “System.”.

• mscorlib.dll

• system.dll

To use any other .NET assembly, load the assembly using the NET.addAssembly
command. After loading the assembly, you can work with the classes defined by the
assembly.

Note: You cannot unload an assembly in MATLAB. If you modify and rebuild your own
assembly, you must restart MATLAB to access the changes.

See Also
NET.addAssembly

10 Using .NET Libraries from MATLAB

10-16

Limitations to .NET Support

MATLAB supports the .NET features C# supports, except for the limits noted in the
following table.

Features Not Supported in MATLAB

Cannot use ClassName.propertyname syntax to set static properties. Use
NET.setStaticProperty instead.
Unloading an assembly
Passing a structure array, sparse array, or complex number to a .NET property or
method
Subclassing .NET classes from MATLAB
Accessing nonpublic class members
Displaying generic methods using methods or methodsview functions. For a
workaround, see “Display .NET Generic Methods Using Reflection” on page 10-132.
Creating an instance of a nested class. For a workaround, see “Nested Classes” on page
10-28.
Saving (serializing) .NET objects into a MAT-file
Creating .NET arrays with a specific lower bound
Concatenating multiple .NET objects into an array
Implementing interface methods
Hosting .NET controls in figure windows
Casting operations
Calling constructors with ref or out type arguments
Using System.Console.WriteLine to write text to the command window
Pointer type arguments, function pointers, Dllimport keyword
.NET remoting
Using the MATLAB : (colon) operator in a foreach iteration
Adding event listeners to .NET events defined in static classes
Handling .NET events with signatures that do not conform to the standard signature
Creating empty .NET objects

 Limitations to .NET Support

10-17

Features Not Supported in MATLAB

Creating .NET objects that do not belong to a namespace

10 Using .NET Libraries from MATLAB

10-18

System Requirements for Using MATLAB Interface to .NET

The MATLAB interface to .NET is available on the Windows platform only.

You must have the Microsoft .NET Framework installed on your system.

The MATLAB interface requires the .NET Framework Version 4.0 and above. The
interface continues to support assemblies built on Framework 2.0 and above. To
determine if your system has the supported framework, use the NET.IsNETSupported
function.

To use a .NET application, refer to your vendor’s product documentation for information
about how to install the program and for details about its functionality.

MATLAB Configuration File

MATLAB provides a configuration file, MATLAB.exe.config, in your matlabroot/
bin/arch folder. With this file, MATLAB loads the latest core assemblies available
on your system. You can modify and use the configuration file at your own risk. For
additional information on elements that can be used in the configuration file, please
visit the Configuration File Schema for the .NET Framework Web page at http://
msdn.microsoft.com/en-us/library/1fk1t1t0.aspx.

http://msdn.microsoft.com/en-us/library/1fk1t1t0.aspx
http://msdn.microsoft.com/en-us/library/1fk1t1t0.aspx

 Using .NET from MATLAB

10-19

Using .NET from MATLAB

In this section...

“Benefits of the MATLAB .NET Interface” on page 10-19
“Why Use the MATLAB .NET Interface?” on page 10-19
“NET Assembly Integration Using MATLAB Compiler SDK” on page 10-20
“To Learn More About the .NET Framework” on page 10-20

Benefits of the MATLAB .NET Interface

The MATLAB .NET interface enables you to:

• Create instances of .NET classes.
• Interact with .NET applications via their class members.

Why Use the MATLAB .NET Interface?

Use the MATLAB .NET interface to take advantage of the capabilities of the
Microsoft .NET Framework. For example:

• You have a professionally developed .NET assembly and want to use it to do certain
operations, such as access hardware.

• You want to leverage the capabilities of programming in .NET (for example, you have
existing C# programs).

• You want to access existing Microsoft-supplied classes for .NET.

The speech synthesizer class, available in .NET Framework Version 3.0 and above, is an
example of a ready-to-use feature. Create the following Speak function in MATLAB:

function Speak(text)

NET.addAssembly('System.Speech');

speak = System.Speech.Synthesis.SpeechSynthesizer;

speak.Volume = 100;

Speak(speak,text)

end

For an example rendering text to speech, type:

10 Using .NET Libraries from MATLAB

10-20

Speak('You can use .NET Libraries in MATLAB')

NET Assembly Integration Using MATLAB Compiler SDK

The MATLAB .NET interface is for MATLAB users who want to use .NET assemblies in
MATLAB.

NET Assembly Integration in the MATLAB Compiler SDK product packages MATLAB
functions so that .NET programmers can access them. It brings MATLAB into .NET
applications. For information about NET Assembly Integration, see the MATLAB
Compiler SDK product documentation.

To Learn More About the .NET Framework

For a complete description of the .NET Framework, you need to consult outside
resources.

One source of information is the Microsoft Developer Network. Search the .NET
Framework Development Center at http://msdn.microsoft.com/en-us/
netframework/aa496123 for the term “.NET Framework Class Library”. The .NET
Framework Class Library is a programming reference manual. Many examples in this
documentation refer to classes in this library. There are different versions of the .NET
Framework documentation, so be sure to refer to the version that is on your system.
See “System Requirements for Using MATLAB Interface to .NET” on page 10-18 for
information about version support in MATLAB.

More About
• “Limitations to .NET Support” on page 10-16

http://msdn.microsoft.com/en-us/netframework/aa496123
http://msdn.microsoft.com/en-us/netframework/aa496123

 Using a .NET Object

10-21

Using a .NET Object

In this section...

“Creating a .NET Object” on page 10-21
“What Classes Are in a .NET Assembly?” on page 10-21
“Using the delete Function on a .NET Object” on page 10-22

Creating a .NET Object

You often need to create objects when working with .NET classes. An object is an
instance of a particular class. Methods are functions that operate exclusively on objects of
a class. Data types package together objects and methods so that the methods operate on
objects of their own type. For more information about objects, see “MATLAB Objects”.

You construct .NET objects in the MATLAB workspace by calling the class constructor,
which has the same name as the class. The syntax to create a .NET object classObj is:

classObj = namespace.ClassName(varargin)

where varargin is the list of constructor arguments to create an instance of the class
specified by ClassName in the given namespace. For an example, see “Create .NET
Object From Constructor” on page 10-7.

To call method methodName:

returnedValue = methodName(classObj,args,...)

For more information, see:

• “Properties”
• “Methods”
• “Events and Delegates”

What Classes Are in a .NET Assembly?

The product documentation for your assembly contains information about its classes.
However, you can use the NET.addAssembly command to read basic information about
an assembly.

10 Using .NET Libraries from MATLAB

10-22

For example, to view the class names of the mscorlib library, type:

asm = NET.addAssembly('mscorlib');

asm.Classes

This assembly has hundreds of entries. You can open a window to the online document
for the System namespace reference page on the Microsoft Developer Network. For
information about using this documentation, see “To Learn More About the .NET
Framework” on page 10-20.

Using the delete Function on a .NET Object

Objects created from .NET classes appear in MATLAB as reference types, or handle
objects. Calling the delete function on a .NET handle releases all references to
that .NET object from MATLAB, but does not invoke any .NET finalizers. The .NET
Framework manages garbage collection.

For more information about managing handle objects, see “Destroying Objects”.

 Build a .NET Application for MATLAB Examples

10-23

Build a .NET Application for MATLAB Examples

You can use C# code examples in MATLAB, such as the NetDocCell assembly provided
in “Convert .NET Arrays to Cell Arrays” on page 10-60. Build an application using a
C# development tool, like Microsoft Visual Studio and then load it into MATLAB using
the NET.addAssembly function. The following are basic steps to do this; consult your
development tool documentation for specific instructions.

1 From your development tool, open a new project and create a C# class library.
2 Copy the classes and other constructs from the C# files into your project.
3 Build the project as a DLL.
4 The name of this assembly is the namespace. Note the full path to the DLL file.

Since it is a private assembly, you must use the full path to load it in MATLAB.
5 After you load the assembly, if you modify and rebuild it, you must restart MATLAB

to access the new assembly. You cannot unload an assembly in MATLAB.

10 Using .NET Libraries from MATLAB

10-24

Troubleshooting Security Policy Settings From Network Drives

If you run a .NET command on a MATLAB session started from a network
drive, you could see a warning message. To resolve this problem, run the
enableNETfromNetworkDrive.m file, from the matlabroot\toolbox\matlab
\winfun\NET folder.

This file adds the following entry to the security policy on your machine to trust the
dotnetcli assembly, which is the MATLAB interface to .NET module:

• Creates a group named MathWorks_Zone with LocalIntranet permission.
• Creates a dotnetcli subgroup within MathWorks_Zone.
• Provides Full-Trust to the dotnetcli.dll strong name for access to the local

intranet.

You must have administrative privileges to make changes to your configuration.

 .NET Terminology

10-25

.NET Terminology

A namespace is a way to group identifiers. A namespace can contain other namespaces.
In MATLAB, a namespace is a package. In MATLAB, a .NET type is a class.

The syntax namespace.ClassName is known as a fully qualified name.

.NET Framework System Namespace

System is the root namespace for fundamental types in the .NET Framework. This
namespace also contains classes (for example, System.String and System.Array)
and second-level namespaces (for example, System.Collections.Generic). The
mscorlib and system assemblies, which MATLAB loads at startup, contain many, but
not all System namespaces. For example, to use classes in the System.Xml namespace,
load the system.xml assembly using the NET.addAssembly command. Refer to the
Microsoft .NET Framework Class Library Reference to learn what assembly to use for a
specific namespace.

Reference Type Versus Value Type

Objects created from .NET classes (for example, the System.Reflection.Assembly
class) appear in MATLAB as reference types, or handle objects. Objects created from .NET
structures (for example, the System.DateTime structure) appear as value types. You use
the same MATLAB syntax to create and access members of classes and structures.

However, handle objects are different from value objects. When you copy a handle object,
only the handle is copied and both the old and new handles refer to the same data. When
you copy a value object, the object's data is also copied and the new object is independent
of changes to the original object. For more information about these differences, see
“Copying Objects”.

Do not confuse an object created from a .NET structure with a MATLAB structure array
(see “Structures”). You cannot pass a structure array to a .NET method.

10 Using .NET Libraries from MATLAB

10-26

Simplify .NET Class Names

In a MATLAB command, you can refer to any class by its fully qualified name, which
includes its package name. A fully qualified name might be long, making commands and
functions, such as constructors, cumbersome to edit and to read. You can refer to classes
by the class name alone (without a package name) if you first import the fully qualified
name into MATLAB. The import function adds all classes that you import to a list called
the import list. You can see what classes are on that list by typing import, without any
arguments.

For example, to eliminate the need to type System. before every command in the “Access
a Simple .NET Class” on page 10-6 example, type:

import System.*

import System.DateTime.*

To create the object, type:

netDate = DateTime.Today;

To use a static method, type:

DaysInMonth(netDate.Year, netDate.Month)

 Use import in MATLAB Functions

10-27

Use import in MATLAB Functions

If you use the import command in a MATLAB function, add the corresponding .NET
assembly before calling the function. For example, the following function
getPrinterInfo calls methods in the System.Drawing namespace.

function ptr = getPrinterInfo

import System.Drawing.Printing.*;

ptr = PrinterSettings;

end

To call the function, type:

NET.addAssembly('System.Drawing');

printer = getPrinterInfo;

You cannot add the command NET.addAssembly('System.Drawing') to the
getPrinterInfo function. MATLAB processes the getPrinterInfo.m code before
executing the NET.addAssembly command. In that case, PrinterSettings is not fully
qualified and MATLAB does not recognize the name.

Likewise, the scope of the import command is limited to the getPrinterInfo function.
At the command line, type:

ptr = PrinterSettings;

Undefined function or variable 'PrinterSettings'.

See Also
import

10 Using .NET Libraries from MATLAB

10-28

Nested Classes

In MATLAB, you cannot directly instantiate a nested class but here is how to do it
through reflection. The following C# code defines InnerClass nested in OuterClass:

namespace MyClassLibrary

{

 public class OuterClass

 {

 public class InnerClass

 {

 public String strmethod(String x)

 {

 return "from InnerClass " + x;

 }

 }

 }

}

If the MyClassLibrary assembly is in your c:\work folder, load the file:

a = NET.addAssembly('C:\Work\MyClassLibrary.dll');

a.Classes

ans =

 'MyClassLibrary.OuterClass'

 'MyClassLibrary.OuterClass+InnerClass'

To call strmethod, type:

t = a.AssemblyHandle.GetType('MyClassLibrary.OuterClass+InnerClass');

sa = System.Activator.CreateInstance(t);

strmethod(sa,'hello')

ans =

from InnerClass hello

 Handle .NET Exceptions

10-29

Handle .NET Exceptions

MATLAB catches exceptions thrown by .NET and converts them into a
NET.NetException object, which is derived from the MException class. The default
display of NetException contains the Message, Source and HelpLink fields of the
System.Exception class that caused the exception. For example:

try

 NET.addAssembly('C:\Work\invalidfile.dll')

catch e

 e.message

 if(isa(e,'NET.NetException'))

 e.ExceptionObject

 end

end

10 Using .NET Libraries from MATLAB

10-30

Pass Numeric Arguments

In this section...

“Call .NET Methods with Numeric Arguments” on page 10-30
“Use .NET Numeric Types in MATLAB” on page 10-30

Call .NET Methods with Numeric Arguments

When you call a .NET method in MATLAB, MATLAB automatically converts numeric
arguments into equivalent .NET types, as shown in the table in “Pass Primitive .NET
Types” on page 10-46.

Use .NET Numeric Types in MATLAB

MATLAB automatically converts numeric data returned from a .NET method into
equivalent MATLAB types, as shown in the table in “.NET Type to MATLAB Type
Mapping” on page 10-53.

Note that MATLAB preserves .NET arrays as the relevant System.Array types, for
example, System.Double[].

MATLAB has rules for handling integers. If you are familiar with using integer types in
MATLAB, and just need a reference to the rules, see the links at the end of this topic.

The default data type in MATLAB is double. If the data in your applications uses the
default, then you need to pay attention to the numeric outputs of your .NET applications.

For more information, see:

• “Numeric Types”
• “Valid Combinations of Unlike Classes”
• “Combining Unlike Integer Types”
• “Integers”

 Pass System.String Arguments

10-31

Pass System.String Arguments

In this section...

“Call .NET Methods with System.String Arguments” on page 10-31
“Use System.String in MATLAB” on page 10-31

Call .NET Methods with System.String Arguments

If an input argument to a .NET method is System.String, you can pass a MATLAB
string. MATLAB automatically converts a char array (string) argument into
System.String. For example, the following code uses the System.DateTime.Parse
method to convert a date represented by a string into a DateTime object:

strDate = '01 Jul 2010 3:33:02 GMT';

convertedDate = System.DateTime.Parse(strDate);

ToShortTimeString(convertedDate)

ToLongDateString(convertedDate)

To view the function signature for the System.DateTime.Parse method, type:

methodsview('System.DateTime')

Search the list for Parse.

Qualifiers Return Type Name Arguments

Static System.DateTime

RetVal

Parse (System.String s)

For more information, see:

• “Pass MATLAB Strings” on page 10-48
• Search the MSDN website at http://msdn.microsoft.com/en-us/

default.aspx for the term System.DateTime.

Use System.String in MATLAB

This example shows how to use a System.String object in a MATLAB function.

Create an object representing the current time.

http://msdn.microsoft.com/en-us/default.aspx
http://msdn.microsoft.com/en-us/default.aspx

10 Using .NET Libraries from MATLAB

10-32

netDate = System.DateTime.Now;

thisTime = ToShortTimeString(netDate);

class(thisTime)

ans =

System.String

The current time, thisTime, is a System.String object.

To display thisTime in MATLAB, use the char function to convert the System.String
object to a MATLAB string.

disp(['The time is ' char(thisTime)])

More About
• “How MATLAB Handles System.String” on page 10-54

 Pass System.Enum Arguments

10-33

Pass System.Enum Arguments

In this section...

“Call .NET Methods with System.Enum Arguments” on page 10-33
“Use System.Enum in MATLAB” on page 10-34

Call .NET Methods with System.Enum Arguments

An example of an enumeration is System.DayOfWeek. To see how to call a .NET
method with this input type, use the GetAbbreviatedDayName method in the
System.Globalization.DateTimeFormatInfo class. The following code displays the
abbreviation for “Thursday”.

% Create a DayOfWeek object

thisDay = System.DayOfWeek.Thursday;

dtformat = System.Globalization.DateTimeFormatInfo;

% Display the abbreviated name of the specified day based on the

% culture associated with the current DateTimeFormatInfo object.

dtformat.GetAbbreviatedDayName(thisDay)

To view the function signature for the GetAbbreviatedDayName method, type:

methodsview('System.Globalization.DateTimeFormatInfo')

Search the list for GetAbbreviatedDayName.

Return Type Name Arguments

System.String RetVal GetAbbreviatedDayName (System.Globalization.

DateTimeFormatInfo

this,

System.DayOfWeek

dayofweek)

For more information, see:

• “.NET Enumerations in MATLAB” on page 10-112
• Search the MSDN website at http://msdn.microsoft.com/en-us/

default.aspx for the term DateTimeFormatInfo.

http://msdn.microsoft.com/en-us/default.aspx
http://msdn.microsoft.com/en-us/default.aspx

10 Using .NET Libraries from MATLAB

10-34

Use System.Enum in MATLAB

In MATLAB, an enumeration is a class having a finite set of named instances. You
can work with .NET enumerations using features of the MATLAB enumeration
class and some features unique to the .NET Framework. Some ways to use the
System.DayOfWeek enumeration in MATLAB:

• Display an enumeration member. For example:

myDay = System.DateTime.Today;

disp(myDay.DayOfWeek)

• Use an enumeration in comparison statements. For example:

myDay = System.DateTime.Today;

switch(myDay.DayOfWeek)

 case {System.DayOfWeek.Saturday,System.DayOfWeek.Sunday}

 disp('Weekend')

 otherwise

 disp('Work day')

end

• Perform calculations. For example, the underlying type of DayOfWeek is
System.Int32 which you can use to perform integer arithmetic. To display the date
of the first day of the current week, type:

myDay = System.DateTime.Today;

dow = myDay.DayOfWeek;

startDateOfWeek = AddDays(myDay,-double(dow));

ToShortDateString(startDateOfWeek)

• Perform bit-wise operations. For examples, see “Creating .NET Enumeration Bit
Flags” on page 10-107.

For more information, see:

• “Iterate Through a .NET Enumeration” on page 10-122
• “Use .NET Enumerations to Test for Conditions” on page 10-124
• “Use Bit Flags with .NET Enumerations” on page 10-107

 Pass System.Nullable Arguments

10-35

Pass System.Nullable Arguments

This example shows how to handle .NET methods with System.Nullable type
arguments, whose underlying value type is double.

The example shows how to call a method with a System.Nullable input argument.
It uses the MATLAB plot function to show to handle a System.Nullable output
argument.

Build Custom Assembly NetDocNullable

To execute the MATLAB code in this example, build the NetDocNullable assembly.
The assembly is created with the C# code, NetDocNullable.cs, in the matlabroot/
extern/examples/NET/NetSample folder. To see the code, open the file in MATLAB
Editor and build the NetDocNullable assembly.

NetDocNullable defines method SetField which has System.Nullable arguments.

SetField Function Signature

Return Type Name Arguments

System.Nullable

<System*Double>

RetVal

SetField (NetDocNullable.

MyClass this,

System.Nullable

<System*Double> db)

Load NetDocNullable Assembly

The example assumes you put the assembly in your c:\work folder. You can modify the
example to change the path, dllPath, of the assembly.

dllPath = fullfile('c:','work','NetDocNullable.dll');

asm = NET.addAssembly(dllPath);

cls = NetDocNullable.MyClass;

Use the cls variable to call SetField, which creates a
System.Nullable<System*Double> value from your input.

Pass System.Nullable Input Arguments

MATLAB automatically converts double and null values to
System.Nullable<System*Double> objects.

10 Using .NET Libraries from MATLAB

10-36

Pass a double value.

field1 = SetField(cls,10)

field1 =

 System.Nullable<System*Double>

 Package: System

 Properties:

 HasValue: 1

 Value: 10

 Methods, Superclasses

The HasValue property is true (1) and the Value property is 10.

Pass null value, [].

field2 = SetField(cls,[])

field2 =

 System.Nullable<System*Double>

 Package: System

 Properties:

 HasValue: 0

 Methods, Superclasses

The HasValue property is false (0), and it has no Value property.

Handle System.Nullable Output Arguments in MATLAB

Before you use a System.Nullable object in MATLAB, first decide how to handle null
values. If you ignore null values, you might get unexpected results when you use the
value in a MATLAB function.

The System.Nullable class provides two techniques for handling null values. To
provide special handling for null values, use the HasValue property. To treat a null
value in the same way as a double, use the GetValueOrDefault method.

Create a MATLAB function, plotValue.m, which detects null values and treats them
differently from numeric values. The input is a System.Nullable<System*Double>
type. If the input is null, the function displays a message. If the input value is double,
it creates a line graph from 0 to the value.

function plotValue(x)

 Pass System.Nullable Arguments

10-37

% x is System.Nullable<System*Double> type

if (x.HasValue && isfloat(x.Value))

 plot([0 x.Value])

else

 disp('No Data')

end

The plotValue function uses the HasValue property of the input argument to detect
null values and calls the MATLAB plot function using the Value property.

Call plotValue with variable field1 to display a line graph.

plotValue(field1)

Call plotValue with the variable field2, a null value.

plotValue(field2)

No Data

If you do not need special processing for null values, use the GetValueOrDefault
method. To display the GetValueOrDefault function signature, type:

methodsview(field1)

Look for the following function signature:

GetValueOrDefault Function Signature

Return Type Name Arguments

double scalar RetVal GetValueOrDefault (System.Nullable

<System*Double> this)

This method converts the input variable to double so you can directly call the MATLAB
plot function:

myData = GetValueOrDefault(field1);

plot([0 myData+2])

The GetValueOrDefault method converts a null value to the default numeric value, 0.

defaultData = GetValueOrDefault(field2)

defaultData =

10 Using .NET Libraries from MATLAB

10-38

 0

Call plot:

plot([0 defaultData])

You can change the default value using the GetValueOrDefault method. Open the
methodsview window and look for the following function signature:

GetValueOrDefault Function Signature to Change Default

Return Type Name Arguments

double scalar RetVal GetValueOrDefault (System.Nullable

<System*Double> this,

double scalar

defaultValue)

Set the defaultValue input argument to a new value, -1, and plot the results for null
value field2.

defaultData = GetValueOrDefault(field2,-1);

plot([0 defaultData])

Related Examples
• “Build a .NET Application for MATLAB Examples” on page 10-23

More About
• “Pass System.Nullable Type” on page 10-48
• “How MATLAB Handles System.Nullable” on page 10-56

External Websites
• http://msdn.microsoft.com/en-us/default.aspx

http://msdn.microsoft.com/en-us/default.aspx

 Pass Cell Arrays of .NET Data

10-39

Pass Cell Arrays of .NET Data

In this section...

“Example of Cell Arrays of .NET Data” on page 10-39
“Create a Cell Array for Each System.Object” on page 10-40
“Create MATLAB Variables from the .NET Data” on page 10-40
“Call MATLAB Functions with MATLAB Variables” on page 10-40

Example of Cell Arrays of .NET Data

In the “Convert Nested System.Object Arrays” on page 10-60 example, the cell array
mlData contains data from the MyGraph.getNewData method. By reading the class
documentation in the source file, you can create the following MATLAB graph:

dllPath = fullfile('c:','work','NetDocCell.dll');

asm = NET.addAssembly(dllPath);

graph = NetDocCell.MyGraph;

% Create cell array containing all data

mlData = cell(graph.getNewData);

% Plot the data and label the graph

figure('Name',char(mlData{1}))

plot(double(mlData{2}(2)))

xlabel(char(mlData{2}(1)))

However, keeping track of data of different types and dimensions and the conversions
necessary to map .NET data into MATLAB types is complicated using the cell array
structure. Here are some tips for working with the contents of nested System.Object
arrays in MATLAB. After reading data from a .NET method:

• Create cell arrays for all System.Object arrays.
• Convert the .NET types to MATLAB types, according to the information in “Handle

Data Returned from .NET Objects” on page 10-53.
• Create MATLAB variables for each type within the cell arrays.
• Call MATLAB functions with the MATLAB variables.

10 Using .NET Libraries from MATLAB

10-40

Create a Cell Array for Each System.Object

This example shows how to copy System.Object data into a cell array.

The following statement creates the cell array mlData:

mlData = cell(graph.getNewData)

mlData =

 [1x1 System.String] [1x1 System.Object[]]

This cell array contains elements of these types.

To access the contents of the System.Object array, create another cell array
mlPlotData:

mlPlotData = cell(mlData{2})

mlPlotData =

 [1x1 System.String] [1x1 System.Double[]]

This cell array contains elements of these types.

Create MATLAB Variables from the .NET Data

Assign cell data to MATLAB variables and convert:

% Create descriptive variables

% Convert System.String to char

mytitle = char(mlData{1});

myxlabel = char(mlPlotData{1});

% Convert System.Double to double

y = double(mlPlotData{2});

Call MATLAB Functions with MATLAB Variables

Create a MATLAB graph with this data:

% Remove the previous figure

close

% Plot the data and label the graph

figure('Name',mytitle,'NumberTitle','off')

plot(y)

 Pass Cell Arrays of .NET Data

10-41

xlabel(myxlabel)

10 Using .NET Libraries from MATLAB

10-42

Pass Jagged Arrays
In this section...

“Create System.Double .NET Jagged Array” on page 10-42
“Call .NET Method with System.String Jagged Array Arguments” on page 10-42
“Call .NET Method with Multidimensional Jagged Array Arguments” on page 10-43

Create System.Double .NET Jagged Array

This example shows how to create a .NET jagged array of System.Double using the
NET.createArray function.

Create a 3 element array.

jArr = NET.createArray('System.Double[]',3)

jArr =

 Double[][] with properties:

 Length: 3

 LongLength: 3

 Rank: 1

 SyncRoot: [1x1 System.Double[][]]

 IsReadOnly: 0

 IsFixedSize: 1

 IsSynchronized: 0

You can pass jArr to any .NET method with an input or output argument of type
System.Double[][].

Call .NET Method with System.String Jagged Array Arguments

This example shows how to create an array of MATLAB strings to pass to a method,
MethodStringArr, with a System.String[][] input argument.

The following is the MATLAB function signature for MethodStringArr.

Return Type Name Arguments

System.String[][]

RetVal

MethodStringArr (NetPackage.StringClass

this,

 Pass Jagged Arrays

10-43

Return Type Name Arguments

System.String[][] arr)

The MATLAB strings you want to pass to the method are:

str1 = {'this', 'is'};

str2 = 'jagged';

Create a variable, netArr, of System.String arrays, which contains two arrays. Using
the NET.createArray, the typeName for this array is System.String[], and the
dimension is 2.

netArr = NET.createArray('System.String[]',2);

The arrays contain empty strings.

Create System.String arrays to correspond to the MATLAB strings, str1 and str2.

netArr(1) = NET.createArray('System.String',2);

netArr(2) = NET.createArray('System.String',1);

Assign str1 and str2 to netArr.

netArr(1) = str1;

netArr(2,1) = str2;

Because str2 is a scalar and netArr(2) expects an array, you must assign str2 to the
specific element netArr(2,1).

Now you can pass netArr to the MethodStringArr method.

class(netArr)

ans =

System.String[][]

Call .NET Method with Multidimensional Jagged Array Arguments

This example shows how to create a MATLAB array to pass to a method,
MethodMultiDArr, with a multidimensional jagged array input argument of
System.Double type.

The following is the MATLAB function signature for MethodMultiDArr. The input is a
multidimensional jagged array that contains single dimensional elements.

10 Using .NET Libraries from MATLAB

10-44

Return Type Name Arguments

System.Double[][,]

RetVal

MethodMultiDArr (NetPackage.NumericClass

this,

System.Double[][,] arr)

Create a 2-by-3 array with typeName of System.Double[].

arr = NET.createArray('System.Double[]',2,3);

The elements are empty arrays.

The MATLAB arrays you want to pass to the method are:

A1 = [1 2 3];

A2 = [5 6 7 8];

MATLAB automatically converts a numeric array to the equivalent .NET type.

arr(1,1) = A1;

arr(1,2) = A2;

Array arr is a System.Double[][,] jagged array.

arr

arr =

 Double[][,] with properties:

 Length: 6

 LongLength: 6

 Rank: 2

 SyncRoot: [1x1 System.Double[][,]]

 IsReadOnly: 0

 IsFixedSize: 1

 IsSynchronized: 0

Now you can pass arr to the MethodMultiDArr method.

 Convert Nested System.Object Arrays

10-45

Convert Nested System.Object Arrays

This example shows how to use the cell function to convert data in nested
System.Object arrays.

The conversion of .NET arrays to cell arrays is not recursive for a System.Object
array contained within a System.Object array. Use the cell function to convert each
System.Object array.

The C# example NetDocCell.cs, in the matlabroot/extern/examples/NET/
NetSample folder, is used in the following example. To see the code, open the file in
MATLAB Editor and build the NetDocCell assembly.

Set up the path to your assembly, then load the assembly.

dllPath = fullfile('c:','work','NetDocCell.dll');

NET.addAssembly(dllPath);

Create a cell array, mlData.

graph = NetDocCell.MyGraph;

mldata = cell(graph.getNewData)

mlData =

 [1x1 System.String] [1x1 System.Object[]]

To access the contents of the System.Object array, create another cell array
mlPlotData.

mlPlotData = cell(mlData{2})

mlPlotData =

 [1x1 System.String] [1x1 System.Double[]]

Related Examples
• “Pass Cell Arrays of .NET Data” on page 10-39

More About
• “Build a .NET Application for MATLAB Examples” on page 10-23

10 Using .NET Libraries from MATLAB

10-46

Pass Data to .NET Objects

When you call a .NET method or function from MATLAB, MATLAB automatically
converts arguments into .NET types. MATLAB performs this conversion on each passed
argument, except for arguments that are already .NET objects.

The following topics provide information about passing specific data to .NET.

In this section...

“Pass Primitive .NET Types” on page 10-46
“Pass Cell Arrays” on page 10-47
“Pass Nonprimitive .NET Objects” on page 10-48
“Pass MATLAB Strings” on page 10-48
“Pass System.Nullable Type” on page 10-48
“Pass NULL Values” on page 10-49
“Unsupported MATLAB Types” on page 10-49
“Choosing Method Signatures” on page 10-49
“Example — Choosing a Method Signature” on page 10-50
“Pass Arrays” on page 10-51
“Pass MATLAB Arrays as Jagged Arrays” on page 10-52

Pass Primitive .NET Types

The following table shows the MATLAB base types for passed arguments and the
corresponding .NET types defined for input arguments. Each row shows a MATLAB type
followed by the possible .NET argument matches, from left to right in order of closeness
of the match.

MATLAB Primitive Type Conversion Table

MATLAB
Type

Closest Type <————— Other Matching .NET Types —————> Least Close Type
Preface Each .NET Type with System.

logical BooleanByte SByte Int16 UInt16 Int32 UInt32 Int64 UInt64Single Double Object
double Double Single DecimalInt64 UInt64 Int32 UInt32 Int16 UInt16SByte Byte Object
single Single Double DecimalObject

 Pass Data to .NET Objects

10-47

MATLAB
Type

Closest Type <————— Other Matching .NET Types —————> Least Close Type
Preface Each .NET Type with System.

int8 SByte Int16 Int32 Int64 Single DoubleObject
uint8 Byte UInt16 UInt32UInt64 Single DoubleObject
int16 Int16 Int32 Int64 Single Double Object
uint16 UInt16 UInt32 UInt64Single Double Object
int32 Int32 Int64 Single Double Object
uint32 UInt32 UInt64 Single Double Object
int64 Int64 Double Object
uint64 UInt64 Double Object
char Char String Object

The following primitive .NET argument types do not have direct MATLAB equivalent
types. MATLAB passes these types as is:

• System.IntPtr

• System.UIntPtr

• System.Decimal

• enumerated types

Pass Cell Arrays

You can pass a cell array to a .NET property or method expecting an array of
System.Object or System.String arguments, as shown in the following table.

MATLAB Cell Array Conversion Table

MATLAB Type Closest Type <——— Other Matching .NET Types ———> Least Close Type

Cell array of
strings

System.String[] System.Object[] System.Object

Cell array (not all
strings)

System.Object[] System.Object

Elements of a cell can be any of the following supported types:

10 Using .NET Libraries from MATLAB

10-48

• Any non-sparse, non-complex built-in numeric type shown in the MATLAB Primitive
Type Conversion Table

• char

• logical

• cell array
• .NET object

Pass Nonprimitive .NET Objects

When calling a method that has an argument of a particular .NET class, pass an object
that is an instance of that class or its derived classes. You can create such an object using
the class constructor, or use an object returned by a member of the class. When a class
member returns a .NET object, MATLAB leaves it as a .NET object. Use this object to
interact with other class members.

Pass MATLAB Strings

MATLAB automatically converts a string or char array to a .NET System.String
object. To pass an array of strings, create a cell array.

Pass System.Nullable Type

You can pass any of the following to a .NET method with
System.Nullable<ValueType> input arguments:

• Variable of the underlying <ValueType>
• null value, []
• System.Nullable<ValueType> object

When you pass a MATLAB variable of type ValueType, MATLAB reads the signature
and automatically converts your variable to a System.Nullable<ValueType>
object. For a complete list of possible ValueType values accepted for
System.Nullable<ValueType>, refer to the MATLAB Primitive Type Conversion
Table.

For examples, see “Pass System.Nullable Arguments” on page 10-35.

 Pass Data to .NET Objects

10-49

Pass NULL Values

MATLAB uses empty double ([]) values for reference type arguments.

Unsupported MATLAB Types

MATLAB does not support passing the following MATLAB types to .NET methods:

• Structure arrays
• Sparse arrays
• Complex numbers

Choosing Method Signatures

MATLAB chooses the correct .NET method signature (including constructor, static and
nonstatic methods) based on the following criteria.

When your MATLAB function calls a .NET method, MATLAB:

1 Checks to make sure that the object (or class, for a static method) has a method by
that name.

2 Determines whether the invocation passes the same number of arguments of at least
one method with that name.

3 Makes sure that each passed argument can be converted to the type defined for the
method.

If all the preceding conditions are satisfied, MATLAB calls the method.

In a call to an overloaded method, if there is more than one candidate, MATLAB selects
the one with arguments that best fit the calling arguments, based on the MATLAB
Primitive Type Conversion Table. First, MATLAB rejects all methods that have any
argument types that are incompatible with the passed arguments. Among the remaining
methods, MATLAB selects the one with the highest fitness value, which is the sum of
the fitness values of all its arguments. The fitness value for each argument is how close
the MATLAB type is to the .NET type. If two methods have the same fitness, MATLAB
chooses the first one defined in the class.

For class types, MATLAB chooses the method signature based on the distance of the
incoming class type to the expected .NET class type. The closer the incoming type is to
the expected type, the better the match.

10 Using .NET Libraries from MATLAB

10-50

The rules for overloaded methods with optional arguments are described in “Determining
Which Overloaded Method Is Invoked” on page 10-83.

Example — Choosing a Method Signature

Open a methodsview window for the System.String class and look at the entries for
the Concat method:

import System.*

methodsview('System.String')

The Concat method takes one or more arguments. If the arguments are of type
System.String, the method concatenates the values. For example, create two strings:

str1 = String('hello');

str2 = String('world');

When you type:

String.Concat(str1,str2)

MATLAB verifies the method Concat exists and looks for a signature with two input
arguments. The following table shows the two signatures.

Qualifiers Return Type Name Arguments

Static System.String

RetVal

Concat (System.Object arg0,

System.Object arg1)

Static System.String

RetVal

Concat (System.String str0,

System.String str1)

Since str1 and str2 are of class System.String, MATLAB chooses the second
signature and displays:

ans =

helloworld

If the arguments are of type System.Object, the method displays the string
representations of the values. For example, create two System.DateTime objects:

dt = DateTime.Today;

myDate = System.DateTime(dt.Year,3,1,11,32,5);

 Pass Data to .NET Objects

10-51

When you type:

String.Concat(dt,myDate)

MATLAB chooses the following signature, since System.DateTime objects are derived
from the System.Object class.

Qualifiers Return Type Name Arguments

Static System.String

RetVal

Concat (System.Object

arg0,

System.Object

arg1)

This Concat method first applies the ToString method to the objects, then concatenates
the strings. MATLAB displays information like:

ans =

12/23/2008 12:00:00 AM3/1/2008 11:32:05 AM

Pass Arrays

For information about passing MATLAB arrays to .NET methods, see “Use Arrays
with .NET Applications” on page 10-58 and “Pass MATLAB Arrays as Jagged Arrays”
on page 10-52.

How Array Dimensions Affect Conversion

The dimension of a .NET array is the number of subscripts required to access an element
of the array. To get the number of dimensions, use the Rank property of the .NET
System.Array type. The dimensionality of a MATLAB array is the number of non-
singleton dimensions in the array.

MATLAB matches the array dimensionality with the .NET method signature, as long
as the dimensionality of the MATLAB array is lower than or equal to the expected
dimensionality. For example, you can pass a scalar input to a method that expects a 2-D
array.

For a MATLAB array with number of dimensions, N, if the .NET array has fewer than N
dimensions, the MATLAB conversion drops singleton dimensions, starting with the first
one, until the number of remaining dimensions matches the number of dimensions in
the .NET array.

10 Using .NET Libraries from MATLAB

10-52

Converting a MATLAB Array to System.Object

You can pass a MATLAB array to a method that expects a System.Object.

Pass MATLAB Arrays as Jagged Arrays

A MATLAB array is a rectangular array. The .NET Framework supports a jagged
array, which is an array of arrays. So the elements of a jagged array can be of different
dimensions and sizes.

Although .NET languages support jagged arrays, the term jagged is not a language
keyword. C# function signatures use multiple pairs of square brackets ([][])
to represent a jagged array. In addition, a jagged array can be nested ([][][]),
multidimensional ([,]), or nested with multidimensional elements (for example, [,,]
[,][]).

MATLAB automatically converts MATLAB arrays of numeric types to the corresponding
jagged array type. If the input argument is a non-numeric type or multidimensional,
use the NET.createArray function to create an array to pass as a jagged array. For
examples using NET.createArray, see “Pass Jagged Arrays” on page 10-42.

 Handle Data Returned from .NET Objects

10-53

Handle Data Returned from .NET Objects

In this section...

“.NET Type to MATLAB Type Mapping” on page 10-53
“How MATLAB Handles System.String” on page 10-54
“How MATLAB Handles System.__ComObject” on page 10-55
“How MATLAB Handles System.Nullable” on page 10-56
“How MATLAB Handles dynamic Type” on page 10-57
“How MATLAB Handles Jagged Arrays” on page 10-57

.NET Type to MATLAB Type Mapping

The following table shows how MATLAB converts data from a .NET object into MATLAB
types. These values are displayed in a method signature.

C# .NET Type MATLAB Type

System.Int16 int16 scalar
System.UInt16 uint16 scalar
System.Int32 int32 scalar
System.UInt32 uint32 scalar
System.Int64 int64 scalar
System.UInt64 uint64 scalar
System.Single single scalar
System.Double double scalar
System.Boolean logical scalar
System.Byte uint8 scalar
System.Enum enum

System.Char char

System.Decimal System.Decimal

System.Object System.Object

10 Using .NET Libraries from MATLAB

10-54

C# .NET Type MATLAB Type

System.IntPtr System.IntPtr

System.UIntPtr System.UIntPtr

System.String System.String

System.Nullable<ValueType> System.Nullable<ValueType>

System.Array See “Use Arrays with .NET Applications”
on page 10-58

System.__ComObject See “How MATLAB Handles
System.__ComObject” on page 10-55

class name class name

struct name struct name

How MATLAB Handles System.String

Use the char function to convert a System.String object to a MATLAB string. For
example, type:

str = System.String('create a System.String');

strml = char(str);

whos

 Name Size Bytes Class

 str 1x1 60 System.String

 strml 1x22 44 char

MATLAB displays the string value of System.String objects, instead of the standard
object display. For example, type:

a = System.String('test')

b = String.Concat(a,' hello',' world')

a =

test

b =

test hello world

The System.String class illustrates how MATLAB handles fields and properties, as
described in “Call .NET Properties That Take an Argument” on page 10-85. To see

 Handle Data Returned from .NET Objects

10-55

reference information about the class, search for the term System.String in the .NET
Framework Class Library, as described in “To Learn More About the .NET Framework”
on page 10-20.

How MATLAB Handles System.__ComObject

The System.__ComObject type represents a Microsoft COM object. It is a non-
visible, public class in the mscorlib assembly with no public methods. Under certain
circumstances, a .NET object returns an instance of System.__ComObject. MATLAB
handles the System.__ComObject based on the return types defined in the metadata.

MATLAB Converts Object

If the return type of a method or property is strongly typed, and the result of the
invocation is System.__ComObject, MATLAB automatically converts the returned
object to the appropriate type.

For example, suppose that your assembly defines a type, TestType, and provides a
method, GetTestType, with the following signature.

Return Type Name Arguments

NetDocTest.TestType

RetVal

GetTestType (NetDocTest.MyClass this)

The return type of GetTestType is strongly typed and the .NET Framework returns an
object of type System.__ComObject. MATLAB automatically converts the object to the
appropriate type, NetDocTest.TestType, shown in the following pseudo-code:

cls = NetDocTest.MyClass;

var = GetTestType(cls)

var =

 TestType handle with no properties.

Casting Object to Appropriate Type

If the return type of a method or property is System.Object, and the result of the
invocation is System.__ComObject, MATLAB returns System.__ComObject. To

10 Using .NET Libraries from MATLAB

10-56

use the returned object, cast it to a valid class or interface type. Use your product
documentation to identify the valid types for this object.

To call a member of the new type, cast the object using the MATLAB conversion syntax:

objConverted = namespace.classname(obj)

where obj is a System.__ComObject type.

For example, an item in a Microsoft Excel sheet collection can be a chart or a worksheet.
The following command converts the System.__ComObject variable mySheet to a
Chart or a Worksheet object newSheet:

newSheet = Microsoft.Office.Interop.Excel.interfacename(mySheet);

where interfacename is Chart or Worksheet. For an example, see “Work with
Microsoft Excel Spreadsheets Using .NET” on page 10-12.

Pass a COM Object Between Processes

If you pass a COM object to or from a function, lock the object so that MATLAB does
not automatically release it when the object goes out of scope. To lock the object,
call the NET.disableAutoRelease function. Then unlock the object, using the
NET.enableAutoRelease function, after you are through using it.

How MATLAB Handles System.Nullable

If .NET returns a System.Nullable type, MATLAB returns the corresponding
System.Nullable type.

A System.Nullable type lets you assign null values to types, such as numeric types,
that do not support null value. To use a System.Nullable object in MATLAB, first
decide how to handle null values.

• If you want to process null values differently from <ValueType> values, use the
HasValue property.

• If you want every value to be of the underlying <ValueType>, use the
GetValueOrDefault method. This method assigns a default value of type
<ValueType> to null values.

Use a variable of the object's underlying type where appropriate in any MATLAB
expression. For examples, see “Pass System.Nullable Arguments” on page 10-35.

 Handle Data Returned from .NET Objects

10-57

How MATLAB Handles dynamic Type

MATLAB handles dynamic types as System.Object. For example, the following C#
method exampleMethod has a dynamic input argument d and returns a dynamic output
value:

public dynamic exampleMethod(dynamic d)

The following table shows the corresponding MATLAB function signature.

Return Type Name Arguments

System.Object

RetVal

exampleMethod (namespace.classname this,

System.Object d)

How MATLAB Handles Jagged Arrays

You must convert a .NET jagged array before using it in a MATLAB command. To
convert:

• If the shape of the array is rectangular, use the corresponding MATLAB numeric
function.

• If the array is not rectangular, use the cell function.

If the jagged array is multidimensional, you must individually convert the arrays in each
dimension.

10 Using .NET Libraries from MATLAB

10-58

Use Arrays with .NET Applications

In this section...

“Passing MATLAB Arrays to .NET” on page 10-58
“Accessing .NET Array Elements in MATLAB” on page 10-58
“Converting .NET Jagged Arrays to MATLAB Arrays” on page 10-59

Passing MATLAB Arrays to .NET

MATLAB automatically converts arrays to .NET types, as described in the MATLAB
Primitive Type Conversion Table. To pass an array of strings, create a cell array. For all
other types, use the MATLAB NET.createArray function.

MATLAB creates a .NET array, copies the elements from the MATLAB array to
the .NET array, and passes it to C#.

Accessing .NET Array Elements in MATLAB

You access elements of a .NET array with subscripts, just like with MATLAB arrays.

You cannot refer to the elements of a multidimensional .NET array with a single
subscript (linear indexing) like you can in MATLAB, as described in “Matrix Indexing”.
You must specify the index for each dimension of the .NET array.

You can only use scalar indexing to access elements of a .NET array. The colon operator,
described in “Generating a Numeric Sequence”, is not supported.

Using the Get and Set Instance Functions

Alternatively, you can access elements of a .NET array using the Set and Get instance
functions. When using Set or Get you must use C# array indexing, which is zero-based.

For example, create two System.String arrays, using the Set function and direct
assignment:

d1 = NET.createArray('System.String',3);

d1.Set(0, 'one');

d1.Set(1, 'two');

d1.Set(2, 'three');

 Use Arrays with .NET Applications

10-59

d2 = NET.createArray('System.String',3);

d2(1) = 'one';

d2(2) = 'two';

d2(3) = 'zero';

To compare the values of the first elements in each array, type:

System.String.Compare(d1(1),d2.Get(0))

MATLAB displays 0, meaning the strings are equal.

Converting .NET Jagged Arrays to MATLAB Arrays

You must convert a .NET jagged array before using it in a MATLAB command.

• If the shape of the array is rectangular, use the corresponding MATLAB numeric
function.

• If the array is not rectangular, use the cell function.

If the jagged array is multidimensional, you must individually convert the arrays in each
dimension.

See Also
cell | NET.createArray

More About
• “Convert .NET Arrays to Cell Arrays” on page 10-60
• “Limitations to Support of .NET Arrays” on page 10-63

10 Using .NET Libraries from MATLAB

10-60

Convert .NET Arrays to Cell Arrays

In this section...

“Convert Nested System.Object Arrays” on page 10-60
“cell Function Syntax for System.Object[,] Arrays” on page 10-61

To convert .NET System.String and System.Object arrays to MATLAB cell arrays,
use the cell function. Elements of the cell array are of the MATLAB type closest to
the .NET type. For more information, see “.NET Type to MATLAB Type Mapping” on
page 10-53.

For example, use the .NET Framework System.IO.Directory class to create a cell
array of folder names in your c:\ folder.

myList = cell(System.IO.Directory.GetDirectories('c:\'));

Convert Nested System.Object Arrays

The conversion is not recursive for a System.Object array contained within a
System.Object array. You must use the cell function to convert each System.Object
array.

For an example, build the NetDocCell assembly using the directions in “Build a .NET
Application for MATLAB Examples” on page 10-23. The source code is here.

C# NetDocCell Source File

using System;

/*

 * C# Assembly used in MATLAB .NET documentaion.

 * Method getNewData is used to demonstrate

 * how MATLAB handles a System.Object

 * that includes another System.Object.

 */

namespace NetDocCell

{

 public class MyGraph

 {

 public Object[] getNewData()

 /*

 * Create a System.Object array to use in MATLAB examples.

 Convert .NET Arrays to Cell Arrays

10-61

 * Returns containerArr System.Object array containing:

 * fLabel System.String object

 * plotData System.Object array containing:

 * xLabel System.String object

 * doubleArr System.Double array

 */

 {

 String fLabel = "Figure Showing New Graph Data";

 Double[] doubleArr = {

 18, 32, 3.133, 44, -9.9, -13, 33.03 };

 String xLabel = "X-Axis Label";

 Object[] plotData = { xLabel, doubleArr };

 Object[] containerArr = { fLabel, plotData };

 return containerArr;

 }

 }

}

Load the assembly and create a cell array, mlData.

dllPath = fullfile('c:','work','NetDocCell.dll');

NET.addAssembly(dllPath);

obj = NetDocCell.MyGraph;

mlData = cell(obj.getNewData)

The cell array contains elements of type

mlData =

 [1x1 System.String] [1x1 System.Object[]]

To access the contents of the System.Object array, create another cell array
mlPlotData.

mlPlotData = cell(mlData{2})

This cell array contains elements of type

mlPlotData =

 [1x1 System.String] [1x1 System.Double[]]

cell Function Syntax for System.Object[,] Arrays

Use this cell function syntax to convert System.DateTime and System.String data
to cell arrays of MATLAB data,

10 Using .NET Libraries from MATLAB

10-62

A = cell(obj,'ConvertTypes',type)

where obj is a .NET System.Object[,] array, and type is one of the following strings:

• {'System.DateTime'} — Convert System.DateTime elements to MATLAB
datetime elements.

• {'System.String'} — Convert System.String elements to MATLAB strings.
• {'all'} — Convert all supported .NET types to equivalent MATLAB types.

A is a cell array, that is the same size as the obj array.

Related Examples
• “Pass Cell Arrays of .NET Data” on page 10-39
• “Read Cell Arrays of Excel Spreadsheet Data” on page 10-4

 Limitations to Support of .NET Arrays

10-63

Limitations to Support of .NET Arrays

MATLAB does not support:

• Arrays which specify a lower bound
• Concatenating .NET objects into an array
• The end function as the last index in a .NET array
• Array indices of complex values
• Autoconversion of char or cell arrays to jagged array arguments.
• Autoconversion of MATLAB arrays to mulidimensional jagged array arguments.

10 Using .NET Libraries from MATLAB

10-64

Set Static .NET Properties

In this section...

“System.Environment.CurrentDirectory Example” on page 10-64
“Do Not Use ClassName.PropertyName Syntax for Static Properties” on page 10-64

System.Environment.CurrentDirectory Example

This example shows how to set a static property using the NET.setStaticProperty
function.

The CurrentDirectory property in the System.Environment class is a static, read/
write property. The following code creates a folder, temp, in the current folder and
changes the CurrentDirectory property to the new folder.

Set your current folder to a specific path, for example:

cd('C:\Work')

Set the CurrentDirectory property:

saveDir = System.Environment.CurrentDirectory;

newDir = [char(saveDir) '\temp'];

mkdir(newDir)

NET.setStaticProperty('System.Environment.CurrentDirectory',newDir)

System.Environment.CurrentDirectory

ans =

C:\Work\temp

To restore the original CurrentDirectory value, type:

NET.setStaticProperty('System.Environment.CurrentDirectory',saveDir)

Do Not Use ClassName.PropertyName Syntax for Static Properties

This example shows how to mistakenly create a struct array instead of setting a class
property.

If you use the ClassName.PropertyName syntax to set a static property, MATLAB
creates a struct array.

 Set Static .NET Properties

10-65

The following code creates a structure named System:

saveDir = System.Environment.CurrentDirectory;

newDir = [char(saveDir) '\temp'];

System.Environment.CurrentDirectory = newDir;

whos

 Name Size Bytes Class

 System 1x1 376 struct

 newDir 1x12 24 char

 saveDir 1x1 112 System.String

Try to use a member of the System namespace.

oldDate = System.DateTime(1992,3,1);

Reference to non-existent field 'DateTime'.

To restore your environment, type:

clear System

NET.setStaticProperty('System.Environment.CurrentDirectory',saveDir)

10 Using .NET Libraries from MATLAB

10-66

Using .NET Properties

In this section...

“How MATLAB Represents .NET Properties” on page 10-66
“How MATLAB Maps C# Property and Field Access Modifiers” on page 10-66

How MATLAB Represents .NET Properties

To view property names, use the properties function.

To get and set the value of a class property, use the MATLAB dot notation:

x = ClassName.PropertyName;

ClassName.PropertyName = y;

The following example gets the value of a property (the current day of the month):

dtnow = System.DateTime.Now;

d = dtnow.Day;

The following example sets the value of a property (the Volume for a
SpeechSynthesizer object):

NET.addAssembly('System.Speech');

ss = System.Speech.Synthesis.SpeechSynthesizer;

ss.Volume = 50;

Speak(ss,'You can use .NET Libraries in MATLAB')

To set a static property, call the NET.setStaticProperty function. For an example,
see “Set Static .NET Properties” on page 10-64.

MATLAB represents public .NET fields as properties.

MATLAB represents .NET properties that take an argument as methods. For more
information, see “Call .NET Properties That Take an Argument” on page 10-85.

How MATLAB Maps C# Property and Field Access Modifiers

MATLAB maps C# keywords to MATLAB property attributes, as shown in the following
table.

 Using .NET Properties

10-67

C# Property Keyword MATLAB Attribute

public, static Access = public
protected, private, internal Not visible to MATLAB
get, set Access = public
Get GetAccess = public, SetAccess = private
Set SetAccess = public, GetAccess = private

MATLAB maps C# keywords to MATLAB field attributes, as shown in the following
table.

C# Field Keyword MATLAB Mapping

public Supported
protected, private, internal,
protected internal

Not visible to MATLAB

For more information about MATLAB properties, see “Property Attributes”.

10 Using .NET Libraries from MATLAB

10-68

MATLAB Does Not Display Protected Properties

The System.Windows.Media.ContainerVisual class, available in .NET Framework
Version 3.0 and above, has several protected properties. MATLAB only displays public
properties and fields. Type:

NET.addAssembly('PresentationCore');

properties('System.Windows.Media.ContainerVisual')

Display Public Properties

Properties for class System.Windows.Media.ContainerVisual:

 Children

 Parent

 Clip

 Opacity

 OpacityMask

 CacheMode

 BitmapEffect

 BitmapEffectInput

 Effect

 XSnappingGuidelines

 YSnappingGuidelines

 ContentBounds

 Transform

 Offset

 DescendantBounds

 DependencyObjectType

 IsSealed

 Dispatcher

To see how MATLAB handles property and field C# keywords, see “How MATLAB Maps
C# Property and Field Access Modifiers” on page 10-66.

 Work with .NET Methods Having Multiple Signatures

10-69

Work with .NET Methods Having Multiple Signatures

To create the NetSample assembly, see “Build a .NET Application for MATLAB
Examples” on page 10-23.

The SampleMethodSignature class defines the three constructors shown in the
following table.

Return Type Name Arguments

netdoc.SampleMethodSignature

obj

SampleMethodSignature

netdoc.SampleMethodSignature

obj

SampleMethodSignature(double scalar d)

netdoc.SampleMethodSignature

obj

SampleMethodSignature(System.String s)

SampleMethodSignature Class

using System;

namespace netdoc

{

 public class SampleMethodSignature

 {

 public SampleMethodSignature ()

 {}

 public SampleMethodSignature (double d)

 { myDoubleField = d; }

 public SampleMethodSignature (string s)

 { myStringField = s; }

 public int myMethod(string strIn, ref double dbRef,

 out double dbOut)

 {

 dbRef += dbRef;

 dbOut = 65;

 return 42;

 }

 private Double myDoubleField = 5.5;

10 Using .NET Libraries from MATLAB

10-70

 private String myStringField = "hello";

 }

}

Display Function Signature Example

If you have not already loaded the NetSample assembly, type:

NET.addAssembly('c:\work\NetSample.dll')

Create a SampleMethodSignature object obj:

obj = netdoc.SampleMethodSignature;

To see the method signatures, type:

methods(obj, '-full')

Look for the following signatures in the MATLAB output:
netdoc.SampleMethodSignature obj SampleMethodSignature

netdoc.SampleMethodSignature obj SampleMethodSignature(double scalar d)

netdoc.SampleMethodSignature obj SampleMethodSignature(System.String s)

For more information about argument types, see “Handle Data Returned from .NET
Objects” on page 10-53.

 Call .NET Methods With out Keyword

10-71

Call .NET Methods With out Keyword

This example shows how to call methods that use an out keyword in the argument list.

The output argument db2 in the following outTest method is modified by the out
keyword.

using System;

namespace netdoc

{

 public class SampleOutTest

 {

 //test out keyword

 public void outTest(double db1, out double db2)

 {

 db1 = db1 * 2.35;

 db2 = db1;

 }

 }

}

The function signature in MATLAB is:

Return Type Name Arguments

double scalar db2 outTest (netdoc.SampleOutTest this,

double scalar db1)

Create an assembly from the SampleOutTest code, using instructions in Build a .NET
Application for MATLAB Examples.

Create an asmpath variable set to the full path to the DLL file, SampleOutTest.dll,
created by your development tool. For example:

asmpath = 'c:\work\Visual Studio 2012\Projects\SampleOutTest\SampleOutTest\bin\Debug\';

asmname = 'SampleOutTest.dll';

Load the assembly.

asm = NET.addAssembly(fullfile(asmpath,asmname));

Call the method.

cls = netdoc.SampleOutTest;

10 Using .NET Libraries from MATLAB

10-72

db3 = outTest(cls,6)

db3 =

 14.1000

Related Examples
• “Build a .NET Application for MATLAB Examples” on page 10-23

More About
• “C# Method Access Modifiers” on page 10-80

 Call .NET Methods With ref Keyword

10-73

Call .NET Methods With ref Keyword

This example shows how to call methods that use a ref keyword in the argument list.

The input argument db1 in the following refTest method is modified by the ref
keyword.

using System;

namespace netdoc

{

 public class SampleRefTest

 {

 //test ref keyword

 public void refTest(ref double db1)

 {

 db1 = db1 * 2;

 }

 }

}

The function signature in MATLAB is:

Return Type Name Arguments

double scalar db1 refTest (netdoc.SampleRefTest this,

double scalar db1)

Create an assembly from the SampleRefTest code, using instructions in Build a .NET
Application for MATLAB Examples.

Create an asmpath variable set to the full path to the DLL file, SampleRefTest.dll,
created by your development tool. For example:

asmpath = 'c:\work\Visual Studio 2012\Projects\SampleRefTest\SampleRefTest\bin\Debug\';

asmname = 'SampleRefTest.dll';

Load the assembly.

asm = NET.addAssembly(fullfile(asmpath,asmname));

Call the method.

cls = netdoc.SampleRefTest;

db4 = refTest(cls,6)

10 Using .NET Libraries from MATLAB

10-74

db4 =

 12

Related Examples
• “Build a .NET Application for MATLAB Examples” on page 10-23

More About
• “C# Method Access Modifiers” on page 10-80

 Call .NET Methods With params Keyword

10-75

Call .NET Methods With params Keyword

This example shows how to call methods that use a params keyword in the argument
list.

The input argument num in the following paramsTest method is modified by the params
keyword.

using System;

namespace netdoc

{

 public class SampleParamsTest

 {

 //test params keyword

 public int paramsTest(params int[] num)

 {

 int total = 0;

 foreach (int i in num)

 {

 total = total + i;

 }

 return total;

 }

 }

}

The function signature in MATLAB is:

Return Type Name Arguments

int32 scalar RetVal paramsTest (netdoc.SampleParamsTest this,

System.Int32[] num)

Create an assembly from the SampleParamsTest code, using instructions in Build
a .NET Application for MATLAB Examples.

Create an asmpath variable set to the full path to the DLL file,
SampleParamsTest.dll, created by your development tool. For example:

asmpath = 'c:\work\Visual Studio 2012\Projects\SampleParamsTest\SampleParamsTest\bin\Debug\';

asmname = 'SampleParamsTest.dll';

Load the assembly.

10 Using .NET Libraries from MATLAB

10-76

asm = NET.addAssembly(fullfile(asmpath,asmname));

Call the method.

cls = netdoc.SampleParamsTest;

mat = [1, 2, 3, 4, 5, 6];

db5 = paramsTest(cls,mat)

db5 =

 21

Related Examples
• “Build a .NET Application for MATLAB Examples” on page 10-23

More About
• “C# Method Access Modifiers” on page 10-80

 Call .NET Methods with Optional Arguments

10-77

Call .NET Methods with Optional Arguments

In this section...

“Setting Up the Examples” on page 10-77
“Skip Optional Arguments” on page 10-77
“Call Overloaded Methods” on page 10-78

Setting Up the Examples

To use the examples in this topic, build the NetDocOptional assembly. This C#
example, NetDocOptional.cs in the matlabroot/extern/examples/NET/
NetSample folder, defines the methods used in these examples. To see the code, open
the file in MATLAB Editor. To build the NetDocOptional assembly, see “Build a .NET
Application for MATLAB Examples” on page 10-23. The examples assume you put the
assembly in your c:\work folder. You can modify the examples to change the path to the
assembly.

Skip Optional Arguments

This example shows how to use default values in optional arguments using the
Greeting method.

Greeting Function Signature

Arguments str1 and str2 are optional.

Return Type Name Arguments

System.String RetVal Greeting (NetDocOptional.MyClass this,

int32 scalar x,

optional<System.String> str1,

optional<System.String> str2)

Load the NetDocOptional assembly, if it is not already loaded.

dllPath = fullfile('c:','work','NetDocOptional.dll');

asm = NET.addAssembly(dllPath);

cls = NetDocOptional.MyClass;

10 Using .NET Libraries from MATLAB

10-78

Display the default values.

Greeting(cls,0)

ans =

hello world

Use the default value for str1.

def = System.Reflection.Missing.Value;

Greeting(cls,0,def,'Mr. Jones')

ans =

hello Mr. Jones

Use the default value for str2. You can omit the argument at the end of a parameter
list.

Greeting(cls,0,'My')

ans =

My world

Call Overloaded Methods

This example shows how to use optional arguments with an overloaded method, calc.

calc Function Signatures

The following table shows the signatures for calc, which adds the input arguments. The
difference is the type of optional argument, y.

Return Type Name Arguments

single scalar RetVal calc (NetDocOptional.MyClass this,

optional<int32 scalar> x,

optional<single scalar> y)

double scalar RetVal calc (NetDocOptional.MyClass this,

optional<int32 scalar> x,

optional<double scalar> y)

Load the NetDocOptional assembly, if it is not already loaded.

dllPath = fullfile('c:','work','NetDocOptional.dll');

 Call .NET Methods with Optional Arguments

10-79

asm = NET.addAssembly(dllPath);

cls = NetDocOptional.MyClass;

Call calc with explicit arguments.

calc(cls,3,4)

ans =

 7

If you try to use the default values by omitting the parameters, MATLAB cannot
determine which signature to use.

calc(cls)

Cannot choose between the following .NET method signatures due to

unspecified optional arguments in the call to 'calc':

'NetDocOptional.MyClass.calc(NetDocOptional.MyClass this,

optional<int32 scalar> x, optional<single scalar> y)' and

'NetDocOptional.MyClass.calc(NetDocOptional.MyClass this,

optional<int32 scalar> x, optional<double scalar> y)'

You can resolve this ambiguity by specifying enough additional

optional arguments so that there is only one possible matching

.NET method.

To use the default values, you must provide both arguments.

def = System.Reflection.Missing.Value;

calc(cls,def,def)

calc(cls,3,def)

calc(cls,def,4)

ans =

 44

ans =

 14

ans =

 37

10 Using .NET Libraries from MATLAB

10-80

Calling .NET Methods

In this section...

“Calling Object Methods” on page 10-80
“Getting Method Information” on page 10-80
“C# Method Access Modifiers” on page 10-80
“VB.NET Method Access Modifiers” on page 10-81
“Reading Method Signatures” on page 10-81

Calling Object Methods

This topic describes information specific to .NET methods. For general information about
calling methods on objects in MATLAB, see “Calling Object Methods”.

Getting Method Information

Use the following MATLAB functions to view the methods of a class. You can use these
functions without creating an instance of the class. These functions do not list generic
methods; use your product documentation to get information on generic methods.

• methods — View method names
• methods with '-full' option — View method names with argument list
• methodsview — Graphical representation of method list

You might find the methodsview window easier to use as a reference guide because you
do not need to scroll through the Command Window to find information. For example,
open a methodsview window for the System.String class:

methodsview('System.String')

C# Method Access Modifiers

MATLAB maps C# keywords to MATLAB method access attributes, as shown in the
following table.

 Calling .NET Methods

10-81

C# Method
Keyword

MATLAB Attribute Example

ref RHS, LHS “Call .NET Methods With ref
Keyword” on page 10-73

out LHS “Call .NET Methods With out
Keyword” on page 10-71

params Array of particular type “Call .NET Methods With params
Keyword” on page 10-75

protected,
private,
internal,
protected

internal

Not visible to MATLAB

VB.NET Method Access Modifiers

MATLAB maps VB.NET keywords to MATLAB method access attributes, as shown in
the following table.

VB.NET Method Keyword MATLAB Attribute

ByRef LHS, RHS
ByVal RHS
Optional Mandatory

Reading Method Signatures

MATLAB uses the following rules to populate method signatures.

• obj is the output from the constructor.
• this is the object argument.
• RetVal is the return type of a method.
• All other arguments use the .NET metadata.

MATLAB uses the following rules to select a method signature.

• Number of inputs

10 Using .NET Libraries from MATLAB

10-82

• Input type
• Number of outputs

 Calling .NET Methods with Optional Arguments

10-83

Calling .NET Methods with Optional Arguments

MATLAB displays optional arguments in a method signature using the optional<T>
syntax, where T is the specific type. This feature is available in .NET Framework Version
4.0 and above.

To use a default method argument, pass an instance of
System.Reflection.Missing.Value.

Skipping Optional Arguments

If the method is not overloaded, you are not required to fill in all optional values at the
end of a parameter list. For examples, see “Skip Optional Arguments” on page 10-77.

Determining Which Overloaded Method Is Invoked

If a .NET class has overloaded methods with optional arguments, MATLAB picks the
method matching the exact number of input arguments.

If the optional arguments of the methods are different by type, number, or dimension,
MATLAB first compares the types of the mandatory arguments. If the types of the
mandatory arguments are different, MATLAB chooses the first overloaded method
defined in the class. If the types of the mandatory arguments are the same, specify
enough optional arguments so that there is only one possible matching .NET method.
Otherwise, MATLAB throws an error. For examples, see “Call Overloaded Methods” on
page 10-78.

Support for ByRef Attribute in VB.NET

The rules for optional ByRef arguments are the same as for other method arguments, as
described in “VB.NET Method Access Modifiers” on page 10-81. ByRef arguments on the
RHS appear as optional and behave like any other optional argument.

10 Using .NET Libraries from MATLAB

10-84

Calling .NET Extension Methods

Unlike C# applications, MATLAB handles an extension method as a static method of the
class that defines the method. Refer to your product documentation for the namespace
and class name you need to call such methods.

For information about extension methods, see the MSDN article at http://
msdn.microsoft.com/en-us/library/bb383977(v=VS.90).aspx.

http://msdn.microsoft.com/en-us/library/bb383977(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/bb383977(v=VS.90).aspx

 Call .NET Properties That Take an Argument

10-85

Call .NET Properties That Take an Argument

MATLAB represents a property that takes an argument as a method. For example, the
System.String class has two properties, Chars and Length. The Chars property
gets the character at a specified character position in the System.String object. For
example:

str = System.String('my new string');

methods(str)

Display of System.String Methods

Methods for class System.String:

Chars Normalize TrimStart

Clone PadLeft addlistener

CompareTo PadRight char

Contains Remove delete

CopyTo Replace eq

EndsWith Split findobj

Equals StartsWith findprop

GetEnumerator String ge

GetHashCode Substring gt

GetType ToCharArray isvalid

GetTypeCode ToLower le

IndexOf ToLowerInvariant lt

IndexOfAny ToString ne

Insert ToUpper notify

IsNormalized ToUpperInvariant

LastIndexOf Trim

LastIndexOfAny TrimEnd

Static methods:

Compare Intern op_Equality

CompareOrdinal IsInterned op_Inequality

Concat IsNullOrEmpty

Copy IsNullOrWhiteSpace

Format Join

Notice that MATLAB displays the Chars property as a method.

The Chars method has the following signature.

10 Using .NET Libraries from MATLAB

10-86

Return Type Name Arguments

char scalar RetVal Chars (System.String this,

int32 scalar index)

To see the first character, type:

Chars(str,0)

ans =

m

 How MATLAB Represents .NET Operators

10-87

How MATLAB Represents .NET Operators

MATLAB supports overloaded operators, such as the C# operator symbols + and *, as
shown in the following table. MATLAB implements all other overloaded operators, such
as % and +=, by their static method names, op_Modulus and op_AdditionAssignment.
For a complete list of operator symbols and the corresponding operator names, see
http://msdn.microsoft.com/en-us/library/2sk3x8a7(VS.71).aspx on the
Microsoft Developer Network website.

C++ operator symbol .NET operator MATLAB methods

+ (binary) op_Addition plus, +
- (binary) op_Subtraction minus, -
* (binary) op_Multiply mtimes, *
/ op_Division mrdivide, /
&& op_LogicalAnd and, &
|| op_LogicalOr or, |
== op_Equality eq, ==
> op_GreaterThan gt, >
< op_LessThan lt, <
!= op_Inequality ne, ~=
>= op_GreaterThanOrEqual ge, >=
<= op_LessThanOrEqual le, <=
- (unary) op_UnaryNegation uminus, -a
+ (unary) op_UnaryPlus uplus, +a

http://msdn.microsoft.com/en-us/library/2sk3x8a7(VS.71).aspx

10 Using .NET Libraries from MATLAB

10-88

Limitations to Support of .NET Methods

The methods and methodsview functions do not list generic methods.

Overloading MATLAB Functions

If your application implements a method with the same name as a MATLAB function,
the method must have the same signature as the MATLAB function. Otherwise,
MATLAB throws an error. For information about how MATLAB handles overloaded
functions, see the following topics:

• “Overload Functions for Your Class”
• “Methods That Modify Default Behavior”

 Use .NET Events in MATLAB

10-89

Use .NET Events in MATLAB
These examples use the addlistener function to handle .NET events with MATLAB
callbacks.

In this section...

“Monitor Changes to .TXT File” on page 10-89
“Monitor Changes to Windows Form ComboBox” on page 10-89

Monitor Changes to .TXT File

This example uses the System.IO.FileSystemWatcher class in the System assembly
to monitor changes to a .TXT file in the C:\work\temp folder. Create the following event
handler, eventhandlerChanged.m:

function eventhandlerChanged(source,arg)

disp('TXT file changed')

end

Create a FileSystemWatcher object fileObj and watch the Changed event for files
with a .txt extension in the folder C:\work\temp.

file = System.IO.FileSystemWatcher('c:\work\temp');

file.Filter = '*.txt';

file.EnableRaisingEvents = true;

addlistener(file,'Changed',@eventhandlerChanged);

If you modify and save a .txt file in the C:\work\temp folder, MATLAB displays:

TXT file changed

The FileSystemWatcher documentation says that a simple file operation can raise
multiple events.

To turn off the event handler, type:

file.EnableRaisingEvents = false;

Monitor Changes to Windows Form ComboBox

This example shows how to listen for changes to values in a ComboBox on a Windows
Form. This example uses the SelectedValueChanged event defined by the
System.Windows.Forms.ComboBox class.

10 Using .NET Libraries from MATLAB

10-90

To create this example, you must build a Windows Forms Application using a supported
version of Microsoft Visual Studio.

• Search the Microsoft MSDN website for information about Windows Forms
Applications. For example, http://msdn.microsoft.com/en-US/library/
ms235634(v=vs.80).aspx.

• For an up-to-date list of supported compilers, see the Supported and Compatible
Compilers website.

Create a 64-bit Windows Forms Application, myForm, in your C:\work folder. Add a
ComboBox control to Form1, and then add one or more items to ComboBox1. Build the
application.

Create the following MATLAB class, EnterComboData, which uses the
attachListener method to add a listener to the form property.

classdef EnterComboData < handle

properties

 form

end

methods

 function x = EnterComboData

 NET.addAssembly('C:\work\myForm\myForm\bin\x64\Debug\myForm.exe');

 x.form = myForm.Form1;

 Show(x.form)

 Activate(x.form)

 end

 function r = attachListener(x)

 % create listener

 r = addlistener(

 x.form.Controls.Item(0),

 'SelectedValueChanged',

 @x.anyChange);

 end

 function anyChange(~,~,~)

 % listener action if comboBox changes

 disp('Field updated')

 end

end

end

To execute the following MATLAB commands, you must create and load the application
named myForm.exe. Use the EnterComboData class to create a form and call its
attachListener method:

http://msdn.microsoft.com/en-US/library/ms235634(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/ms235634(v=vs.80).aspx
http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

 Use .NET Events in MATLAB

10-91

form = EnterComboData;

form.attachListener;

To trigger an event, select an item from the drop-down menu on the ComboBox.
MATLAB displays:

Field updated

10 Using .NET Libraries from MATLAB

10-92

Call .NET Delegates in MATLAB

This example shows you how to use a delegate in MATLAB. It creates a delegate using a
MATLAB function (char). For another example, see “Create Delegates from .NET Object
Methods” on page 10-94.

This example consists of the following tasks:

In this section...

“Declare a Delegate in a C# Assembly” on page 10-92
“Load the Assembly Containing the Delegate into MATLAB” on page 10-92
“Select a MATLAB Function” on page 10-92
“Create an Instance of the Delegate in MATLAB” on page 10-93
“Invoke the Delegate Instance in MATLAB” on page 10-93

Declare a Delegate in a C# Assembly

The C# example NetDocDelegate.cs, in the matlabroot/extern/examples/NET/
NetSample folder, defines delegates used in the following examples. To see the code,
open the file in MATLAB Editor. To run the examples, build the NetDocDelegate
assembly as described in “Build a .NET Application for MATLAB Examples” on page
10-23.

Load the Assembly Containing the Delegate into MATLAB

If the NetDocDelegate assembly is in your c:\work folder, load the file with the
command:

dllPath = fullfile('c:','work','NetDocDelegate.dll');

NET.addAssembly(dllPath);

Select a MATLAB Function

The delInteger delegate encapsulates any method that takes an integer input and
returns a string. The MATLAB char function, which converts a nonnegative integer into
a character array (string), has a signature that matches the delInteger delegate. For
example, the following command displays the ! character:

 Call .NET Delegates in MATLAB

10-93

char(33)

Create an Instance of the Delegate in MATLAB

To create an instance of the delInteger delegate, pass the function handle of the char
function:

myFunction = NetDocDelegate.delInteger(@char);

Invoke the Delegate Instance in MATLAB

Use myFunction the same as you would char. For example, the following command
displays the ! character:

myFunction(33)

10 Using .NET Libraries from MATLAB

10-94

Create Delegates from .NET Object Methods

The following C# class defines the methods AddEggs and AddFlour, which have
signatures matching the delInteger delegate:

C# Recipe Source File

using System;

namespace Recipe

{

 public class MyClass

 {

 public string AddEggs(double n)

 {

 return "Add " + n + " eggs";

 }

 public string AddFlour(double n)

 {

 return "Add " + n + " cups flour";

 }

 }

}

Build the Recipe assembly, and then load it and create a delegate myFunc using
AddEggs as the callback:

NET.addAssembly(dllPath);

NET.addAssembly('c:\work\Recipe.dll');

myRec = Recipe.MyClass;

myFunc = NetDocDelegate.delInteger(@myRec.AddEggs);

myFunc(2)

ans =

Add 2 eggs

 Create Delegate Instances Bound to .NET Methods

10-95

Create Delegate Instances Bound to .NET Methods

For a C# delegate defined as:

namespace MyNamespace

{

 public delegate void MyDelegate();

}

MATLAB creates the following constructor signature.

Return Type Name Arguments

MyNamespace.MyDelegate obj MyDelegate (target,

string methodName)

The argument target is one of the following:

• An instance of the invocation target object when binding to the instance method
• A string with fully qualified .NET class name when binding to a static method

methodName is a string specifying the callback method name.

Example — Create a Delegate Instance Associated with a .NET Object
Instance Method

For the following C# delegate and class definition:

namespace MyNamespace

{

 public delegate void MyDelegate();

 public class MyClass

 {

 public void MyMethod(){}

 }

}

To instantiate the delegate in MATLAB, type:

target = MyNamespace.MyClass();

delegate = MyNamespace.MyDelegate(target,'MyMethod');

10 Using .NET Libraries from MATLAB

10-96

Example — Create a Delegate Instance Associated with a Static .NET
Method

For the following C# delegate and class definition:

namespace MyNamespace

{

 public delegate void MyDelegate();

 public class MyClass

 {

 public static void MyStaticMethod(){}

 }

}

To instantiate the delegate in MATLAB, type:

delegate = MyNamespace.MyDelegate('MyNamespace.MyClass','MyStaticMethod');

 Call Delegates With out and ref Type Arguments

10-97

Call Delegates With out and ref Type Arguments

The MATLAB rules for mapping out and ref types for delegates are the same as for
methods. See “C# Method Access Modifiers” on page 10-80.

For example, the following C# statement declares a delegate with a ref argument:

public delegate void delref(ref Double refArg);

The signature for an equivalent MATLAB delegate function maps refArg as both RHS
and LHS arguments:

function refArg = myFunc(refArg)

The following C# statement declares a delegate with an out argument:

public delegate void delout(

 Single argIn,

 out Single argOut);

The signature for an equivalent MATLAB delegate function maps argOut as an LHS
argument:

function argOut = myFunc(argIn)

10 Using .NET Libraries from MATLAB

10-98

Combine and Remove .NET Delegates

MATLAB provides the instance method Combine, that lets you combine a series of
delegates into a single delegate. The Remove and RemoveAll methods delete individual
delegates. For more information, refer to the .NET Framework Class Library, as
described in “To Learn More About the .NET Framework” on page 10-20.

For example, create the following MATLAB functions to use with the
NetDocDelegate.delInteger delegate:

function out = action1(n)

out = 'Add flour';

disp(out)

end

function out = action2(n)

out = 'Add eggs';

disp(out)

end

Create delegates step1 and step2:

step1 = NetDocDelegate.delInteger(@action1);

step2 = NetDocDelegate.delInteger(@action2);

To combine into a new delegate, mixItems, type:

mixItems = step1.Combine(step2);

Or, type:

mixItems = step1.Combine(@action2);

Invoke mixItems:

result = mixItems(1);

In this case, the function action2 follows action1:

Add flour

Add eggs

The value of result is the output from the final delegate (step2).

 Combine and Remove .NET Delegates

10-99

result =

Add eggs

You also can use the System.Delegate class static methods, Combine, Remove, and
RemoveAll.

To remove a step1 from mixItems, type:

step3 = mixItems.Remove(step1);

10 Using .NET Libraries from MATLAB

10-100

.NET Delegates

In the .NET Framework, a delegate is a type that defines a method signature. It lets
you pass a function as a parameter. The use of delegates enables .NET applications
to make calls into MATLAB callback functions or class instance methods. For the
rules MATLAB uses to define the signature of a callback function or class method, see
“Reading Method Signatures” on page 10-81 in Using a .NET Object. For a complete
description of delegates and when to use them, consult an outside resource, such as the
Microsoft Developer Network.

There are three steps to using delegates:

• Declaration — Your .NET application contains the declaration. You cannot declare a
delegate in the MATLAB language.

• Instantiation — In MATLAB, create an instance of the delegate and associate it with
a specific MATLAB function or .NET object method.

• Invocation — Call the function with specified input and output arguments. Use the
delegate name in place of the function name.

 Calling .NET Methods Asynchronously

10-101

Calling .NET Methods Asynchronously

In this section...

“How MATLAB Handles Asynchronous Method Calls in .NET” on page 10-101
“Calling a Method Asynchronously Using a Callback When an Asynchronous Call
Finishes” on page 10-101
“Calling a Method Asynchronously Without a Callback” on page 10-103
“Using EndInvoke With out and ref Type Arguments” on page 10-104
“Using Polling to Detect When Asynchronous Call Finishes” on page 10-104

How MATLAB Handles Asynchronous Method Calls in .NET

It is possible to call a synchronous method asynchronously in MATLAB. With some
modifications, you can use the Microsoft BeginInvoke and EndInvoke methods.
For more information, refer to the MSDN article “ Calling Synchronous Methods
Asynchronously ” at http://msdn.microsoft.

You can use delegates to call a synchronous method asynchronously by using the
BeginInvoke and EndInvoke methods. If the thread that initiates the asynchronous
call does not need to be the thread that processes the results, you can execute a callback
method when the call completes. For information about using a callback method, see
“Calling a Method Asynchronously Using a Callback When an Asynchronous Call
Finishes” on page 10-101.

Note: MATLAB is a single-threaded application. Therefore, handling asynchronous calls
in the MATLAB environment might result in deadlocks.

Calling a Method Asynchronously Using a Callback When an
Asynchronous Call Finishes

You can execute a callback method when an asynchronous call completes. A callback
method executes on a different thread than the thread that processes the results of the
asynchronous call.

http://msdn.microsoft.com/en-us/library/2e08f6yc.aspx
http://msdn.microsoft.com/en-us/library/2e08f6yc.aspx

10 Using .NET Libraries from MATLAB

10-102

The following is an overview of the procedure. If you do not use a callback function,
follow the procedure in “Calling a Method Asynchronously Without a Callback” on page
10-103.

• Select or create a MATLAB function to execute asynchronously.
• Select or create a C# delegate and associate it with the MATLAB function.
• Create a MATLAB callback function with a System.AsyncCallback Delegate delegate

signature. The signature, shown at the MSDN website, is:

public delegate void AsyncCallback(IAsyncResult ar)

1 Using MATLAB code, initiate the asynchronous call using the BeginInvoke
method, specifying the callback delegate and, if required, object parameters.

2 Continue executing commands in MATLAB.
3 When the asynchronous function completes, MATLAB calls the callback function,

which executes the EndInvoke method to retrieve the results.

Callback Example

In this example, create the following MATLAB function to execute asynchronously:

function X = DivideFunction(A, B)

if B ~= 0

 X = A / B;

else

 errid = 'MyID:DivideFunction:DivisionByZero';

 error(errid, 'Division by 0 not allowed.')

end

end

Create the following MATLAB function, which executes as the callback when the
asynchronous method invocation completes. This function displays the result value of
the EndInvoke method.

function myCallback(asyncRes)

result = asyncRes.AsyncDelegate.EndInvoke(asyncRes);

disp(result)

end

Use the del2Integer delegate, defined in the NetDocDelegate assembly:

public delegate Int32 del2Integer(Int32 arg1, Int32 arg2);

http://msdn.microsoft.com/en-us/library/system.asynccallback.aspx

 Calling .NET Methods Asynchronously

10-103

Run the example:

% Create the delegate

divDel = NetDocDelegate.del2Integer(@DivideFunction);

A = 10;

B = 5;

% Initiate the asynchronous call.

asyncRes = divDel.BeginInvoke(A,B,@myCallback,[]);

MATLAB displays the result: 2

Calling a Method Asynchronously Without a Callback

The following is an overview of the procedure. If you want to use a callback function,
follow the procedure in “Calling a Method Asynchronously Using a Callback When an
Asynchronous Call Finishes” on page 10-101.

• Select or create a MATLAB function to execute asynchronously.
• Select or create a C# delegate and associate it with the MATLAB function.

1 In MATLAB, initiate the asynchronous call using the BeginInvoke method.
2 Continue executing commands in MATLAB.
3 Poll for asynchronous call completion using the MATLAB pause function.
4 When the asynchronous function completes, call the EndInvoke method to retrieve

the results.

Example Without Callback

In this example, create the following MATLAB function, myFunction:

% MATLAB function to execute asynchrounously

function res = myFunction(strValue)

res = strValue;

end

Use the delString delegate, defined in the NetDocDelegate assembly:

public delegate string delString(string message);

In MATLAB, create the delegate, myDelegate, define the input values, and start the
asynchronous call:

10 Using .NET Libraries from MATLAB

10-104

myDelegate = NetDocDelegate.delString(@myFunction);

A = 'Hello';

asyncRes = myDelegate.BeginInvoke(A,[],[]);

The BeginInvoke method returns the object, asyncRes, which you use to monitor the
progress of the asynchronous call. Poll for results, using the MATLAB pause function to
let MATLAB process the events:

while asyncRes.IsCompleted ~= true

 pause(0.01)

end

Retrieve and display the results of the asynchronous call:

result = myDelegate.EndInvoke(asyncRes);

disp(result)

Hello

Using EndInvoke With out and ref Type Arguments

The MATLAB delegate signature for EndInvoke follows special mapping rules if your
delegate has out or ref type arguments. For information about the mapping, see “Call
Delegates With out and ref Type Arguments” on page 10-97. For examples, see the
EndInvoke reference page.

Using Polling to Detect When Asynchronous Call Finishes

For MATLAB to process the event that executes the delegate's callback on the main
thread, call the MATLAB pause (or a similar) function.

 Limitations to Support of .NET Events

10-105

Limitations to Support of .NET Events

MATLAB Support of Standard Signature of an Event Handler Delegate

An event handler in C# is a delegate with the following signature:

public delegate void MyEventHandler(object sender, MyEventArgs e)

The argument sender specifies the object that fired the event. The argument e holds
data that can be used in the event handler. The class MyEventArgs is derived from
the .NET Framework class EventArgs. MATLAB only handles events with this standard
signature.

10 Using .NET Libraries from MATLAB

10-106

Limitations to Support of .NET Delegates

MATLAB does not support associating a delegate instance with a generic .NET method.

When calling a method asynchronously, use the technique described in “Calling a Method
Asynchronously Without a Callback” on page 10-103. Be aware that:

• MATLAB is a single-threaded application. Therefore, handling asynchronous calls in
the MATLAB environment might result in deadlocks.

• For the technique described in the MSDN topic Blocking Application Execution Using
an AsyncWaitHandle, MATLAB does not support the use of the WaitOne() method
overload with no arguments.

• You cannot call EndInvoke to wait for the asynchronous call to complete.

http://msdn.microsoft.com/en-us/library/ms228962.aspx
http://msdn.microsoft.com/en-us/library/ms228962.aspx

 Use Bit Flags with .NET Enumerations

10-107

Use Bit Flags with .NET Enumerations

In this section...

“How MATLAB Supports Bit-Wise Operations on System.Enum” on page 10-107
“Creating .NET Enumeration Bit Flags” on page 10-107
“Removing a Flag from a Variable” on page 10-108
“Replacing a Flag in a Variable” on page 10-108
“Testing for Membership” on page 10-109

How MATLAB Supports Bit-Wise Operations on System.Enum

Many .NET languages support bit-wise operations on enumerations defined with the
System.Flags attribute. The MATLAB language does not have equivalent operations,
and, therefore, provides instance methods for performing bit-wise operations on an
enumeration object. The bit-wise methods are bitand, bitnot, bitor, and bitxor.

An enumeration can define a bit flag. A bit flag lets you create instances of an
enumeration to store combinations of values defined by the members. For example, files
and folders have attributes, such as Archive, Hidden, and ReadOnly. For a given file,
perform an operation based on one or more of these attributes. With bit-wise operators,
you can create and test for combinations.

To use bit-wise operators, the enumeration must have:

• The Flags attribute. In Framework Version 4, these enumerations also have the
HasFlag method.

• Values that correspond to powers of 2.

Creating .NET Enumeration Bit Flags

Use the MATLAB example, NetDocEnum.MyDays enumeration, in the following
examples.

Suppose that you have the following scheduled activities:

• Monday — Department meeting at 10:00
• Wednesday and Friday — Team meeting at 2:00
• Thursday — Volley ball night

10 Using .NET Libraries from MATLAB

10-108

You can combine members of the MyDays enumeration to create MATLAB variables
using the bitor method, which joins two members. For example, to create a variable
teamMtgs of team meeting days, type:

teamMtgs = bitor(...

 NetDocEnum.MyDays.Friday,...

 NetDocEnum.MyDays.Wednesday);

Create a variable allMtgs of all days with meetings:

allMtgs = bitor(teamMtgs,...

 NetDocEnum.MyDays.Monday);

To see which days belong to each variable, type:

teamMtgs

allMtgs

teamMtgs =

Wednesday, Friday

allMtgs =

Monday, Wednesday, Friday

Removing a Flag from a Variable

Suppose that your manager cancels the Wednesday meeting this week. To remove
Wednesday from the allMtgs variable, use the bitxor method.

thisWeekMtgs = bitxor(allMtgs,NetDocEnum.MyDays.Wednesday)

thisWeekMtgs =

Monday, Friday

Using a bit-wise method such as bitxor on allMtgs does not modify the value of
allMtgs. This example creates a variable, thisWeekMtgs, which contains the result of
the operation.

Replacing a Flag in a Variable

Suppose that you change the team meeting permanently from Wednesday to Thursday.
To remove Wednesday, use bitxor, and use bitor to add Thursday. Since this is a
permanent change, update the teamMtgs and allMtgs variables.

teamMtgs = bitor(...

 Use Bit Flags with .NET Enumerations

10-109

 (bitand(teamMtgs,...

 bitnot(NetDocEnum.MyDays.Wednesday))),...

 NetDocEnum.MyDays.Thursday);

allMtgs = bitor(teamMtgs,...

 NetDocEnum.MyDays.Monday);

teamMtgs

allMtgs

teamMtgs =

Thursday, Friday

allMtgs =

Monday, Thursday, Friday

Testing for Membership

Create the following RemindMe function:

function RemindMe(day)

% day = NetDocEnum.MyDays enumeration

teamMtgs = bitor(...

 NetDocEnum.MyDays.Friday,...

 NetDocEnum.MyDays.Wednesday);

allMtgs = bitor(teamMtgs,...

 NetDocEnum.MyDays.Monday);

if eq(day,bitand(day,teamMtgs))

 disp('Team meeting today.')

elseif eq(day,bitand(day,allMtgs))

 disp('Meeting today.')

else

 disp('No meetings today!')

end

end

Use the RemindMe function:

today = NetDocEnum.MyDays.Monday;

RemindMe(today)

Meeting today.

See Also
bitand | bitnot | bitor | bitxor

10 Using .NET Libraries from MATLAB

10-110

Related Examples
• “NetDocEnum Example Assembly” on page 10-115

 Read Special System Folder Path

10-111

Read Special System Folder Path
function result = getSpecialFolder(arg)

% Returns the special system folders such as "Desktop", "MyMusic" etc.

% arg can be any one of the enum element mentioned in this link

% http://msdn.microsoft.com/en-us/library/

% system.environment.specialfolder.aspx

% e.g.

% >> getSpecialFolder('Desktop')

%

% ans =

% C:\Users\jsmith\Desktop

% Get the type of SpecialFolder enum, this is a nested enum type.

specialFolderType = System.Type.GetType(...

 'System.Environment+SpecialFolder');

% Get a list of all SpecialFolder enum values

folders = System.Enum.GetValues(specialFolderType);

enumArg = [];

% Find the matching enum value requested by the user

for i = 1:folders.Length

 if (strcmp(char(folders(i)), arg))

 enumArg = folders(i);

 break

 end

end

% Validate

if(isempty(enumArg))

 error('Invalid Argument')

end

% Call GetFolderPath method and return the result

result = System.Environment.GetFolderPath(enumArg);

end

10 Using .NET Libraries from MATLAB

10-112

.NET Enumerations in MATLAB

MATLAB allows you to work with .NET enumerations using features of the MATLAB
enumeration class and some features unique to the .NET Framework.

Terms you should know:

• Enumeration — In MATLAB, a class having a finite set of named instances.
• Enumeration member — Named instance of an enumeration class.
• Underlying value — Numeric value associated with an enumeration member.

Enumerations contain the following information:

• Members
• Methods
• Underlying Values

In this topic, the term enumeration refers to a .NET enumeration.

Note: The MATLAB language supports user-defined enumeration classes. If you are
using enumerations defined in MATLAB, refer to the topics under Enumerations.

 Default Methods for an Enumeration

10-113

Default Methods for an Enumeration

By default, MATLAB provides the following methods for a .NET enumeration:

• Relational operators — eq, ne, ge, gt, le, and lt.
• Conversion methods — char, double, and a method to get the underlying value.
• Bit-wise methods — Only for enumerations with the System.Flags attribute.

For example, type:

methods('System.DayOfWeek')

Methods for class System.DayOfWeek:

CompareTo eq

DayOfWeek ge

Equals gt

GetHashCode int32

GetType le

GetTypeCode lt

ToString ne

char

double

The method to get the underlying value is int32.

The NetDocEnum.MyDays enumeration, which has the Flags attribute, has the bit-wise
methods. To list the methods, type:

methods('NetDocEnum.MyDays')

Methods for class NetDocEnum.MyDays:

CompareTo char

Equals double

GetHashCode eq

GetType ge

GetTypeCode gt

MyDays int32

ToString le

bitand lt

bitnot ne

bitor

10 Using .NET Libraries from MATLAB

10-114

bitxor

Related Examples
• “Using Relational Operations” on page 10-124
• “Using Switch Statements” on page 10-124
• “Display .NET Enumeration Members as Character Strings” on page 10-120
• “NetDocEnum Example Assembly” on page 10-115

More About
• “Use Bit Flags with .NET Enumerations” on page 10-107

 NetDocEnum Example Assembly

10-115

NetDocEnum Example Assembly

The C# example NetDocEnum.cs, in the matlabroot/extern/examples/NET/
NetSample folder, defines enumerations used in examples. To see the code, open the file
in MATLAB Editor. To run the examples, build the NetDocEnum assembly as described
in “Build a .NET Application for MATLAB Examples” on page 10-23.

If the NetDocEnum assembly is in your c:\work folder, load the file:

dllPath = fullfile('c:','work','NetDocEnum.dll');

asm = NET.addAssembly(dllPath);

asm.Enums

ans =

 'NetDocEnum.MyDays'

 'NetDocEnum.Range'

10 Using .NET Libraries from MATLAB

10-116

Work with Members of a .NET Enumeration

To display the member names of an enumeration, use the MATLAB enumeration
function. For example, to list the member names of the System.DayOfWeek
enumeration, type:

enumeration('System.DayOfWeek')

Enumeration members for class 'System.DayOfWeek':

 Sunday

 Monday

 Tuesday

 Wednesday

 Thursday

 Friday

 Saturday

You cannot use the enumeration command to return arrays of .NET enumeration
objects. You can read the names and values of the enumeration into arrays, using the
System.Enum methods GetNames, GetValues, and GetType.

For example, to create arrays allNames and allValues for the System.DayOfWeek
enumeration, type:

myDay = System.DayOfWeek;

allNames = System.Enum.GetNames(myDay.GetType);

allValues = System.Enum.GetValues(myDay.GetType);

The class of the names array is System.String, while the class of the values array is
the enumeration type System.DayOfWeek.

whos all*

 Name Size Bytes Class

 allNames 1x1 112 System.String[]

 allValues 1x1 112 System.DayOfWeek[]

Although the types are different, the information MATLAB displays is the same. For
example, type:

allNames(1)

ans =

 Work with Members of a .NET Enumeration

10-117

Sunday

Type:

allValues(1)

ans =

Sunday

See Also
enumeration

Related Examples
• “Iterate Through a .NET Enumeration” on page 10-122

More About
• “Information About System.Enum Methods” on page 10-122
• “How MATLAB Handles System.String” on page 10-54

10 Using .NET Libraries from MATLAB

10-118

Refer to a .NET Enumeration Member

You use an enumeration member in your code as an instance of an enumeration. To refer
to an enumeration member, use the C# namespace, enumeration, and member names:

Namespace.EnumName.MemberName

For example, the System namespace in the .NET Framework class library has a
DayOfWeek enumeration. The members of this enumeration are:

Enumeration members for class 'System.DayOfWeek':

 Sunday

 Monday

 Tuesday

 Wednesday

 Thursday

 Friday

 Saturday

To create a variable with the value Thursday, type:

gameDay = System.DayOfWeek.Thursday;

whos

 Name Size Bytes Class

 gameDay 1x1 104 System.DayOfWeek

Using the Implicit Constructor

The implicit constructor, Namespace.EnumName, creates a member with the default
value of the underlying type. For example, the NetDocEnum.Range enumeration has the
following members:

Enumeration members for class 'NetDocEnum.Range':

 Max

 Min

Type:

x = NetDocEnum.Range

whos x

x =

 Refer to a .NET Enumeration Member

10-119

0

 Name Size Bytes Class

 x 1x1 104 NetDocEnum.Range

Related Examples
• “NetDocEnum Example Assembly” on page 10-115

10 Using .NET Libraries from MATLAB

10-120

Display .NET Enumeration Members as Character Strings

To get the descriptive name of an enumeration, use the char method. For example, type:

gameDay = System.DayOfWeek.Thursday;

['Next volleyball game is ',char(gameDay)]

ans =

Next volleyball game is Thursday

 Convert .NET Enumeration Values to Type Double

10-121

Convert .NET Enumeration Values to Type Double

To convert a value to a MATLAB double, type:

gameDay = System.DayOfWeek.Thursday;

myValue = double(gameDay)

myValue =

 4

10 Using .NET Libraries from MATLAB

10-122

Iterate Through a .NET Enumeration

In this section...

“Information About System.Enum Methods” on page 10-122
“Display Enumeration Member Names” on page 10-123

Information About System.Enum Methods

To create MATLAB arrays from an enumeration, use the static System.Enum methods
GetNames and GetValues. The input argument for these methods is an enumeration
type. Use the GetType method for the type of the current instance. To display the
signatures for these methods, type:

methodsview('System.Enum')

Look at the following signatures:

Qualifiers Return Type Name Arguments

 System.Type GetType (System.Enum

this)

Static System.String[] GetNames (System.Type

enumType)

Static System.Array GetValues (System.Type

enumType)

To use GetType, create an instance of the enumeration. For example:

myEnum = System.DayOfWeek;

The enumType for myEnum is:

myEnumType = myEnum.GetType;

To create an array of names using the GetNames method, type:

allNames = System.Enum.GetNames(myEnumType);

Alternatively:

allNames = System.Enum.GetNames(myEnum.GetType);

 Iterate Through a .NET Enumeration

10-123

Display Enumeration Member Names

To display all member names of the System.DayOfWeek enumeration, create a
System.String array of names. Use the Length property of this array to find the
number of members. For example:

myDay = System.DayOfWeek;

allNames = System.Enum.GetNames(myDay.GetType);

disp(['Members of ' class(myDay)])

for idx = 1:allNames.Length

 disp(allNames(idx))

end

Members of System.DayOfWeek

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

10 Using .NET Libraries from MATLAB

10-124

Use .NET Enumerations to Test for Conditions

In this section...

“Using Switch Statements” on page 10-124
“Using Relational Operations” on page 10-124

With relational operators, you can use enumeration members in if and switch
statements and other functions that test for equality.

Using Switch Statements

The following Reminder function displays a message depending on the day of the week:

function Reminder(day)

% day = System.DayOfWeek enumeration value

% Add error checking here

switch(day)

 case System.DayOfWeek.Monday

 disp('Department meeting at 10:00')

 case System.DayOfWeek.Tuesday

 disp('Meeting Free Day!')

 case {System.DayOfWeek.Wednesday System.DayOfWeek.Friday}

 disp('Team meeting at 2:00')

 case System.DayOfWeek.Thursday

 disp('Volley ball night')

end

end

For example, type:

today = System.DayOfWeek.Wednesday;

Reminder(today)

ans =

Team meeting at 2:00

Using Relational Operations

Create the following function to display a message:

function VolleyballMessage(day)

 Use .NET Enumerations to Test for Conditions

10-125

% day = System.DayOfWeek enumeration value

if gt(day,System.DayOfWeek.Thursday)

 disp('See you next week at volleyball.')

else

 disp('See you Thursday!')

end

end

For a day before Thursday:

myDay = System.DayOfWeek.Monday;

VolleyballMessage(myDay)

See you Thursday!

For a day after Thursday:

myDay = System.DayOfWeek.Friday;

VolleyballMessage(myDay)

See you next week at volleyball.

10 Using .NET Libraries from MATLAB

10-126

Underlying Enumeration Values

MATLAB supports enumerations of any numeric type.

To find the underlying type of an enumeration, use the System.Enum static method
GetUnderlyingType. For example, the following C# statement in the NetDocEnum
assembly declares the enumeration Range:

public enum Range : long {Max = 2147483648L,Min = 255L}

To display the underlying type:

maxValue = NetDocEnum.Range.Max;

System.Enum.GetUnderlyingType(maxValue.GetType).FullName

ans =

System.Int64

Related Examples
• “NetDocEnum Example Assembly” on page 10-115

 Limitations to Support of .NET Enumerations

10-127

Limitations to Support of .NET Enumerations

You cannot create arrays of .NET enumerations, or any .NET objects, in MATLAB.

10 Using .NET Libraries from MATLAB

10-128

Create .NET Collections

This example uses two System.String arrays, d1 and d2, to create a generic collection
list. It shows how to manipulate the list and access its members. To create the arrays,
type:

d1 = NET.createArray('System.String',3);

d1(1) = 'Brachiosaurus';

d1(2) = 'Shunosaurus';

d1(3) = 'Allosaurus';

d2 = NET.createArray('System.String',4);

d2(1) = 'Tyrannosaurus';

d2(2) = 'Spinosaurus';

d2(3) = 'Velociraptor';

d2(4) = 'Triceratops';

Create a generic collection, dc, to contain d1. The
System.Collections.Generic.List class is in the mscorlib assembly, which
MATLAB loads automatically.

dc = NET.createGeneric('System.Collections.Generic.List',{'System.String'},3)

 List<System*String> handle

 Capacity: 3

 Count: 0

The List object dc has a Capacity of three, but currently is empty (Count = 0).

Use the AddRange method to add the contents of d1 to the list. For more information,
search the Web for System.Collections.Generic and select the List class.

AddRange(dc,d1);

List dc now has three items:

dc.Count

To display the contents, use the Item method and zero-based indexing:

for i = 1:dc.Count

 disp(dc.Item(i-1))

end

 Create .NET Collections

10-129

Brachiosaurus

Shunosaurus

Allosaurus

Another way to add values is to use the InsertRange method. Insert the d2 array
starting at index 1:

InsertRange(dc,1,d2);

The size of the array has grown to seven. To display the values, type:

for i = 1:dc.Count

 disp(dc.Item(i-1))

end

Brachiosaurus

Tyrannosaurus

Spinosaurus

Velociraptor

Triceratops

Shunosaurus

Allosaurus

The first item in the d2 array ('Tyrannosaurus') is at index 1 in list dc:

System.String.Compare(d2(1),dc.Item(1))

The System.String.Compare answer, 0, indicates that the two values are equal.

External Websites
• .NET Framework 4.5 System.Collections.Generic.List Class

https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx

10 Using .NET Libraries from MATLAB

10-130

Convert .NET Collections to MATLAB Arrays

Use the ToArray method of the System.Collections.Generic.List class to convert
a collection to an array. For example, use GetRange to get three values from the list,
starting with index 2. Then call ToArray to create a System.String array dArr, and
display the results:

temp = GetRange(dc,2,3);

dArr = ToArray(temp);

for i = 1:dArr.Length

 disp(dArr(i))

end

Spinosaurus

Velociraptor

Triceratops

To create a MATLAB array D:

D = {char(dArr(1)),char(dArr(2)),char(dArr(3))}

D =

 'Spinosaurus' 'Velociraptor' 'Triceratops'

Now you can use D in MATLAB functions. For example, if you type:

D'

ans =

 'Spinosaurus'

 'Velociraptor'

 'Triceratops'

Sort the array alphabetically:

sort(D)

ans =

 'Spinosaurus' 'Triceratops' 'Velociraptor'

 Create .NET Arrays of Generic Type

10-131

Create .NET Arrays of Generic Type

This example creates a .NET array of List<Int32> generic type.

genType = NET.GenericClass('System.Collections.Generic.List',...

 'System.Int32');

arr = NET.createArray(genType, 5)

arr =

 List<System*Int32>[] with properties:

 Length: 5

 LongLength: 5

 Rank: 1

 SyncRoot: [1x1 System.Collections.Generic.List<System*Int32>[]]

 IsReadOnly: 0

 IsFixedSize: 1

 IsSynchronized: 0

10 Using .NET Libraries from MATLAB

10-132

Display .NET Generic Methods Using Reflection

In this section...

“showGenericMethods Function” on page 10-132
“Display Generic Methods in a Class” on page 10-133
“Display Generic Methods in a Generic Class” on page 10-134

showGenericMethods Function

The showGenericMethods function, reads a .NET object or a fully qualified class name
and returns a cell array of the names of the generic method in the given class or object.
Create the following MATLAB functions:

function output = showGenericMethods(input)

% if input is a .NET object, get MethodInfo[]

if IsNetObject(input)

 methods = GetType.GetMethods(input);

 % if input is a string, get the type and get get MethodInfo[]

elseif ischar(input) && ~isempty(input)

 type = getType(input);

 if isempty(type)

 disp(strcat(input,' not found'))

 return

 end

 methods = GetMethods(type);

else

 return

end

% generate generic method names from MethodInfo[]

output = populateGenericMethods(methods);

end

function output = populateGenericMethods(methods)

% generate generic method names from MethodInfo[]

index = 1;

for i = 1:methods.Length

 method = methods(i);

 if method.IsGenericMethod

 output{index,1} = method.ToString.char;

 index = index + 1;

 Display .NET Generic Methods Using Reflection

10-133

 end

end

end

function result = IsNetObject(input)

% Must be sub class of System.Object to be a .NET object

result = isa(input,'System.Object');

end

function outputType = getType(input)

% Input is a string representing the class name

% First try the static GetType method of Type handle.

% This method can find any type from

% System or mscorlib assemblies

outputType = System.Type.GetType(input,false,false);

if isempty(outputType)

 % Framework's method to get the type failed.

 % Manually look for it in

 % each assembly visible to MATLAB

 assemblies = System.AppDomain.CurrentDomain.GetAssemblies;

 for i = 1:assemblies.Length

 asm = assemblies.Get(i-1);

 % Look for a particular type in the assembly

 outputType = GetType(asm,input,false,false);

 if ~isempty(outputType)

 % Found the type - done

 break

 end

 end

end

end

Display Generic Methods in a Class

The NetDocGeneric assembly contains a class with generic methods.

dllPath = fullfile('c:','work','NetDocGeneric.dll');

asm = NET.addAssembly(dllPath);

asm.Classes

ans =

 'NetDocGeneric.SampleClass'

Display the methods in SampleClass:

10 Using .NET Libraries from MATLAB

10-134

showGenericMethods('NetDocGeneric.SampleClass')

ans =

 'K GenMethodK'

 'K GenMethodWithMixedArgs[K](K, K, Boolean)'

 'K GenStaticMethodK'

 'K GenStaticMethodWithMixedArgs[K](K, K, Boolean)'

Display Generic Methods in a Generic Class

The NetDocGeneric assembly contains a generic class with generic methods.

dllPath = fullfile('c:','work','NetDocGeneric.dll');

asm = NET.addAssembly(dllPath);

asm.GenericTypes

ans =

 'NetDocGeneric.SampleGenericClass`1[T]'

Display the methods in SampleGenericClass:

cls = NET.createGeneric('NetDocGeneric.SampleGenericClass',{'System.Double'});

showGenericMethods(cls)

ans =

 'System.String ParameterizedGenMethod[K](Double, K)'

 'T GenMethodT'

 'K GenStaticMethodK'

 'K GenStaticMethodWithMixedArgs[K](K, K, Boolean)'

 'System.String ParameterizedStaticGenMethod[K](Double, K)'

 .NET Generic Classes

10-135

.NET Generic Classes

Generics are classes and methods that have placeholders (type parameters or
parameterized types) for one or more types. This lets you design classes that take in
a generic type and determine the actual type at run time. A common use for generic
classes is to work with collections. For information about generic methods, see “Call .NET
Generic Methods” on page 10-137.

The NET.createGeneric function creates an instance of the specialized generic class
given the following:

• Fully qualified name of the generic class definition
• List of fully qualified parameter type names for generic type specialization
• Variable list of constructor arguments

Use instances of the NET.GenericClass helper class in NET.createGeneric function’s
parameter type list when specialization requires another parameterized class definition.
The class instances serve as parameterized data type definitions and are constructed
using fully qualified generic type name and a variable length list of fully qualified
type names for generic type specialization. This list can also contain instances of
NET.GenericClass if an extra nested level of parameterization is required.

10 Using .NET Libraries from MATLAB

10-136

Accessing Items in .NET Collections

Use the Item property of the System.Collections.Generic List class to get or
set an element at a specified index. Since Item is a property that takes arguments,
MATLAB maps it to a pair of methods to get and set the value. For example, the syntax
to use Item to get a value is:

Return Type Name Arguments

System.String

RetVal

Item (System.Collections.Generic.

List<System*String> this,

int32 scalar index)

The syntax to use Item to set a value is:

Return Type Name Arguments

none Item (System.Collections.Generic.

List<System*String> this,

int32 scalar index,

System.String value)

Related Examples
• “Create .NET Collections” on page 10-128

 Call .NET Generic Methods

10-137

Call .NET Generic Methods

A generic method declares one or more parameterized types. For more information,
search for the term generics in the .NET Framework Class Library, as described in “To
Learn More About the .NET Framework” on page 10-20.

Use the NET.invokeGenericMethod function to call a generic method. How you use
the NET.invokeGenericMethod depends if the method is static or if it is a member of a
generic class.

In this section...

“Using the NetDocGeneric Example” on page 10-137
“Invoke Generic Class Member Function” on page 10-138
“Invoke Static Generic Functions” on page 10-138
“Invoke Static Generic Functions of a Generic Class” on page 10-138
“Invoke Generic Functions of a Generic Class” on page 10-139

Using the NetDocGeneric Example

The C# example NetDocGeneric.cs, in the matlabroot/extern/examples/
NET/NetSample folder, defines simple generic methods to illustrate the
NET.invokeGenericMethod syntax. To see the code, open the file in MATLAB Editor.
Build the NetDocGeneric assembly as described in “Build a .NET Application for
MATLAB Examples” on page 10-23.

If you created the assembly NetDocGeneric and put it in your c:\work folder, type the
following MATLAB commands to load the assembly:

dllPath = fullfile('c:','work','NetDocGeneric.dll');

NET.addAssembly(dllPath);

Note: The methods and methodsview functions do not list generic methods. Use the
“Display .NET Generic Methods Using Reflection” on page 10-132 example.

10 Using .NET Libraries from MATLAB

10-138

Invoke Generic Class Member Function

The GenMethod method in NetDocGeneric.SampleClass returns the input argument
as type K. To call GenMethod, create an object, cls:

cls = NetDocGeneric.SampleClass();

To convert 5 to an integer parameter type, such as System.Int32, call
NET.invokeGenericMethod with the object:

ret = NET.invokeGenericMethod(cls,...

 'GenMethod',...

 {'System.Int32'},...

 5);

The GenMethodWithMixedArgs method has parameterized typed arguments, arg1
and arg2, and a strongly-typed argument, tf, of type bool. The tf flag controls which
argument GenMethodWithMixedArgs returns. To return arg1, use the syntax:

ret = NET.invokeGenericMethod(cls,'GenMethodWithMixedArgs',...

 {'System.Double'},5,6,true);

To return arg2, use the syntax:

ret = NET.invokeGenericMethod(cls,'GenMethodWithMixedArgs',...

 {'System.Double'},5,6,false);

Invoke Static Generic Functions

To invoke static method GenStaticMethod, call NET.invokeGenericMethod with the
fully qualified class name:

ret = NET.invokeGenericMethod('NetDocGeneric.SampleClass',...

 'GenStaticMethod',...

 {'System.Int32'},...

 5);

Invoke Static Generic Functions of a Generic Class

If a static function is a member of a generic class, create a class definition using the
NET.GenericClass constructor:

genClsDef = NET.GenericClass('NetDocGeneric.SampleGenericClass',...

 Call .NET Generic Methods

10-139

 'System.Double');

To invoke static method GenStaticMethod of SampleGenericClass, call
NET.invokeGenericMethod with the class definition:

ret = NET.invokeGenericMethod(genClsDef,...

 'GenStaticMethod',...

 {'System.Int32'},...

 5);

Invoke Generic Functions of a Generic Class

If a generic method uses the same parameterized type as the generic class, you can call
the function directly on the class object. If the generic uses a different type than the
class, use the NET.invokeGenericMethod function.

11

Using COM Objects from MATLAB

• “MATLAB COM Integration” on page 11-2
• “Registering Controls and Servers” on page 11-5
• “Getting Started with COM” on page 11-7
• “Use Internet Explorer in MATLAB Figure” on page 11-10
• “Add Grid ActiveX Control in a Figure” on page 11-15
• “Read Spreadsheet Data Using Excel as Automation Server” on page 11-23
• “Supported Client/Server Configurations” on page 11-30

11 Using COM Objects from MATLAB

11-2

MATLAB COM Integration

In this section...

“Concepts and Terminology” on page 11-2
“COM Objects, Clients, and Servers” on page 11-2
“Interfaces” on page 11-3
“The MATLAB COM Client” on page 11-3
“The MATLAB COM Automation Server” on page 11-4

Concepts and Terminology

While the ideas behind COM technology are straightforward, the terminology is not. The
meaning of COM terms has changed over time and few concise definitions exist. Here are
some terms that you should be familiar with. These are not comprehensive definitions.
For a complete description of COM, you'll need to consult outside resources.

COM Objects, Clients, and Servers

A COM object is a software component that conforms to the Component Object Model.
COM enforces encapsulation of the object, preventing direct access of its data and
implementation. COM objects expose interfaces, which consist of properties, methods and
events.

A COM client is a program that makes use of COM objects. COM objects that expose
functionality for use are called COM servers. COM servers can be in-process or out-of-
process. An example of an out-of-process server is Microsoft Excel spreadsheet program.

A Microsoft ActiveX® control is a type of in-process COM server that requires a control
container. ActiveX controls typically have a user interface. An example is the Microsoft
Calendar control. A control container is an application capable of hosting ActiveX
controls. A MATLAB figure window or a Simulink model are examples of control
containers.

MATLAB can be used as either a COM client or a COM Automation server.

 MATLAB COM Integration

11-3

Interfaces

The functionality of a component is defined by one or more interfaces. To use a COM
component, you must learn about its interfaces, and the methods, properties, and events
implemented by the component. The component vendor provides this information.

There are two standard COM interfaces:

• IUnknown — An interface required by all COM components. All other COM interfaces
are derived from IUnknown.

• IDispatch — An interface that exposes objects, methods and properties to
applications that support Automation.

The MATLAB COM Client

A COM client is a program that manipulates COM objects. These objects can run in the
MATLAB application or can be part of another application that exposes its objects as a
programmatic interface to the application.

Using MATLAB as a COM client provides two techniques for developing programs in
MATLAB:

• You can include COM components in your MATLAB application (for example, a
spreadsheet).

• You can access existing applications that expose objects via Automation.

In a typical scenario, MATLAB creates ActiveX controls in figure windows, which are
manipulated by MATLAB through the controls' properties, methods, and events. This
is useful because there exists a wide variety of graphical user interface components
implemented as ActiveX controls. For example, the Microsoft Internet Explorer® program
exposes objects that you can include in a figure to display an HTML file. There also are
treeviews, spreadsheets, and calendars available from a variety of sources.

MATLAB COM clients can access applications that support Automation, such as the
Excel spreadsheet program. In this case, MATLAB creates an Automation server in
which to run the application and returns a handle to the primary interface for the object
created.

11 Using COM Objects from MATLAB

11-4

The MATLAB COM Automation Server

Automation provides an infrastructure whereby applications called automation
controllers can access and manipulate (i.e. set properties of or call methods on) shared
automation objects that are exported by other applications, called Automation servers.
Any Windows program that can be configured as an Automation controller can control
MATLAB.

For example, using Microsoft Visual Basic® programming language, you can run a
MATLAB script in a Microsoft PowerPoint® presentation. In this case, PowerPoint is the
controller and MATLAB is the server.

More About
• “Create COM Objects” on page 12-3
• “MATLAB COM Automation Server”

 Registering Controls and Servers

11-5

Registering Controls and Servers

Before using COM objects, you must register their controls and servers. Most are
registered by default. However, if you get a new .ocx, .dll, or other object file for the
control or server, you must register the file manually in the Windows registry.

Use the Windows regsvr32 command to register your file. From the Windows prompt,
use the cd function to go to the folder containing the object file. If your object file is an
.ocx file, type:

regsvr32 filename.ocx

For example, to register the MATLAB control mwsamp2.ocx, type:

cd matlabroot\toolbox\matlab\winfun\win32

regsvr32 mwsamp2.ocx

If you encounter problems with this procedure, consult a Windows manual or contact
your local system administrator.

Accessing COM Controls Created with .NET

If you create a COM control using Microsoft .NET Framework 4, use the DOS regasm
command with the /codebase option to register your file.

Verifying the Registration

Here are several ways to verify that a control or server is registered. These examples
use the MATLAB mwsamp control. Refer to your Microsoft product documentation
for information about using Microsoft Visual Studio or the Microsoft Registry Editor
programs.

• Go to the Visual Studio .NET 2003 Tools menu and execute the ActiveX control test
container. Click Edit, insert a new control, and select MwSamp Control. If you are
able to insert the control without any problems, the control is successfully registered.
This method only works on controls.

• Open the Registry Editor by typing regedit at the DOS prompt. Search for your
control or server object by selecting Find from the Edit menu. It will likely be in the
following structure:

 HKEY_CLASSES_ROOT/progid

11 Using COM Objects from MATLAB

11-6

• Open OLEViewer from the Visual Studio .NET 2003 Tools menu. Look in the
following structure for your Control object:

 Object Classes : Grouped by Component Category : Control :

 Your_Control_Object_Name (i.e. Object Classes : Grouped by

 Component Category : Control : Mwsamp Control)

 Getting Started with COM

11-7

Getting Started with COM

In this section...

“Creating an Instance of a COM Object” on page 11-7
“Getting Information About a Particular COM Control” on page 11-7
“Getting an Object's ProgID” on page 11-8
“Registering a Custom Control” on page 11-8

Creating an Instance of a COM Object

Two MATLAB functions enable you to create COM objects:

• actxcontrol — Creates an instance of a control in a MATLAB figure.
• actxserver — Creates and manipulates objects from MATLAB that are exposed in

an application that supports Automation.

Each function returns a handle to the object's main interface, which you use to access the
object's methods, properties, and events, and any other interfaces it provides.

Getting Information About a Particular COM Control

In general, you can determine what you can do with an object using the methods, get,
and events functions.

Information about Methods

To list the methods supported by the object handle, type:

methods(handle)

Information about Properties

To list the properties of the object handle, type:

get(handle)

To see the value of the property PropertyName, type:

get(handle,'PropertyName')

11 Using COM Objects from MATLAB

11-8

Use the set function to change a property value.

Information about Events

To list the events supported by the object handle, type:

events(handle)

Getting an Object's ProgID

To get the programmatic identifier (ProgID) of a COM control that is already registered
on your computer, use the actxcontrollist command. You can also use the ActiveX
Control Selector, displayed with the command actxcontrolselect. This interface
lets you see instances of the controls installed on your computer.

Registering a Custom Control

If your MATLAB program uses a custom control (e.g., one that you have created
especially for your application), you must register it with the Microsoft Windows
operating system before you can use it. You can do this from your MATLAB program by
issuing an operating system command:

!regsvr32 /s filename.ocx

where filename is the name of the file containing the control. Using this command in
your program enables you to provide custom-made controls that you make available to
other users by registering the control on their computer when they run your MATLAB
program. You might also want to supply versions of a Microsoft ActiveX control to ensure
that all users have the same version.

See Also
actxcontrol | actxcontrollist | actxcontrolselect | actxserver | events |
get | methods | set

Related Examples
• “Creating an ActiveX Control” on page 12-4

More About
• “Registering Controls and Servers” on page 11-5

 Getting Started with COM

11-9

• “COM Methods” on page 12-24
• “COM Events” on page 12-27
• “COM Object Interfaces” on page 12-32

11 Using COM Objects from MATLAB

11-10

Use Internet Explorer in MATLAB Figure

This example uses the ActiveX control Shell.Explorer, which is exposed by the
Microsoft Internet Explorer application, to include an HTML viewer in a MATLAB
figure. The figure's window button down function is then used to select a graphics object
when the user clicks the graph and load the object's property documentation into the
HTML viewer.

Techniques Demonstrated

• Using Internet Explorer from an ActiveX client program.
• Defining a window button down function that displays HTML property documentation

for whatever object the user clicks.
• Defining a resize function for the figure that also resizes the ActiveX object

container.

Using the Figure to Access Properties

This example creates a larger than normal figure window that contains an axes object
and an HTML viewer on the lower part of the figure window. By default, the viewer
displays the URL http://www.mathworks.com. When you issue a plotting command,
such as:

surfc(peaks(20))

the graph displays in the axes.

Click anywhere in the graph to see the property documentation for the selected object.

 Use Internet Explorer in MATLAB Figure

11-11

Complete Code Listing

You can open the file that implements this example in MATLAB Editor or you can run
this example with the following links:

• Open file in editor
• Run this example

11 Using COM Objects from MATLAB

11-12

Creating the Figure

This example defines the figure size based on the default figure size and adds space for
the ActiveX control. Here is the code to define the figure:

dfpos = get(0,'DefaultFigurePosition');

hfig = figure('Position',dfpos([1 2 3 4]).*[.8 .2 1 1.65],...

 'Menu','none','Name','Create a plot and click on an object',...

 'ResizeFcn',@reSize,...

 'WindowButtonDownFcn',@wbdf,...

 'Renderer','Opengl');

Note that the figure also defines a resize function and a window button down function by
assigning function handles to the ResizeFcn and WindowButtonDownFcn properties.
The callback functions reSize and wbdf are defined as nested functions in the same file.

Calculating the ActiveX Object Container Size

The actxcontrol function creates the ActiveX control inside the specified figure and
returns the control's handle. You need to supply the following information:

• Control's programmatic identifier (use actxcontrollist to find it)
• Location and size of the control container in the figure (pixels) [left bottom width

height]
• Handle of the figure that contains the control:

conSize = calcSize; % Calculate the container size

hExp = actxcontrol('Shell.Explorer.2',conSize,hfig); % Create the control

Navigate(hExp,'http://www.mathworks.com/'); % Specify content of html viewer

The nested function, calcSize calculates the size of the object container based on the
current size of the figure. calcSize is also used by the figure resize function, which is
described in the next section.

function conSize = calcSize

fp = get(hfig,'Position'); % Get current figure size

conSize = [0 0 1 .45].*fp([3 4 3 4]); % Calculate container size

end % calcSize

 Use Internet Explorer in MATLAB Figure

11-13

Automatic Resize

In MATLAB, you can change the size of a figure and the axes automatically resize to fit
the new size. This example implements similar resizing behavior for the ActiveX object
container within the figure using the object's move method. This method enables you
to change both size and location of the ActiveX object container (i.e., it is equivalent to
setting the figure Position property).

When you resize the figure window, the MATLAB software automatically calls the
function assigned to the figure's ResizeFcn property. This example implements the
nested function reSize for the figure reSize function.

ResizeFcn at Figure Creation

The resize function first determines if the ActiveX object exists because the MATLAB
software calls the figure resize function when the figure is first created. Since the
ActiveX object has not been created at this point, the resize function simply returns.

When the Figure Is Resized

When you change the size of the figure, the resize function executes and does the
following:

• Calls the calcSize function to calculate a new size for the control container based on
the new figure size.

• Calls the control's move method to apply the new size to the control.

Figure ResizeFcn.

function reSize(~,~)

if ~exist('hExp','var')

 return

end

conSize = calcSize;

move(hExp,conSize);

end % reSize

Selecting Graphics Objects

This example uses the figure WindowButtonDownFcn property to define a callback
function that handles mouse click events within the figure. When you click the left

11 Using COM Objects from MATLAB

11-14

mouse button while the cursor is over the figure, the MATLAB software executes the
WindowButtonDownFcn callback on the mouse down event.

The callback determines which object was clicked by querying the figure
CurrentObject property, which contains the handle of the graphics object most recently
clicked. Once you have the object's handle, you can determine its type and then load the
appropriate HTML page into the Shell.Explorer control.

The nested function wbdf implements the callback. Once it determines the type of the
selected object, it uses the control Navigate method to display the documentation for the
object type.

Figure WindowButtonDownFcn.

function wbdf(~,~)

 cobj = get(hfig,'CurrentObject');

 if isempty(cobj)

 disp('Click somewhere else')

 return

 end

 pth = 'http://www.mathworks.com/access/helpdesk/help/techdoc/ref/';

 typ = get(cobj,'Type');

 switch typ

 case ('figure')

 Navigate(hExp,[pth,'figure_props.html']);

 case ('axes')

 Navigate(hExp,[pth,'axes_props.html']);

 case ('line')

 Navigate(hExp,[pth,'line_props.html']);

 case ('image')

 Navigate(hExp,[pth,'image_props.html']);

 case ('patch')

 Navigate(hExp,[pth,'patch_props.html']);

 case ('surface')

 Navigate(hExp,[pth,'surface_props.html']);

 case ('text')

 Navigate(hExp,[pth,'text_props.html']);

 case ('hggroup')

 Navigate(hExp,[pth,'hggroupproperties.html']);

 otherwise

 Navigate(hExp,[pth(1:end-4),'infotool/hgprop/doc_frame.html']);

 end

end % wbdf

 Add Grid ActiveX Control in a Figure

11-15

Add Grid ActiveX Control in a Figure

This example adds a Microsoft ActiveX spreadsheet control to a figure, which also
contains an axes object for plotting the data displayed by the control. Clicking a column
in the spreadsheet causes the data in that column to be plotted. Clicking down and
dragging the mouse across multiple columns plots all columns touched.

Techniques Demonstrated

• Registering a control for use on your system.
• Writing a handler for one of the control's events and using the event to execute

MATLAB plotting commands.
• Writing a resize function for the figure that manages the control's size as users

resize the figure.

Using the Control

This example assumes that your data samples are organized in columns and that the
first cell in each column is a title, which is used by the legend. See “Complete Code
Listing” on page 11-16 for an example of how to load data into the control.

Once the data is loaded, click the column to plot the data. The following picture shows a
graph of the results of Test2 and Test3 created by selecting column B and dragging and
releasing on column C.

11 Using COM Objects from MATLAB

11-16

Complete Code Listing

You can open the file used to implement this example in MATLAB Editor:

• Open file in editor.

 Add Grid ActiveX Control in a Figure

11-17

Preparing to Use the Control

The ActiveX control used in this example is typical of those downloadable from the
Internet. Once you have downloaded the files you need, register the control on your
system using the Windows command regsvr32. In a command prompt, enter a
command of the following form:

regsvr32 sgrid.ocx

From the MATLAB command line, type:

system 'regsvr32 sgrid.ocx'

See the section “Registering Controls and Servers” on page 11-5 for more information.

Finding the Control's ProgID

Once you have installed and registered the control, you can obtain its programmatic
identifier using the ActiveX Control Selector dialog. To display this dialog box, use the
actxcontrolselect command. Locate the control in the list and the selector displays
the control and the ProgID.

11 Using COM Objects from MATLAB

11-18

Creating a Figure to Contain the Control

This example creates a figure that contains an axes object and the grid control. The
first step is to determine the size of the figure and then create the figure and axes. This
example uses the default figure and axes size (obtained from the respective Position
properties) to calculate a new size and location for each object.

dfpos = get(0,'DefaultFigurePosition');

dapos = get(0,'DefaultAxesPosition');

hfig = figure('Position',dfpos([1 2 3 4]).*[1 .8 1 1.25],...

 'Name','Select the columns to plot',...

 'Renderer','ZBuffer',...

 'ResizeFcn',{@reSize dfpos(3)});

hax = axes('Position',dapos([1 2 3 4]).*[1 4 1 .65]);

 Add Grid ActiveX Control in a Figure

11-19

The above code moves the figure down from the top of the screen (multiply second
element in position vector by .8) and increases the height of the figure (multiply fourth
element in position vector by 1.25). Axes are created and sized in a similar way.

Creating an Instance of the Control

Use the actxcontrol function to create an instance of the control in a figure window.
This function creates a container for the control and enables you to specify the size of this
container, which usually defines the size of the control. See “Managing Figure Resize” on
page 11-21 for a specific example.

Specifying the Size and Location

The control size and location in the figure is calculated by a nested function calcSize.
This function is used to calculate both the initial size of the control container and the
size resulting from resize of the figure. It gets the figure's current position (i.e., size and
location) and scales the four-element vector so that the control container is

• Positioned at the lower-left corner of the figure.
• Equal to the figure in width.
• Has a height that is .35 times the figure's height.

The value returned is of the correct form to be passed to the actxcontrol function and
the control's move method.

function conSize = calcSize

 fp = get(hfig,'Position');

 conSize = fp([3 4 3 4]).*[0 0 1 .35];

end % conSize

Creating the Control

Creating the control entails the following steps:

• Calculating the container size
• Instantiating the control in the figure
• Setting the number of rows and columns to match the size of the data array
• Specifying the width of the columns

conSize = calcSize;

11 Using COM Objects from MATLAB

11-20

hgrid = actxcontrol('SGRID.SgCtrl.1',conSize,hfig);

hgrid.NRows = size(dat,1);

hgrid.NColumns = size(dat,2);

colwth = 4350; hdwth = hgrid.HdrWidth;

SetColWidth(hgrid,0,sz(2)-1,colwth,1)

Using Mouse-Click Event to Plot Data

This example uses the control's Click event to implement interactive plotting. When a
user clicks the control, the MATLAB software executes a function that plots the data in
the column where the mouse click occurred. Users can also select multiple columns by
clicking down and dragging the cursor over more than one column.

Registering the Event

You need to register events with MATLAB so that when the event occurs (a mouse click
in this case), the MATLAB software responds by executing the event handler function.
Register the event with the registerevent function:

registerevent(hgrid,{'Click',@click_event});

Pass the event name (Click) and a function handle for the event handler function inside
a cell array.

Defining the Event Handler

The event handler function click_event uses the control's GetSelection method to
determine what columns and rows have been selected by the mouse click. This function
plots the data in the selected columns as lines, one line per column.

It is possible to click down on a column and drag the mouse to select multiple columns
before releasing the mouse. In this case, each column is plotted because the event is
not fired until the mouse button is released (which reflects the way the author chose
to implement the control). The legend function uses the column number stored in the
variable cols to label the individual plotted lines. You must add one to cols because the
control counts the columns starting from zero.

Note that you implement event handlers to accept a variable number of arguments
(varargin).

function click_event(varargin)

[row1,col1,row2,col2] = hgrid.GetSelection(1,1,1,1,1);

 Add Grid ActiveX Control in a Figure

11-21

ncols = (col2-col1)+1;

cols = [col1:col2];

 for n = 1:ncols

 hgrid.Col = cols(n);

 for ii = 1:sz(1)

 hgrid.Row = ii;

 plot_data(ii,n) = hgrid.Number;

 end

 end

hgrid.SetSelection(row1,col1,row2,col2);

plot(plot_data)

legend(labels(cols+1))

end % click_event

Managing Figure Resize

The size and location of a MATLAB axes object is defined in units that are normalized to
the figure that contains it. Therefore, when you resize the figure, the axes automatically
resize proportionally. When a figure contains objects that are not contained in axes, you
are responsible for defining a function that manages the resizing process.

The figure ResizeFcn property references a function that executes whenever the figure
is resized and also when the figure is first created. This example creates a resize function
that manages resizing grid control by doing the following:

• Disables control updates while changes are being made to improve performance (use
the hDisplay property).

• Calculates a new size for the control container based on the new figure size
(calcSize function).

• Applies the new size to the control container using its move method.
• Scales the column widths of the grid proportional to the change in width of the figure

(SetColWidth method).
• Refreshes the display of the control, showing the new size.

function reSize(src,evnt,dfp)

% Return if control does not exist (figure creation)

if ~exist('hgrid','var')

 return

end

% Resize container

hgrid.bDisplay = 0;

11 Using COM Objects from MATLAB

11-22

conSize = calcSize;

move(hgrid,conSize);

% Resize columns

scl = conSize(3)/dfp;

ncolwth = scl*colwth;

nhdrwth = hdwth*(scl);

hgrid.HdrWidth = nhdrwth;

SetColWidth(hgrid,0,sz(2)-1,ncolwth,2)

hgrid.Refresh;

end % reSize

Closing the Figure

This example uses the figure delete function (DeleteFcn property) to delete the ActiveX
object before closing the figure. The MATLAB software calls the figure delete function
before deleting the figure, which enables the function to perform any clean up needed
before closing the figure. The figure delete function calls the control's delete method.

function figDelete(src,evnt)

 delete(hgrid);

end

 Read Spreadsheet Data Using Excel as Automation Server

11-23

Read Spreadsheet Data Using Excel as Automation Server

For alternatives to importing Excel spreadsheet data into MATLAB, see the functions
and examples in “Spreadsheets”.

This example creates a user interface to access the data in a Microsoft Excel file. To
enable the communication between MATLAB and the spreadsheet program, this example
creates a Microsoft ActiveX object in an Automation server running an Excel application.
MATLAB then accesses the data in the spreadsheet through the interfaces provided by
the Excel Automation server.

Techniques Demonstrated

• Use of an Automation server to access another application from MATLAB.
• Ways to manipulate Excel data into types used in the UI and plotting.
• Implementing a UI that enables plotting of selected columns of the Excel spreadsheet.
• Inserting a MATLAB figure into an Excel file.

Using the UI

To use the UI, select any items in the list box and click the Create Plot button. The
sample data provided with this example contain three input and three associated
response data sets, all of which are plotted versus the first column in the Excel file,
which is the time data.

You can view the Excel data file by clicking the Show Excel Data File button, and you
can save an image of the graph in a different Excel file by clicking Save Graph button.
Note that the Save Graph option creates a temporary PNG file in the current folder, if
you have write-access permission.

The following picture shows the UI with an input/response pair selected in the list box
and plotted in the axes.

11 Using COM Objects from MATLAB

11-24

Complete Code Listing

You can open the file used to implement this example in MATLAB Editor or run this
example:

• Open file in editor.
• Run this example.

Excel Spreadsheet Format

This example assumes a particular organization of the Excel spreadsheet, as shown in
the following picture.

 Read Spreadsheet Data Using Excel as Automation Server

11-25

The format of the Excel file is as follows:

• The first element in each column is a text string that identifies the data contain in the
column. These strings are extracted and used to populate the list box.

• The first column (Time) is used for the x-axis of all plots of the remaining data.
• All rows in each column are read into MATLAB.

Excel Automation Server

The first step in accessing the spreadsheet data from MATLAB is to run the Excel
application in an Automation server process using the actxserver function and the
program ID, excel.application.

exl = actxserver('excel.application');

The ActiveX object that is returned provides access to a number of interfaces supported
by the Excel program. Use the workbook interface to open the Excel file containing the
data.
exlWkbk = exl.Workbooks;

11 Using COM Objects from MATLAB

11-26

exlFile = exlWkbk.Open([docroot '/techdoc/matlab_external/examples/input_resp_data.xls']);

Use the workbook's sheet interface to access the data from a range object, which stores a
reference to a range of data from the specified sheet. This example accesses all the data
in column A, first cell to column G, last cell:
exlSheet1 = exlFile.Sheets.Item('Sheet1');

robj = exlSheet1.Columns.End(4); % Find the end of the column

numrows = robj.row; % And determine what row it is

dat_range = ['A1:G' num2str(numrows)]; % Read to the last row

rngObj = exlSheet1.Range(dat_range);

At this point, the entire data set from the Excel file's sheet1 is accessed via the range
object interface. This object returns the data in a MATLAB cell array, which can contain
both numeric and character data:

exlData = rngObj.Value;

Manipulating the Data in the MATLAB Workspace

Now that the data is in a cell array, you can use MATLAB functions to extract and
reshape parts of the data into the forms needed to use in the UI and pass to the plot
function.

The following code performs two operations:

• Extracts numeric data from the cell array (indexing with curly braces), concatenates
the individual doubles returned by the indexing operation (square brackets), and
reshapes it into an array that arranges the data in columns.

• Extracts the string in the first cell in each column of an Excel sheet and stores them
in a cell array, which is used to generate the items in the list box.

for ii = 1:size(exlData,2)

 matData(:,ii) = reshape([exlData{2:end,ii}],size(exlData(2:end,ii)));

 lBoxList{ii} = [exlData{1,ii}];

end

The Plotter UI

This example uses a UI that enables you to select from a list of input and response data
from a list box. All data is plotted as a function of time (which is, therefore, not a choice
in the list box) and you can continue to add more data to the graph. Each data plot added
to the graph causes the legend to expand.

Additional implementation details include:

 Read Spreadsheet Data Using Excel as Automation Server

11-27

• A legend that updates as you add data to a graph
• A clear button that enables you to clear all graphs from the axes
• A save button that saves the graph as a PNG file and adds it to another Excel file
• A toggle button that shows or hides the Excel file being accessed
• The figure delete function (DeleteFcn property), which MATLAB calls when the

figure is closed, is used to terminate the Automation server process.

Selecting and Plotting Data

When you click the Create Plot button, its callback function queries the list box to
determine what items are selected and plots each data versus time. The legend is
updated to display any new data while maintaining the legend for the existing data.

function plotButtonCallback(src,evnt)

iSelected = get(listBox,'Value');

grid(a,'on');hold all

for p = 1:length(iSelected)

 switch iSelected(p)

 case 1

 plot(a,tme,matData(:,2))

 case 2

 plot(a,tme,matData(:,3))

 case 3

 plot(a,tme,matData(:,4))

 case 4

 plot(a,tme,matData(:,5))

 case 5

 plot(a,tme,matData(:,6))

 case 6

 plot(a,tme,matData(:,7))

 otherwise

 disp('Select data to plot')

 end

end

[b,c,g,lbs] = legend([lbs lBoxList(iSelected+1)]);

end % plotButtonCallback

Clearing the Axes

The plotter is designed to continually add graphs as the user selects data from the list
box. The Clear Graph button clears and resets the axes and clears the variable used to
store the labels of the plot data (used by legend).

11 Using COM Objects from MATLAB

11-28

%% Callback for clear button

function clearButtonCallback(src,evt)

 cla(a,'reset')

 lbs = '';

end % clearButtonCallback

Display or Hide Excel File

The MATLAB program has access to the properties of the Excel application running in
the Automation server. By setting the Visible property to 1 or 0, this callback controls
the visibility of the Excel file.

%% Display or hide Excel file

function dispButtonCallback(src,evt)

 exl.visible = get(src,'Value');

end % dispButtonCallback

Close Figure and Terminate Excel Automation Process

Since the Excel Automation server runs in a separate process from MATLAB, you must
terminate this process explicitly. There is no reason to keep this process running after
the UI has been closed, so this example uses the figure's delete function to terminate
the Excel process with the Quit method. Also, terminate the second Excel process used
for saving the graph. See “Inserting MATLAB Graphs Into Excel Spreadsheets” on page
11-28 for information on this second process.

%% Terminate Excel processes

function deleteFig(src,evt)

 exlWkbk.Close

 exlWkbk2.Close

 exl.Quit

 exl2.Quit

end % deleteFig

Inserting MATLAB Graphs Into Excel Spreadsheets

You can save the graph created with this UI in an Excel file. (This example uses a
separate Excel Automation server process for this purpose.) The callback for the Save
Graph push button creates the image and adds it to an Excel file:

• Both the axes and legend are copied to an invisible figure configured to print the
graph as you see it on the screen (figure PaperPositionMode property is set to
auto).

 Read Spreadsheet Data Using Excel as Automation Server

11-29

• The print command creates the PNG image.
• Use the Shapes interface to insert the image in the Excel workbook.

The server and interfaces are instanced during UI initialization phase:

exl2 = actxserver('excel.application');

exlWkbk2 = exl2.Workbooks;

wb = invoke(exlWkbk2,'Add');

graphSheet = invoke(wb.Sheets,'Add');

Shapes = graphSheet.Shapes;

The following code implements the Save Graph button callback:
function saveButtonCallback(src,evt)

 tempfig = figure('Visible','off','PaperPositionMode','auto');

 tempfigfile = [tempname '.png'];

 ah = findobj(f,'type','axes');

 copyobj(ah,tempfig) % Copy both graph axes and legend axes

 print(tempfig,'-dpng',tempfigfile);

 Shapes.AddPicture(tempfigfile,0,1,50,18,300,235);

 exl2.visible = 1;

end

See Also
xlsread

More About
• “Ways to Import Spreadsheets”

11 Using COM Objects from MATLAB

11-30

Supported Client/Server Configurations

In this section...

“Introduction” on page 11-30
“MATLAB Client and In-Process Server” on page 11-30
“MATLAB Client and Out-of-Process Server” on page 11-31
“COM Implementations Supported by MATLAB Software” on page 11-32
“Client Application and MATLAB Automation Server” on page 11-32
“Client Application and MATLAB Engine Server” on page 11-33

Introduction

You can configure MATLAB software to either control or be controlled by other COM
components. When MATLAB controls another component, MATLAB is the client, and the
other component is the server. When another component controls MATLAB, MATLAB is
the server.

MATLAB Client and In-Process Server

The following diagram shows how the MATLAB client interacts with an “In-Process
Server” on page 13-5.

The server exposes its properties and methods through the IDispatch (Automation)
interface or a Custom interface, depending on which interfaces the component
implements. For information on accessing interfaces, see “COM Object Interfaces” on
page 12-32 .

Microsoft ActiveX Controls

An ActiveX control is an object with a user interface. When MATLAB constructs an
ActiveX control, it places the control's UI in a MATLAB figure window. Click the

 Supported Client/Server Configurations

11-31

various options available in the user interface (e.g., making a particular menu selection)
to trigger events that get communicated from the control in the server to the client
MATLAB application. The client decides what to do about each event and responds
accordingly.

MATLAB comes with a sample ActiveX control called mwsamp. This control draws a circle
on the screen and displays some text. You can use this control to try out MATLAB COM
features. For more information, see “MATLAB Sample ActiveX Control mwsamp” on page
12-54.

DLL Servers

Any COM component that has been implemented as a dynamic link library (DLL) is
also instantiated in an in-process server. That is, it is created in the same process as the
MATLAB client application. When MATLAB uses a DLL server, it runs in a separate
window rather than a MATLAB figure window.

MATLAB responds to events generated by a DLL server in the same way as events from
an ActiveX control.

For More Information

To learn more about working with MATLAB as a client, see “Create COM Objects” on
page 12-3.

MATLAB Client and Out-of-Process Server

In this configuration, a MATLAB client application interacts with a component that has
been implemented as a “Local Out-of-Process Server” on page 13-5. Examples of out-
of-process servers are Microsoft Excel and Microsoft Word programs.

As with in-process servers, this server exposes its properties and methods through the
IDispatch (Automation) interface or a Custom interface, depending on which interfaces
the component implements. For information on accessing interfaces, see “COM Object
Interfaces” on page 12-32.

11 Using COM Objects from MATLAB

11-32

Since the client and server run in separate processes, you have the option of creating the
server on any system on the same network as the client.

If the component provides a user interface, its window is separate from the client
application.

MATLAB responds to events generated by an out-of-process server in the same way as
events from an ActiveX control.

For More Information

To learn more about working with MATLAB as a client, see “Create COM Objects” on
page 12-3.

COM Implementations Supported by MATLAB Software

MATLAB only supports COM implementations that are compatible with the Microsoft
Active Template Library (ATL) API. In general, your COM object should be able to be
contained in an ATL host window in order to work with MATLAB.

Client Application and MATLAB Automation Server

MATLAB operates as the Automation server in this configuration. It can be created and
controlled by any Microsoft Windows program that can be an Automation controller.
Some examples of Automation controllers are Microsoft Excel, Microsoft Access™,
Microsoft Project, and many Microsoft Visual Basic and Microsoft Visual C++ programs.

MATLAB Automation server capabilities include the ability to execute commands in the
MATLAB workspace, and to get and put matrices directly from and into the workspace.
You can start a MATLAB server to run in either a shared or dedicated mode. You also
have the option of running it on a local or remote system.

To create the MATLAB server from an external application program, use the
appropriate function from that language to instantiate the server. (For example,

 Supported Client/Server Configurations

11-33

use the Visual Basic CreateObject function.) For the programmatic identifier,
specify matlab.application. To run MATLAB as a dedicated server, use the
matlab.application.single programmatic identifier. See “Shared and Dedicated
Servers” on page 13-4 for more information.

The function that creates the MATLAB server also returns a handle to the properties and
methods available in the server through the IDispatch interface.

Note: Because VBScript client programs require an Automation interface to
communicate with servers, this is the only configuration that supports a VBScript client.

For More Information

To learn more about working with Automation servers, see “MATLAB COM Automation
Server Interface” on page 13-4.

Client Application and MATLAB Engine Server

MATLAB provides a faster custom interface called IEngine for client applications
written in C, C++, or Fortran. MATLAB uses IEngine to communicate between the client
application and the MATLAB engine running as a COM server.

Use the MATLAB Engine API functions to start and end the server process, and to send
commands to be processed by MATLAB.

For More Information

To learn more about the MATLAB engine and the functions provided in its C/C++ and
Fortran API Reference libraries, see “MATLAB Engine API for C, C++, and Fortran”.

12

MATLAB COM Client Support

• “Create COM Objects” on page 12-3
• “Handle COM Data in MATLAB” on page 12-12
• “COM Object Properties” on page 12-21
• “COM Methods” on page 12-24
• “COM Events” on page 12-27
• “COM Event Handlers” on page 12-29
• “COM Object Interfaces” on page 12-32
• “Save and Delete COM Objects” on page 12-35
• “MATLAB Application as DCOM Client” on page 12-37
• “Explore COM Objects” on page 12-38
• “Change Row Height in Range of Spreadsheet Cells” on page 12-42
• “Write Data to Excel Spreadsheet Using ActiveX” on page 12-44
• “Change Cursor in Spreadsheet” on page 12-46
• “Insert Spreadsheet After First Sheet” on page 12-47
• “Redraw Circle in mwsamp Control” on page 12-48
• “Connect to Existing Excel Application” on page 12-50
• “Display Message for Workbook OnClose Event” on page 12-51
• “Run Macro in Excel Server Application” on page 12-52
• “Combine Event Handlers as MATLAB Local Functions” on page 12-53
• “MATLAB Sample ActiveX Control mwsamp” on page 12-54
• “Display Event Messages from mwsamp Control” on page 12-55
• “Add Position Property to mwsamp Control” on page 12-58
• “Save mwsamp2 COM Control” on page 12-59
• “Deploy ActiveX Controls Requiring Run-Time Licenses” on page 12-60
• “Microsoft Forms 2.0 Controls” on page 12-62

12 MATLAB COM Client Support

12-2

• “COM Collections” on page 12-64
• “MATLAB COM Support Limitations” on page 12-65
• “Interpreting Argument Callouts in COM Error Messages” on page 12-66

 Create COM Objects

12-3

Create COM Objects

In this section...

“Creating the Server Process — An Overview” on page 12-3
“Creating an ActiveX Control” on page 12-4
“Creating a COM Server” on page 12-10

Creating the Server Process — An Overview

MATLAB software provides two functions to create a COM object:

• actxcontrol — Creates a Microsoft ActiveX control in a MATLAB figure window.
• actxserver — Creates an in-process server for a dynamic link library (DLL)

component or an out-of-process server for an executable (EXE) component.

The following diagram shows the basic steps in creating the server process. For more
information on how the MATLAB software establishes interfaces to the resultant COM
object, see “COM Object Interfaces” on page 12-32.

12 MATLAB COM Client Support

12-4

Creating an ActiveX Control

You can create an instance of an ActiveX control from the MATLAB client using either a
user interface (actxcontrolselect) or the actxcontrol function from the command
line. Either of these methods creates an instance of the control in the MATLAB client
process and returns a handle to the primary interface to the COM object. Through this
interface, you can access the public properties or methods of the object. You can also
establish more interfaces to the object, including interfaces that use IDispatch, and any
custom interfaces that might exist.

 Create COM Objects

12-5

This section describes how to create an instance of the control and how to position it in
the MATLAB figure window.

• “Listing Installed Controls” on page 12-5
• “Finding a Particular Control” on page 12-5
• “Creating Control Objects Using a UI” on page 12-6
• “Creating Control Objects from the Command Line” on page 12-9
• “Repositioning the Control in a Figure Window” on page 12-9
• “Limitations to ActiveX Support” on page 12-9

Listing Installed Controls

The actxcontrollist function shows you what COM controls are currently installed
on your system. Type:

list = actxcontrollist

MATLAB displays a cell array listing each control, including its name, programmatic
identifier (ProgID), and file name.

This example shows information for several controls (your results might be different):

list = actxcontrollist;

s = sprintf(' Name = %s\n ProgID = %s\n File = %s\n', list{114:115,:})

MATLAB displays:

s =

 Name = OleInstall Class

 ProgID = Outlook Express Mime Editor

 File = OlePrn.OleInstall.1

 Name = OutlookExpress.MimeEdit.1

 ProgID = C:\WINNT\System32\oleprn.dll

 File = C:\WINNT\System32\inetcomm.dll

Finding a Particular Control

If you know the name of a control, you can find it in the list and display its ProgID
and the path of the folder containing it. For example, some of the examples in this
documentation use the Mwsamp2 control. You can find it with the following code:

12 MATLAB COM Client Support

12-6

list = actxcontrollist;

for ii = 1:length(list)

 if ~isempty(strfind([list{ii,:}],'Mwsamp2'))

 s = sprintf(' Name = %s\n ProgID = %s\n File = %s\n', ...

 list{ii,:})

 end

end

s =

 Name = Mwsamp2 Control

 ProgID = MWSAMP.MwsampCtrl.2

 File =

 D:\Apps\MATLAB\R2006a\toolbox\matlab\winfun\win32\mwsamp2.ocx

The location of this file depends on your MATLAB installation.

Creating Control Objects Using a UI

Using the actxcontrolselect function is the simplest way to create an instance of
a control object. This function displays all controls installed on your system. When you
select an item from the list and click the Create button, MATLAB creates the control
and returns a handle to it. Type:

h = actxcontrolselect

MATLAB displays the Select an ActiveX Control dialog box.

 Create COM Objects

12-7

The interface has an ActiveX Control List selection pane on the left and a Preview
pane on the right. To see a preview of the control, click one of the control names in the
selection pane. (A blank preview pane means that the control does not have a preview.) If
MATLAB cannot create the instance, an error message appears in the preview pane.

Setting Properties with actxcontrolselect

To change property values when creating the control, click the Properties button in the
Preview pane. You can select which figure window to put the control in (Parent field),
where to position it in the window (X and Y fields), and what size to make the control
(Width and Height).

You can register events you want the control to respond to in this window. Register an
event and the callback routine to handle that event by entering the name of the routine
to the right of the event under Event Handler.

12 MATLAB COM Client Support

12-8

You can select callback routines by clicking a name in the Event column, and then
clicking the Browse button. To assign a callback routine to more than one event, first
press the Ctrl key and click individual event names, or drag the mouse over consecutive
event names, and then click Browse to select the callback routine.

MATLAB only responds to registered events, so if you do not specify a callback, the event
is ignored.

For example, in the ActiveX Control List pane, select Calendar Control 10.0 (the
version on your system might be different) and click Properties. MATLAB displays the
Choose ActiveX Control Creation Parameter dialog box. To change the default size for the
control, enter a Width of 500 and a Height of 350. Click OK in this window, and click
Create in the next window to create an instance of the Calendar control.

You can also set control parameters using the actxcontrol function. One parameter
you can set with actxcontrol, but not with actxcontrolselect, is the name of an
initialization file. When you specify this file name, MATLAB sets the initial state of the
control to that of a previously saved control.

Information Returned by actxcontrolselect

The actxcontrolselect function creates an object that is an instance of the MATLAB
COM class. The function returns up to two arguments: a handle for the object, h, and a 1-
by-3 cell array, info, containing information about the control. To get this information,
type:

[h, info] = actxcontrolselect

The cell array info shows the name, ProgID, and file name for the control.

If you select the Calendar Control, and then click Create, MATLAB displays information
like:

h =

 COM.mscal.calendar.7

info =

 [1x20 char] 'MSCAL.Calendar.7' [1x41 char]

To expand the info cell array, type:

info{:}

MATLAB displays:

 Create COM Objects

12-9

ans =

 Calendar Control 9.0

ans =

 MSCAL.Calendar.7

ans =

 D:\Applications\MSOffice\Office\MSCAL.OCX

Creating Control Objects from the Command Line

If you already know which control you want and you know its ProgID, use the
actxcontrol function to create an instance of the control.

The ProgID is the only required input to this function. However, as with
actxcontrolselect, you can supply more inputs that enable you to select which figure
window to put the control in, where to position it in the window, and what size to make
it. You can also register any events you want the control to respond to, or set the initial
state of the control by reading that state from a file. See the actxcontrol reference
page for a full explanation of its input arguments.

The actxcontrol function returns a handle to the primary interface to the object. Use
this handle to reference the object in other COM function calls. You can also use the
handle to obtain more interfaces to the object. For more information on using interfaces,
see “COM Object Interfaces” on page 12-32.

Repositioning the Control in a Figure Window

After creating a control, you can change its shape and position in the window with the
move function.

Observe what happens to the object created in the last section when you specify new
origin coordinates (70, 120) and new width and height dimensions of 400 and 350:

move(h,[70 120 400 350]);

Limitations to ActiveX Support

A MATLAB COM ActiveX control container does not in-place activate controls until they
are visible.

12 MATLAB COM Client Support

12-10

Creating a COM Server

Instantiating a DLL Component

To create a server for a component implemented as a dynamic link library (DLL), use
the actxserver function. MATLAB creates an instance of the component in the same
process that contains the client application.

The syntax for actxserver, when used with a DLL component, is
actxserver(ProgID), where ProgID is the programmatic identifier for the component.

actxserver returns a handle to the primary interface to the object. Use this handle to
reference the object in other COM function calls. You can also use the handle to obtain
more interfaces to the object. For more information on using interfaces, see “COM Object
Interfaces” on page 12-32.

Unlike Microsoft ActiveX controls, any user interface displayed by the server appears in
a separate window.

You cannot use a 32-bit in-process DLL COM object in a 64-bit MATLAB application.
For information about this restriction, see http://www.mathworks.com/matlabcentral/
answers/95116-why-am-i-not-able-to-use-32-bit-dll-com-objects-in-64-bit-matlab-7-3-
r2006b.

Instantiating an EXE Component

You can use the actxserver function to create a server for a component implemented
as an executable (EXE). In this case, MATLAB instantiates the component in an out-of-
process server.

The syntax for actxserver, when used to create an executable, is
actxserver(ProgID, sysname), where ProgID is the programmatic identifier for the
component, and sysname is an optional argument used in configuring a distributed COM
(DCOM) system.

actxserver returns a handle to the primary interface to the COM object. Use this
handle to reference the object in other COM function calls. You can also use the handle to
obtain more interfaces to the object. For more information on using interfaces, see “COM
Object Interfaces” on page 12-32.

Any user interface displayed by the server appears in a separate window.

http://www.mathworks.com/matlabcentral/answers/95116-why-am-i-not-able-to-use-32-bit-dll-com-objects-in-64-bit-matlab-7-3-r2006b
http://www.mathworks.com/matlabcentral/answers/95116-why-am-i-not-able-to-use-32-bit-dll-com-objects-in-64-bit-matlab-7-3-r2006b
http://www.mathworks.com/matlabcentral/answers/95116-why-am-i-not-able-to-use-32-bit-dll-com-objects-in-64-bit-matlab-7-3-r2006b

 Create COM Objects

12-11

This example creates a COM server application running the Microsoft Excel spreadsheet
program. The handle is assigned to h.

h = actxserver('Excel.Application')

MATLAB displays:

h =

 COM.excel.application

MATLAB can programmatically connect to an instance of a COM Automation server
application that is already running on your computer. To get a reference to such an
application, use the actxGetRunningServer function.

This example gets a reference to the Excel program, which must already be running on
your system. The returned handle is assigned to h.

h = actxGetRunningServer('Excel.Application')

MATLAB displays:

h =

 COM.excel.application

12 MATLAB COM Client Support

12-12

Handle COM Data in MATLAB

In this section...

“Passing Data to COM Objects” on page 12-12
“Handling Data from COM Objects” on page 12-14
“Unsupported Types” on page 12-15
“Passing MATLAB Data to ActiveX Objects” on page 12-15
“Passing MATLAB SAFEARRAY to COM Object” on page 12-15
“Reading SAFEARRAY from COM Objects in MATLAB Applications” on page 12-17
“Displaying MATLAB Syntax for COM Objects” on page 12-18

Passing Data to COM Objects

When you use a COM object in a MATLAB command, the MATLAB types you pass in the
call are converted to types native to the COM object. MATLAB performs this conversion
on each argument that is passed. This section describes the conversion.

MATLAB converts MATLAB arguments into types that best represent the data to the
COM object. The following table shows all the MATLAB base types for passed arguments
and the COM types defined for input arguments. Each row shows a MATLAB type
followed by the possible COM argument matches. For a description of COM variant
types, see the table in “Handling Data from COM Objects” on page 12-14.

MATLAB Argument Closest COM Type Allowed Types

handle VT_DISPATCH

VT_UNKNOWN

VT_DISPATCH

VT_UNKNOWN

string VT_BSTR VT_LPWSTR

VT_LPSTR

VT_BSTR

VT_FILETIME

VT_ERROR

VT_DECIMAL

VT_CLSID

VT_DATE

int16 VT_I2 VT_I2

 Handle COM Data in MATLAB

12-13

MATLAB Argument Closest COM Type Allowed Types

uint16 VT_UI2 VT_UI2

int32 VT_I4 VT_I4

VT_INT

uint32 VT_UI4 VT_UI4

VT_UINT

int64 VT_I8 VT_I8

uint64 VT_UI8 VT_UI8

single VT_R4 VT_R4

double VT_R8 VT_R8

VT_CY

logical VT_BOOL VT_BOOL

char VT_I1 VT_I1

VT_UI1

Variant Data

variant is any data type except a structure or a sparse array. (For more information,
see “Fundamental MATLAB Classes”.)

When used as an input argument, MATLAB treats variant and variant(pointer) the
same way.

MATLAB Argument Closest COM Type Allowed Types

variant VT_VARIANT VT_VARIANT

VT_USERDEFINED

VT_ARRAY

variant(pointer) VT_VARIANT VT_VARIANT | VT_BYREF

SAFEARRAY Data

When a COM method identifies a SAFEARRAY or SAFEARRAY(pointer), the MATLAB
equivalent is a matrix.

MATLAB Argument Closest COM Type Allowed Types

SAFEARRAY VT_SAFEARRAY VT_SAFEARRAY

12 MATLAB COM Client Support

12-14

MATLAB Argument Closest COM Type Allowed Types

SAFEARRAY(pointer) VT_SAFEARRAY VT_SAFEARRAY | VT_BYREF

Handling Data from COM Objects

Data returned from a COM object is often incompatible with MATLAB types. When
this occurs, MATLAB converts the returned value to a data type native to the MATLAB
language. This section describes the conversion performed on the various types that can
be returned from COM objects.

The following table shows how MATLAB converts data from a COM object into MATLAB
variables.

COM Variant Type Description MATLAB Representation

VT_DISPATCH

VT_UNKNOWN

IDispatch *

IUnknown *

MATLAB does not support
the IUnknown and
IDispatch interfaces with
64-bit MATLAB.

handle

VT_LPWSTR

VT_LPSTR

VT_BSTR

VT_FILETIME

VT_ERROR

VT_DECIMAL

VT_CLSID

VT_DATE

wide null terminated
string
null terminated string
OLE Automation string
FILETIME

SCODE

16-byte fixed point
Class ID
date

string

VT_INT

VT_UINT

VT_I2

VT_UI2

VT_I4

VT_UI4

VT_R4

VT_R8

VT_CY

signed machine int

unsigned machine int

2 byte signed int
unsigned short

4 byte signed int
unsigned long

4 byte real
8 byte real
currency

double

 Handle COM Data in MATLAB

12-15

COM Variant Type Description MATLAB Representation

VT_I8 signed int64 int64

VT_UI8 unsigned int64 uint64

VT_BOOL logical

VT_I1

VT_UI1

signed char

unsigned char

char

VT_VARIANT

VT_USERDEFINED

VT_ARRAY

VARIANT *

user-defined type
SAFEARRAY*

variant

VT_VARIANT | VT_BYREF VARIANT *

void* for local use
variant(pointer)

VT_SAFEARRAY use VT_ARRAY in VARIANT SAFEARRAY

VT_SAFEARRAY | VT_BYREF SAFEARRAY(pointer)

Unsupported Types

MATLAB does not support the following COM interface types and displays the warning
ActiveX - unsupported VARIANT type encountered.

• Structure
• Sparse array
• Multidimensional SAFEARRAYs (greater than two dimensions)
• Write-only properties

Passing MATLAB Data to ActiveX Objects

The tables also show the mapping of MATLAB types to COM types that you must use to
pass data from MATLAB to an Microsoft ActiveX object. For all other types, MATLAB
displays the warning ActiveX - invalid argument type or value.

Passing MATLAB SAFEARRAY to COM Object

The SAFEARRAY data type is a standard way to pass arrays between COM objects. This
section explains how MATLAB passes SAFEARRAY data to a COM object.

12 MATLAB COM Client Support

12-16

• “Default Behavior in MATLAB Software” on page 12-16
• “Examples” on page 12-16
• “How to Pass a Single-Dimension SAFEARRAY” on page 12-17
• “Passing SAFEARRAY by Reference” on page 12-17

Default Behavior in MATLAB Software

MATLAB represents an m-by-n matrix as a two-dimensional SAFEARRAY, where the first
dimension has m elements and the second dimension has n elements. MATLAB passes
the SAFEARRAY by value.

Examples

The following examples use a COM object that expects a SAFEARRAY input parameter.

When MATLAB passes a 1-by-3 array:

B = [2 3 4]

B =

 2 3 4

the object reads:

No. of dimensions: 2

Dim: 1, No. of elements: 1

Dim: 2, No. of elements: 3

 Elements:

 2.0

 3.0

 4.0

When MATLAB passes a 3-by-1 array:

C = [1;2;3]

C =

 1

 2

 3

the object reads:

No. of dimensions: 2

Dim: 1, No. of elements: 3

Dim: 2, No. of elements: 1

 Handle COM Data in MATLAB

12-17

Elements:

 1.0

 2.0

 3.0

When MATLAB passes a 2-by-4 array:

D = [2 3 4 5;5 6 7 8]

D =

 2 3 4 5

 5 6 7 8

the object reads:

No. of dimensions: 2

Dim: 1, No. of elements: 2

Dim: 2, No. of elements: 4

Elements:

 2.0

 3.0

 4.0

 5.0

 5.0

 6.0

 7.0

 8.0

How to Pass a Single-Dimension SAFEARRAY

For information about passing arguments as one-dimensional arrays to a COM object,
see http://www.mathworks.com/matlabcentral/answers/92424-how-can-
i-pass-arguments-to-an-activex-server-from-matlab-7-0-r14-as-one-

dimensional-arrays.

Passing SAFEARRAY by Reference

For information about passing arguments by reference to a COM object, see http://
www.mathworks.com/matlabcentral/answers/94888-how-can-i-pass-

arguments-by-reference-to-an-activex-server-from-matlab-7-0-r14.

Reading SAFEARRAY from COM Objects in MATLAB Applications

This section explains how MATLAB reads SAFEARRAY data from a COM object.

http://www.mathworks.com/matlabcentral/answers/92424-how-can-i-pass-arguments-to-an-activex-server-from-matlab-7-0-r14-as-one-dimensional-arrays
http://www.mathworks.com/matlabcentral/answers/92424-how-can-i-pass-arguments-to-an-activex-server-from-matlab-7-0-r14-as-one-dimensional-arrays
http://www.mathworks.com/matlabcentral/answers/92424-how-can-i-pass-arguments-to-an-activex-server-from-matlab-7-0-r14-as-one-dimensional-arrays
http://www.mathworks.com/matlabcentral/answers/94888-how-can-i-pass-arguments-by-reference-to-an-activex-server-from-matlab-7-0-r14
http://www.mathworks.com/matlabcentral/answers/94888-how-can-i-pass-arguments-by-reference-to-an-activex-server-from-matlab-7-0-r14
http://www.mathworks.com/matlabcentral/answers/94888-how-can-i-pass-arguments-by-reference-to-an-activex-server-from-matlab-7-0-r14

12 MATLAB COM Client Support

12-18

MATLAB reads a one-dimensional SAFEARRAY with n elements from a COM object as a
1-by-n matrix. For example, using methods from the MATLAB sample control mwsamp,
type:

h=actxcontrol('mwsamp.mwsampctrl.1')

a = GetI4Vector(h)

MATLAB displays:

a =

 1 2 3

MATLAB reads a two-dimensional SAFEARRAY with n elements as a 2-by-n matrix. For
example:

a = GetR8Array(h)

MATLAB displays:

a =

 1 2 3

 4 5 6

MATLAB reads a three-dimensional SAFEARRAY with two elements as a 2-by-2-by-2 cell
array. For example:

a = GetBSTRArray(h)

MATLAB displays:

a(:,:,1) =

 '1 1 1' '1 2 1'

 '2 1 1' '2 2 1'

a(:,:,2) =

 '1 1 2' '1 2 2'

 '2 1 2' '2 2 2'

Displaying MATLAB Syntax for COM Objects

To determine which MATLAB types to use when passing arguments to COM objects, use
the invoke or methodsview functions. These functions list all the methods found in an
object, along with a specification of the types required for each argument.

 Handle COM Data in MATLAB

12-19

Consider a server called MyApp, which has a single method TestMeth1 with the
following syntax:

HRESULT TestMeth1 ([out, retval] double* dret);

This method has no input argument, and it returns a variable of type double. The
following pseudo-code displays the MATLAB syntax for calling the method.

h = actxserver('MyApp');

invoke(h)

MATLAB displays:

ans =

 TestMeth1 = double TestMeth1 (handle)

The signature of TestMeth1 is:

double TestMeth1(handle)

MATLAB requires you to use an object handle as an input argument for every method, in
addition to any input arguments required by the method itself.

Use one of the following pseudo-code commands to create the variable var, which is of
type double.

var = h.TestMeth1;

or:

var = TestMeth1(h);

While the following syntax is correct, its use is discouraged:

var = invoke(h,’TestMeth1’);

Now consider the server called MyApp1 with the following methods:

HRESULT TestMeth1 ([out, retval] double* dret);

HRESULT TestMeth2 ([in] double* d, [out, retval] double* dret);

HRESULT TestMeth3 ([out] BSTR* sout,

 [in, out] double* dinout,

 [in, out] BSTR* sinout,

 [in] short sh,

 [out] long* ln,

12 MATLAB COM Client Support

12-20

 [in, out] float* b1,

 [out, retval] double* dret);

Using the invoke function, MATLAB displays the list of methods:
ans =

 TestMeth1 = double TestMeth1 (handle)

 TestMeth2 = double TestMeth2 (handle, double)

 TestMeth3 = [double, string, double, string, int32, single] ...

 TestMeth3(handle, double, string, int16, single)

TestMeth2 requires an input argument d of type double, as well as returning a variable
dret of type double. Some pseudo-code examples of calling TestMeth2 are:

var = h.TestMeth2(5);

or:

var = TestMeth2(h, 5);

TestMeth3 requires multiple input arguments, as indicated within the parentheses on
the right side of the equal sign, and returns multiple output arguments, as indicated
within the brackets on the left side of the equal sign.
[double, string, double, string, int32, single] %output arguments

TestMeth3(handle, double, string, int16, single) %input arguments

The first input argument is the required handle, followed by four input arguments.

TestMeth3(handle, in1, in2, in3, in4)

The first output argument is the return value retval, followed by five output
arguments.

[retval, out1, out2, out3, out4, out5]

This is how the arguments map into a MATLAB command:

[dret, sout, dinout, sinout, ln, b1] = TestMeth3(handle, ...

 dinout, sinout, sh, b1)

where dret is double, sout is string, dinout is double and is both an input and
an output argument, sinout is string (input and output argument), ln is int32, b1
is single (input and output argument), handle is the handle to the object, and sh is
int16.

 COM Object Properties

12-21

COM Object Properties

In this section...

“MATLAB Functions for Object Properties” on page 12-21
“Work with Multiple Objects” on page 12-21
“Enumerated Values for Properties” on page 12-22
“Property Inspector” on page 12-22
“Custom Properties” on page 12-23
“Properties That Take Arguments” on page 12-23

MATLAB Functions for Object Properties

You can get the value of a property and, in some cases, change the value. You also can
add custom properties.

Property names are not case-sensitive. You can abbreviate them as long as the name is
unambiguous.

Function Description

get List one or more properties and their values.
set Set the value of one or more properties.
isprop Determine if an item is a property of a COM object.
addproperty Add a custom property to a COM object.
deleteproperty Remove a custom property from a COM object.
inspect Open the Property Inspector to display and modify property

values.
propedit Display the built-in property page of the control, if any.

Work with Multiple Objects

You can use the get and set functions on more than one object at a time by creating a
vector of object handles and using these commands on the vector. To get or set values for
multiple objects, use the functional form of the get and set functions. Use dot notation,
for example h.propname, on scalar objects only.

12 MATLAB COM Client Support

12-22

Enumerated Values for Properties

Enumeration makes examining and changing properties easier because each possible
value for the property is given a string to represent it. For example, one of the values for
the DefaultSaveFormat property in a Microsoft Excel spreadsheet is xlUnicodeText.
This text is easier to remember than a numeric value like 57.

Property Inspector

The Property Inspector enables you to access the properties of COM objects. To open
the Property Inspector, use the inspect function from the MATLAB command line or
double-click the object in the MATLAB Workspace browser.

For example, create an Excel object. Then set the DefaultFilePath property to an
existing folder, C:\ExcelWork.

h = actxserver('Excel.Application');

h.DefaultFilePath = 'C:\ExcelWork';

Display the properties of the object.

inspect(h)

Scroll down until you see the DefaultFilePath property that you just changed, C:
\ExcelWork.

Using the Property Inspector, change DefaultFilePath once more, this time to another
existing folder, MyWorkDirectory. To do this, select the value at the right and type the
new value.

Now go back to the MATLAB Command Window and confirm that the
DefaultFilePath property has changed as expected.

h.DefaultFilePath

ans =

C:\MyWorkDirectory

Note: If you modify properties at the MATLAB command line, refresh the Property
Inspector window to see the change reflected there. Refresh the Property Inspector
window by reinvoking the inspect function on the object.

 COM Object Properties

12-23

Using the Property Inspector on Enumerated Values

A list button next to a property value indicates that the property accepts enumerated
values. To see the values, click anywhere in the field on the right. For example, the
Cursor property has four enumerated values. The current value xlDefault is displayed
in the field next to the property name.

To change the value, use the list button to display the options for that property, and then
click the desired value.

Custom Properties

You can add your own properties to an instance of a control using the addproperty
function.

To remove custom properties from a control, use the deleteproperty function.

Properties That Take Arguments

Some COM objects have properties that accept input arguments. Internally, MATLAB
handles these properties as methods, which means you use the methods or invoke
functions (not the get function) to view the property.

Related Examples
• “Change Cursor in Spreadsheet” on page 12-46
• “Add Position Property to mwsamp Control” on page 12-58
• “Change Row Height in Range of Spreadsheet Cells” on page 12-42

More About
• “Exploring Properties” on page 12-38

12 MATLAB COM Client Support

12-24

COM Methods

In this section...

“Getting Method Information” on page 12-24
“Calling Object Methods” on page 12-24
“Specifying Enumerated Parameters” on page 12-25
“Skipping Optional Input Arguments” on page 12-25
“Returning Multiple Output Arguments” on page 12-26

Getting Method Information

You execute, or invoke, COM functions or methods belonging to COM objects. Method
names are case-sensitive. You cannot abbreviate them.

To see what methods a COM object supports, use one of the following functions. Each
function presents specific information, as described in the table. For information about
using a method, refer to your vendor documentation.

Function Output

methodsview Graphical display of function names and
signatures

methods with -full qualifier Cell array of function names and signatures,
sorted alphabetically

methods Cell array of function names only, sorted
alphabetically, with uppercase names listed first

invoke Cell array of function names and signatures

Calling Object Methods

MATLAB supports the following syntaxes to call methods on an object.

• By method name:

outputvalue = methodname(object,'arg1','arg2',...);

 COM Methods

12-25

• By dot notation:

outputvalue = object.methodname('arg1','arg2',...);

• Using explicit syntax:

outputvalue = invoke(object,'methodname','arg1','arg2',...);

The methodsview and methods -full commands show what data types to use for input
and output arguments.

You cannot use dot syntax and must explicitly call the get, set, and invoke functions
under the following conditions:

• To access a property or method that is not a public member of the object class.
• To access a property or method that is not in the type library for the control or server.
• To access properties that take arguments. MATLAB treats these properties like

methods.
• To access properties on a vector of objects, use the get and set functions.

You cannot invoke a method on multiple COM objects, even if you call the invoke
function explicitly.

Specifying Enumerated Parameters

Enumeration is a way of assigning a descriptive name to a symbolic value. MATLAB
supports enumeration for parameters passed to methods under the condition that the
type library in use reports the parameter as ENUM, and only as ENUM.

Note: MATLAB does not support enumeration for any parameter that the type library
reports as both ENUM and Optional.

Skipping Optional Input Arguments

When calling a method that takes optional input arguments, you can skip an optional
argument by specifying an empty array ([]) in its place. For example, the syntax for
calling a method with second argument arg2 not specified is:

methodname(handle,arg1,[],arg3);

12 MATLAB COM Client Support

12-26

Returning Multiple Output Arguments

If a server function supports multiple outputs, you can return any or all of those outputs
to a MATLAB client.

The following syntax shows a server function functionname called by the MATLAB
client. retval is the first output argument, or return value. The other output arguments
are out1, out2,

[retval out1 out2 ...] = functionname(handle,in1,in2,...);

MATLAB uses the pass-by-reference capabilities in COM to implement this feature.
Pass-by-reference is a COM feature; MATLAB does not support pass-by-reference.

Related Examples
• “Change Row Height in Range of Spreadsheet Cells” on page 12-42
• “Redraw Circle in mwsamp Control” on page 12-48
• “Insert Spreadsheet After First Sheet” on page 12-47

More About
• “Handle COM Data in MATLAB” on page 12-12

 COM Events

12-27

COM Events

An event is typically a user-initiated action that takes place in a server application,
which often requires a reaction from the client. For example, if you click the mouse at a
particular location in a server interface window, the client application can respond. When
an event is fired, the server communicates this occurrence to the client. If the client is
listening for this particular type of event, it responds by executing a routine called an
event handler.

The MATLAB COM client can subscribe to and handle the events fired by a Microsoft
ActiveX control or a COM server. Select the events you want the client to listen to.
Register each event with an event handler to be used in responding to the event. When
a registered event takes place, the control or server notifies the client, which responds
by executing the appropriate event handler routine. You can write event handlers as
MATLAB functions.

To identify events the control or server can respond to, use the events function.

To register events you want to respond to, use the registerevent function. The
MATLAB client responds only to events you have registered. If you register the same
event name to the same callback handler multiple times, MATLAB executes the event
only once.

For ActiveX controls, you can register events at the time you create an instance of the
control using the actxcontrol function.

To identify registered events, use the eventlisteners function.

To respond to events as they occur, create event handlers that have been registered for
that event. You can implement these routines as MATLAB functions.

To unregister events you no longer want to listen to, use the unregisterevent or
unregisterallevents function.

Note: MATLAB does not support asynchronous events.

Note: MATLAB does not support interface events from a Custom server.

12 MATLAB COM Client Support

12-28

See Also
actxcontrol | eventlisteners | events | registerevent |
unregisterallevents | unregisterevent

Related Examples
• “Add Grid ActiveX Control in a Figure” on page 11-15
• “Read Spreadsheet Data Using Excel as Automation Server” on page 11-23
• “Combine Event Handlers as MATLAB Local Functions” on page 12-53

More About
• “COM Event Handlers” on page 12-29

 COM Event Handlers

12-29

COM Event Handlers

In this section...

“Overview of Event Handling” on page 12-29
“Arguments Passed to Event Handlers” on page 12-29
“Event Structure” on page 12-30

Overview of Event Handling

For controls, register handler functions either at the time you create an instance of the
control (using actxcontrol), or any time afterward (using registerevent).

For servers, use registerevent to register events.

Use events to list all the events a COM object recognizes.

Arguments Passed to Event Handlers

When a registered event is triggered, MATLAB passes information from the event to its
handler function, as shown in the following table.

Arguments Passed by MATLAB Functions

Arg. No. Contents Format

1 Object name MATLAB COM class
2 Event ID double

3 Start of Event Argument
List

As passed by the control

end-2 End of Event Argument List
(Argument N)

As passed by the control

end-1 Event Structure structure

end Event Name char array

When writing an event handler function, use the Event Name argument to identify the
source of the event. Get the arguments passed by the control from the Event Argument
List (arguments 3 through end-2). All event handlers must accept a variable number of
arguments:

12 MATLAB COM Client Support

12-30

function event (varargin)

if (strcmp(varargin{end}, 'MouseDown')) % Check the event name

 x_pos = varargin{5}; % Read 5th Event Argument

 y_pos = varargin{6}; % Read 6th Event Argument

end

Note: The values passed vary with the particular event and control being used.

Event Structure

The Event Structure argument passed by MATLAB contains the fields shown in the
following table.

Fields of the Event Structure

Field Name Description Format

Type Event Name char array

Source Control Name MATLAB COM class
EventID Event Identifier double

Event Arg Name 1 Event Arg Value 1 As passed by the control
Event Arg Name 2 Event Arg Value 2 As passed by the control
etc. Event Arg N As passed by the control

For example, when the MouseDown event of the mwsamp2 control is triggered, MATLAB
passes this Event Structure to the registered event handler:

 Type: 'MouseDown'

 Source: [1x1 COM.mwsamp.mwsampctrl.2]

 EventID: -605

 Button: 1

 Shift: 0

 x: 27

 y: 24

See Also
actxcontrol | events | registerevent

 COM Event Handlers

12-31

Related Examples
• “Display Event Messages from mwsamp Control” on page 12-55
• “Combine Event Handlers as MATLAB Local Functions” on page 12-53

More About
• “COM Events” on page 12-27

12 MATLAB COM Client Support

12-32

COM Object Interfaces

In this section...

“IUnknown and IDispatch Interfaces” on page 12-32
“Custom Interfaces” on page 12-33

IUnknown and IDispatch Interfaces

When you invoke the actxserver or actxcontrol functions, the MATLAB software
creates the server and returns a handle to the server interface as a means of accessing
its properties and methods. The software uses the following process to determine which
handle to return:

1 First get a handle to the IUnknown interface from the component. All COM
components are required to implement this interface.

2 Attempt to get the IDispatch interface. If IDispatch is implemented, return a handle
to this interface. If IDispatch is not implemented, return the handle to IUnknown.

Additional Interfaces

Components often provide additional interfaces, based on IDispatch, that are
implemented as properties. Like any other property, you obtain these interfaces using
the MATLAB get function.

For example, a Microsoft Excel component contains numerous interfaces. To list these
interfaces, along with Excel properties, type:

h = actxserver('Excel.Application');

get(h)

MATLAB displays information like:

 Application: [1x1 Interface.Microsoft_Excel_9.0_

Object_Library._Application]

 Creator: 'xlCreatorCode'

 Parent: [1x1 Interface.Microsoft_Excel_9.0_

Object_Library._Application]

 ActiveCell: []

 ActiveChart: [1x50 char]

 .

 COM Object Interfaces

12-33

 .

To see if Workbooks is an interface, type:

w = h.Workbooks

MATLAB displays:

w =

 Interface.Microsoft_Excel_9.0_Object_Library.Workbooks

The information displayed depends on the version of the Excel software you have on your
system.

For examples using Excel in MATLAB, see:

• “Write Data to Excel Spreadsheet Using ActiveX” on page 12-44
• “Read Spreadsheet Data Using Excel as Automation Server” on page 11-23
• actxserver

Custom Interfaces

The MATLAB COM Interface supports custom interfaces for the following client/server
configurations:

• “MATLAB Client and In-Process Server” on page 11-30
• “MATLAB Client and Out-of-Process Server” on page 11-31

Limitations to custom interface support are:

• Custom interfaces are not supported on a 64-bit version of MATLAB.
• You cannot invoke functions with optional parameters.

Once you have created a server, you can query the server component to see if any custom
interfaces are implemented using the interfaces function.

For example, if you have a component with the ProgID mytestenv.calculator, you
can see its custom interfaces using the commands:

h = actxserver('mytestenv.calculator');

customlist = h.interfaces

12 MATLAB COM Client Support

12-34

MATLAB displays the interfaces, which might be:

customlist =

 ICalc1

 ICalc2

 ICalc3

To get the handle to a particular interface, use the invoke function:

c1 = invoke(h,'ICalc1')

c1 =

 Interface.Calc_1.0_Type_Library.ICalc_Interface

Use this handle c1 to access the properties and methods of the object through this
custom interface ICalc1.

For example, to list the properties, use:

get(c1)

 background: 'Blue'

 height: 10

 width: 0

To list the methods, use:

invoke(c1)

 Add = double Add(handle, double, double)

 Divide = double Divide(handle, double, double)

 Multiply = double Multiply(handle, double, double)

 Subtract = double Subtract(handle, double, double)

To add and multiply numbers using the Add and Multiply methods of the object, use:

sum = Add(c1,4,7)

sum =

 11

prod = c1.Multiply(4, 7)

prod =

 28

 Save and Delete COM Objects

12-35

Save and Delete COM Objects

In this section...

“Functions for Saving and Restoring COM Objects” on page 12-35
“Releasing COM Interfaces and Objects” on page 12-35

Functions for Saving and Restoring COM Objects

Use these MATLAB functions to save and restore the state of a COM control object.

Function Description

load Load and initialize a COM control object from a file
save Write and serialize a COM control object to a file

Save, or serialize, the current state of a COM control to a file using the save function.
Serialization is the process of saving an object onto a storage medium (such as a file or a
memory buffer) or transmitting it across a network connection link in binary form.

Note: MATLAB supports the COM save and load functions for controls only.

Releasing COM Interfaces and Objects

Use these MATLAB functions to release or delete a COM object or interface.

Function Description

delete Delete a COM object or interface
release Release a COM interface

When you no longer need an interface, use the release function to release the interface
and reclaim the memory used by it. When you no longer need a control or server, use
the delete function to delete it. Alternatively, you can use the delete function to both
release all interfaces for the object and delete the server or control.

Note: In versions of MATLAB earlier than 6.5, failure to explicitly release interface
handles or delete the control or server often results in a memory leak. This is true even if

12 MATLAB COM Client Support

12-36

the variable representing the interface or COM object has been reassigned. In MATLAB
version 6.5 and later, the control or server, along with all interfaces to it, is destroyed on
reassignment of the variable or when the variable representing a COM object or interface
goes out of scope.

When you delete or close a figure window containing a control, MATLAB automatically
releases all interfaces for the control. MATLAB also automatically releases all handles
for an Automation server when you exit the program.

Related Examples
• “Save mwsamp2 COM Control” on page 12-59

 MATLAB Application as DCOM Client

12-37

MATLAB Application as DCOM Client

Distributed Component Object Model (DCOM) is a protocol that allows clients to use
remote COM objects over a network. Additionally, MATLAB can be used as a DCOM
client with remote Automation servers if the operating system on which MATLAB is
running is DCOM enabled.

Note: If you use MATLAB as a remote DCOM server, all MATLAB windows appears on
the remote machine.

12 MATLAB COM Client Support

12-38

Explore COM Objects

A COM object has properties, methods, events, and interfaces. Your vendor
documentation describes these features, but you can also learn about your object using
MATLAB commands.

In this section...

“Exploring Properties” on page 12-38
“Exploring Methods” on page 12-39
“Exploring Events” on page 12-39
“Exploring Interfaces” on page 12-40
“Identifying Objects and Interfaces” on page 12-40

Exploring Properties

A property is information that is associated with a COM object. To see a list of properties
of an object, use the COM get function. Alternatively, use the MATLAB Property
Inspector, a user interface to display and modify properties. For example, to list all
properties of a Microsoft Excel object type:

myApp = actxserver('Excel.Application');

get(myApp)

MATLAB displays the properties for your Excel version. To display a single property,
type:

myApp.OrganizationName

ans =

MathWorks, Inc.

MATLAB displays the value for your application.

To open the Property Inspector, choose one of the following.

• Call the inspect function from the MATLAB command line:

inspect(myApp)

 Explore COM Objects

12-39

• Double-click the myApp object in the MATLAB Workspace browser.

MATLAB opens the Inspector window. Scroll down until you see the OrganizationName
property, the same value returned by the get function.

Exploring Methods

A method is a procedure you call to perform a specific action on the COM object. For
example, to list all methods supported by the Excel object, type:

myApp = actxserver('Excel.Application');

methodsview(myApp)

MATLAB opens a window showing the method signatures for COM.Excel_Application
objects.

Exploring Events

An event is typically a user-initiated action that takes place in a server application, which
often requires a reaction from the client. For example, clicking the mouse at a particular
location in a server interface window might require the client to respond. When an event
is fired, the server communicates this occurrence to the client. If the client is listening for
this particular type of event, it responds by executing a routine called an event handler.

Use the events function to list all events known to the control or server and use the
eventlisteners function to list registered events.

For example, to list the events for the Microsoft Internet Explorer web browser, type:

myNet = actxserver('internetexplorer.application');

events(myNet)

MATLAB displays the events for your Internet Explorer version. To see which events
have event handlers, type:

eventlisteners(myNet)

ans =

 {}

An empty result means that no events are registered.

12 MATLAB COM Client Support

12-40

Exploring Interfaces

An interface is a set of related functions used to access the data of a COM object. When
you create a COM object using the actxserver or actxcontrol function, MATLAB
returns a handle to an interface. Use the get and interfaces functions to see other
interfaces implemented by your object.

For example, to see interfaces of an Excel object, type:

e = actxserver('Excel.Application');

get(e)

MATLAB displays the properties, including interfaces, for your Excel version. For
example, Workbooks is an interface.

e.Workbooks

ans =

 Interface.000208DB_0000_0000_C000_000000000046

To explore the Workbooks interface, create a workbooks object and use the relevant
MATLAB commands.

w = e.Workbooks;

Identifying Objects and Interfaces

Function Description

class Return the class of an object.
isa Determine if an object is of a given MATLAB class.
iscom Determine if the input is a COM or ActiveX object.
isevent Determine if an item is an event of a COM object.
ismethod Determine if an item is a method of a COM object.
isprop Determine if an item is a property of a COM object.
isinterface Determine if the input is a COM interface.

See Also
eventlisteners | events | get | inspect | interfaces | methodsview

 Explore COM Objects

12-41

More About
• “COM Object Properties” on page 12-21
• “Property Inspector” on page 12-22
• “COM Methods” on page 12-24
• “COM Events” on page 12-27
• “COM Event Handlers” on page 12-29

External Websites
• Microsoft Excel 2013 developer reference

https://msdn.microsoft.com/en-us/library/office/ee861528.aspx

12 MATLAB COM Client Support

12-42

Change Row Height in Range of Spreadsheet Cells

This example shows how to change the height of a row, defined by a Range object, in a
spreadsheet.

The Excel Range object is a property that takes input arguments. MATLAB treats such
a property as a method. Use the methods function to get information about creating a
Range object.

Create a Worksheet object ws.

e = actxserver('Excel.Application');

wb = Add(e.Workbooks);

e.Visible = 1;

ws = e.Activesheet;

Display the default height of all the rows in the worksheet.

ws.StandardHeight

ans =

 14.4000

Display the function syntax for creating a Range object.

methods(ws,'-full')

Search the displayed list for the Range entry: handle Range(handle, Variant,
Variant(Optional))

Create a Range object consisting of the first row.

wsRange = ws.Range('A1');

Increase the row height.

wsRange.RowHeight = 25;

Open the worksheet, click in row one, and notice the height.

Close the workbook without saving.

wb.Saved = 1;

 Change Row Height in Range of Spreadsheet Cells

12-43

Close(e.Workbook)

Close the application.

Quit(e)

delete(e)

See Also
methods

More About
• “Properties That Take Arguments” on page 12-23

External Websites
• Worksheet.Range Property (Excel) Office 2013

https://msdn.microsoft.com/en-us/library/office/ff836512.aspx

12 MATLAB COM Client Support

12-44

Write Data to Excel Spreadsheet Using ActiveX

This example shows how to write a MATLAB matrix to an Excel spreadsheet. For
alternatives to exporting MATLAB data to a Microsoft Excel spreadsheet, see the
functions and examples in “Spreadsheets”.

Create an Excel object.

e = actxserver('Excel.Application');

Add a workbook.

eWorkbook = e.Workbooks.Add;

e.Visible = 1;

Make the first sheet active.

eSheets = e.ActiveWorkbook.Sheets;

eSheet1 = eSheets.get('Item',1);

eSheet1.Activate;

Put MATLAB data into the worksheet.

A = [1 2; 3 4];

eActivesheetRange = e.Activesheet.get('Range','A1:B2');

eActivesheetRange.Value = A;

Read the data back into MATLAB, where array B is a cell array.

eRange = e.Activesheet.get('Range','A1:B2');

B = eRange.Value;

Convert the data to a double matrix. Use the following command if the cell array
contains only scalar values.

B = reshape([B{:}],size(B));

Save the workbook in a file.

eWorkbook.SaveAs('myfile.xls');

If the Excel program displays a dialog box about saving the file, select the appropriate
response to continue.

If you saved the file, then close the workbook.

 Write Data to Excel Spreadsheet Using ActiveX

12-45

eWorkbook.Saved = 1;

Close(eWorkbook)

Quit the Excel program and delete the server object.

Quit(e)

delete(e)

Note: Make sure that you close workbook objects you create to prevent potential memory
leaks.

See Also
xlswrite

More About
• “Import and Export Dates to Excel Files”

External Websites
• Microsoft Excel 2013 developer reference

https://msdn.microsoft.com/en-us/library/office/ee861528.aspx

12 MATLAB COM Client Support

12-46

Change Cursor in Spreadsheet

This example shows how to change the cursor icon in an Excel spreadsheet.

Create a COM server running a Microsoft Excel application.

h = actxserver('Excel.Application');

h.Visible = 1;

Open the Excel program and notice the cursor.

View the options for the Cursor property.

set(h,'Cursor')

ans =

 'xlIBeam'

 'xlDefault'

 'xlNorthwestArrow'

 'xlWait'

These values are enumerated values, which means they are the only values allowed for
the Cursor property.

Change the cursor to 'xlIBeam'

h.Cursor = 'xlIBeam';

Notice the cursor in the program.

Reset the cursor.

h.Cursor = 'xlDefault';

Quit(h)

delete(h)

Make sure that you close workbook objects you create to prevent potential memory leaks.

More About
• “Enumerated Values for Properties” on page 12-22

 Insert Spreadsheet After First Sheet

12-47

Insert Spreadsheet After First Sheet
This example shows how to skip an optional input argument in the Excel Add method,
used to insert a sheet into a workbook.

The Add method has the following optional input arguments:

• Before — The sheet before which to add the new sheet
• After — The sheet after which to add the new sheet
• Count — The total number of sheets to add
• Type — The type of sheet to add

e = actxserver('Excel.Application');

Add(e.Workbooks);

e.Visible = 1;

Create a collection of the three default sheets in the workbook.

eSheets = e.ActiveWorkbook.Sheets;

Insert a sheet after the first item in the collection, eSheet1.

eSheet1 = eSheets.Item(1);

eNewSheet = eSheets.Add([],eSheet1);

To call Add with the After argument, omit the first argument, Before, by using an
empty array [] in its place.

Open the workbook and notice Sheet4.

Close the spreadsheet.

Close the application.

Quit(e)

delete(e)

More About
• “Skipping Optional Input Arguments” on page 12-25

External Websites
• Office 2013 Sheets.Add Method (Excel)

https://msdn.microsoft.com/en-us/library/office/ff839847.aspx

12 MATLAB COM Client Support

12-48

Redraw Circle in mwsamp Control

This example shows how to call a method of the mwsamp control to redraw a circle.

Create the control.

myfigure = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200]);

MATLAB opens a figure window and displays a circle and text label.

Display the properties of the control.

get(myfigure)

 Label: 'Label'

 Radius: 20

 Ret_IDispatch: [1x1 Interface.mwsamp2_ActiveX_Control_module._DMwsamp2]

You can change the text displayed in the Label property and the radius of the circle.

Display the methods for the mwsamp control.

methods(myfigure)

Methods for class COM.mwsamp_mwsampctrl_1:

AboutBox GetR8Array SetR8 invoke

Beep GetR8Vector SetR8Array load

FireClickEvent GetVariantArray SetR8Vector move

GetBSTR GetVariantVector addproperty propedit

GetBSTRArray Redraw constructorargs release

GetI4 SetBSTR delete save

GetI4Array SetBSTRArray deleteproperty send

GetI4Vector SetI4 events set

GetIDispatch SetI4Array get

GetR8 SetI4Vector interfaces

MATLAB displays the list alphabetically; method names with initial caps are listed
before methods with lowercase names.

To use the Redraw method, display the method signatures which specify the input and
output arguments.

methodsview(myfigure)

 Redraw Circle in mwsamp Control

12-49

MATLAB opens a window displaying method signatures for all methods supported by the
object. The input argument for the Redraw method is the object handle.

Change the radius of circle myfigure to 100.

myfigure.Radius = 100;

Redraw(myfigure)

Close the figure window and the methodsview window.

More About
• “COM Methods” on page 12-24

12 MATLAB COM Client Support

12-50

Connect to Existing Excel Application

This example shows how to read data from an open file, weekly_log.xlsx, in
MATLAB.

MATLAB can access a file that is open by another application by creating a COM server
from the MATLAB client, and then opening the file through this server.

Navigate to a folder containing an Excel file, for example, weekly_log.xlsx. Open the
file in the Excel program.

Open the same file in MATLAB.

excelapp = actxserver('Excel.Application');

wkbk = excelapp.Workbooks;

wdata = wkbk.Open('c:\work\weekly_log.xlsx');

Read data in the range D1 and F6 from sheet 2.

sheets = wdata.Sheets;

sheet12 = sheets.Item(2);

range = sheet12.get('Range','D1','F6');

range.value

ans =

 'Temp.' 'Heat Index' 'Wind Chill'

 [78.4200] [32] [37]

 [69.7300] [27] [30]

 [77.6500] [17] [16]

 [74.2500] [-5] [0]

 [68.1900] [22] [35]

Close(wkbk);

Quit(excelapp)

See Also
actxserver

 Display Message for Workbook OnClose Event

12-51

Display Message for Workbook OnClose Event

This example shows how to handle a COM interface event, how to set up an event in a
Microsoft Excel workbook object, and how to handle its BeforeClose event.

Create the following event handler file, OnBeforeCloseWorkbook.m, in your current
folder.

function OnBeforeCloseWorkbook(varargin)

disp('BeforeClose event occurred')

Create the Excel object and make it visible.

xl = actxserver('Excel.Application');

xl.Visible = 1;

Add a workbook.

hWbks = xl.Workbooks;

hWorkbook = hWbks.Add;

Register the OnBeforeCloseWorkbook function for the OnClose event.

registerevent(hWorkbook,{'BeforeClose' @OnBeforeCloseWorkbook})

Close the workbook, which triggers the Close event and calls the OnClose handler.

Close(hWorkbook)

BeforeClose event occurred

Quit(xl)

See Also
registerevent

More About
• “COM Events” on page 12-27

12 MATLAB COM Client Support

12-52

Run Macro in Excel Server Application

In the following example, MATLAB runs the Microsoft Excel spreadsheet program in a
COM server and invokes a macro that has been defined within the active spreadsheet
file. The macro, init_last, takes no input parameters and is called from the MATLAB
client using the statement:

handle.ExecuteExcel4Macro('!macroname()');

Start the example by opening the spreadsheet file and recording a macro. The macro
used here simply sets all items in the last column to zero. Save your changes to the
spreadsheet.

Next, in MATLAB, create an Excel object, and open the spreadsheet:

h = actxserver('Excel.Application');

wkbk = h.Workbooks;

file = wkbk.Open('d:\weatherlog\weekly.xls');

Open the sheet that you want to change, and retrieve the current values in the range of
interest:

sheets = file.Sheets;

sheet12 = sheets.Item('Week 12');

range = sheet12.get('Range', 'D1', 'F5');

range.Value

ans =

 [78] [32] [37]

 [69] [27] [30]

 [77] [17] [16]

 [74] [-5] [-1]

 [68] [22] [35]

Now execute the macro, and verify that the values have changed as expected:

h.ExecuteExcel4Macro('!init_last()');

range.Value

ans =

 [78] [32] [0]

 [69] [27] [0]

 [77] [17] [0]

 [74] [-5] [0]

 [68] [22] [0]

 Combine Event Handlers as MATLAB Local Functions

12-53

Combine Event Handlers as MATLAB Local Functions

This example shows how to consolidate event handlers into a single file using local
functions.

Create the mycallbacks.m file containing three event handler routines, myclick,
my2click, and mymoused, implemented as local functions.

function a = mycallbacks(str)

a = str2func(str);

function myclick(varargin)

disp('Single click function')

function my2click(varargin)

disp('Double click function')

function mymoused(varargin)

disp('You have reached the mouse down function')

disp('The X position is: ')

double(varargin{5})

disp('The Y position is: ')

double(varargin{6})

The call to str2func converts the input string to a function handle.

Create the control.

h = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200],gcf,'sampev')

Register Click event.

registerevent(h,{'Click',mycallbacks('myclick')})

Related Examples
• “Display Event Messages from mwsamp Control” on page 12-55

12 MATLAB COM Client Support

12-54

MATLAB Sample ActiveX Control mwsamp
MATLAB includes an example COM control that draws a circle on the screen, displays
some text, and fires events when the user single- or double-clicks the control.

Create the control by running the mwsamp function in the matlabroot\toolbox
\matlab\winfun folder, or type:

h = actxcontrol('mwsamp.mwsampctrl.2',[0 0 300 300]);

This control is in the folder with its type library. The type library is a binary file used by
COM tools to decipher the capabilities of the control.

Display the events for this control.

allEvents = events(h)

allEvents =

 Click: 'void Click()'

 DblClick: 'void DblClick()'

 MouseDown: 'void MouseDown(int16 Button, int16 Shift, Variant x, Vari...'

 Event_Args: 'void Event_Args(int16 typeshort, int32 typelong, double t...'

allEvents is a structure array. Each field of the structure is the name of an event
handler and the value of that field contains the signature for the handler routine. For
example:

allEvents.MouseDown

ans =

void MouseDown(int16 Button, int16 Shift, Variant x, Variant y)

See Also
actxcontrol

Related Examples
• “Display Event Messages from mwsamp Control” on page 12-55

More About
• “COM Event Handlers” on page 12-29

 Display Event Messages from mwsamp Control

12-55

Display Event Messages from mwsamp Control

This example shows how to handle events fired by the MATLAB ActiveX control,
mwsamp2.

Create Event Handler Routines

Create event handler files and save them to a folder on your path.

Create the myclick.m file.

function myclick(varargin)

disp('Single click function')

Create the my2click.m file.

function my2click(varargin)

disp('Double click function')

Create the mymoused.m file.

function mymoused(varargin)

disp('You have triggered the mouse down function')

disp('The X position is: ')

double(varargin{5})

disp('The Y position is: ')

double(varargin{6})

Create Control and Register Events

Open a figure window.

f = figure('position', [100 200 200 200]);

Register the Click and MouseDown events.

ctrl = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200],f,{'Click','myclick'; 'MouseDown','mymoused'});

Respond to Control Events

When MATLAB creates the mwsamp2 control, it also displays a figure window showing
a label and circle at the center. If you click different positions in this window, you see a
report in the MATLAB Command Window of the X and Y position of the mouse.

12 MATLAB COM Client Support

12-56

Each time you press the mouse button, the MouseDown event fires, calling the mymoused
function. This function prints the position values for that event to the Command Window.
For example:

The X position is:

ans =

 [122]

The Y position is:

ans =

 [63]

The Click event displays the myclick message.

Single click function

Double-clicking the mouse does nothing, since the DblClick event is not registered.

Register DblClick Event

registerevent(ctrl,{'DblClick','my2click'})

When you double-click the mouse, MATLAB displays both the myclick and my2click
messages.

Single click function

Double click function

Display Control Events

Unregister the DblClick event.

unregisterevent(ctrl,{'DblClick','my2click'})

Display the currently registered events.

eventlisteners(ctrl)

ans =

 'click' 'myclick'

 'mousedown' 'mymoused'

Unregister All Events

unregisterallevents(ctrl)

eventlisteners(ctrl)

 Display Event Messages from mwsamp Control

12-57

ans =

 {}

Clicking the mouse in the control window now does nothing since there are no active
events.

Close the figure window.

See Also
actxcontrol | eventlisteners | registerevent | unregisterallevents

Related Examples
• “MATLAB Sample ActiveX Control mwsamp” on page 12-54

More About
• “COM Event Handlers” on page 12-29

12 MATLAB COM Client Support

12-58

Add Position Property to mwsamp Control

This example shows how to add a custom property, Position to the mwsamp control.

Create the control.

h = actxcontrol('mwsamp.mwsampctrl.2', [200 120 200 200]);

Create the property.

addproperty(h,'Position')

Initialize the values.

h.Position = [200 120];

List the properties of the control.

get(h)

 Label: 'Label'

 Radius: 20

 Ret_IDispatch: [1x1 Interface.mwsamp2_ActiveX_Control_module._DMwsamp2]

 Position: [200 120]

Property Position has been added.

More About
• “Custom Properties” on page 12-23

 Save mwsamp2 COM Control

12-59

Save mwsamp2 COM Control

This example shows how to restore original mwsamp2 control settings.

Create the mwsamp2 control.

f = figure('position',[100 200 200 200]);

h = actxcontrol('mwsamp.mwsampctrl.2',[0 0 200 200],f);

Save the control settings to a new file, mwsample.

save(h,'mwsample')

Alter the figure by changing its label and the radius of the circle.

h.Label = 'Circle';

h.Radius = 50;

Redraw(h)

Restore the control to its original state.

load(h,'mwsample')

Verify the results.

get(h)

 Label: 'Label'

 Radius: 20

 Ret_IDispatch: [1x1 Interface.mwsamp2_ActiveX_Control_module._DMwsamp2]

MATLAB displays the original settings.

12 MATLAB COM Client Support

12-60

Deploy ActiveX Controls Requiring Run-Time Licenses

In this section...

“Create a Function to Build the Control” on page 12-60
“Build the Control and the License File” on page 12-60
“Build the Executable” on page 12-61
“Deploy the Files” on page 12-61

When you deploy a Microsoft ActiveX control that requires a run-time license, include a
license key, which the control reads at run-time. If the key matches the control's version
of the license key, an instance of the control is created. Use the following procedure to
deploy a run-time-licensed control with a MATLAB application.

Create a Function to Build the Control

First, create a function to build the control and save is as a .m file. The file must contain
two elements:

• The pragma %#function actxlicense. This pragma causes the MATLAB
Compiler to embed a function named actxlicense into the standalone executable
file you build.

• A call to actxcontrol to create an instance of the control.

Place this file in a folder outside of the MATLAB code tree.

Here is an example file:

function buildcontrol

%#function actxlicense

h=actxcontrol('MFCCONTROL2.MFCControl2Ctrl.1',[10 10 200 200]);

Build the Control and the License File

Change to the folder where you placed the function you created to build the control.
Call the function. When it executes this function, MATLAB determines whether the
control requires a run-time license. If it does, MATLAB creates another file, named
actxlicense.m, in the current working folder. The actxlicense function defined in
this file provides the license key to MATLAB at run-time.

 Deploy ActiveX Controls Requiring Run-Time Licenses

12-61

Build the Executable

Next, call MATLAB Compiler to create the standalone executable from the file you
created to build the control. The executable contains both the function that builds the
control and the actxlicense function.

mcc -m buildcontrol

Deploy the Files

Finally, distribute buildcontrol.exe, buildcontrol.ctf, and the control (.ocx or
.dll).

12 MATLAB COM Client Support

12-62

Microsoft Forms 2.0 Controls

In this section...

“Affected Controls” on page 12-62
“Replacement Controls” on page 12-62

Microsoft Forms 2.0 controls are designed for use with applications enabled by Microsoft
Visual Basic for Applications (VBA). An example is Microsoft Office software.

If you encounter problems when creating or using Forms 2.0 controls, use the following
replacement controls, or consult article 236458 in the Microsoft Knowledge Base for
further information:

http://support.microsoft.com/default.aspx?kbid=236458

Affected Controls

• Forms.TextBox.1

• Forms.CheckBox.1

• Forms.CommandButton.1

• Forms.Image.1

• Forms.OptionButton.1

• Forms.ScrollBar.1

• Forms.SpinButton.1

• Forms.TabStrip.1

• Forms.ToggleButton.1

Replacement Controls

Microsoft recommends the following replacements:

Old New

Forms.TextBox.1 RICHTEXT.RichtextCtrl.1

Forms.CheckBox.1 vidtc3.Checkbox

http://support.microsoft.com/default.aspx?kbid=236458

 Microsoft Forms 2.0 Controls

12-63

Old New

Forms.CommandButton.1 MSComCtl2.FlatScrollBar.2

Forms.TabStrip.1 COMCTL.TabStrip.1

12 MATLAB COM Client Support

12-64

COM Collections

COM collections are a way to support groups of related COM objects that can be iterated
over. A collection is itself an interface with a read-only Count property and an Item
method to retrieve a single item from the collection.

The Item method is indexed, which means that it requires an argument that specifies
which item in the collection is being requested. The data type of the index is a data type
specified by the control or server that supports the collection. Although integer indices
are common, the index could also be a string value. Often, the return value from the
Item method is itself an interface. Like all interfaces, release this interface when you are
finished with it.

This example iterates through the members of a collection. Each member of the collection
is itself an interface (called Plot and represented by a MATLAB COM object called
hPlot). In particular, this example iterates through a collection of Plot interfaces,
invokes the Redraw method for each interface, and then releases each interface:

hCollection = hControl.Plots;

for i = 1:hCollection.Count

 hPlot = invoke(hCollection,'Item', i);

 Redraw(hPlot)

 release(hPlot);

end;

release(hCollection);

 MATLAB COM Support Limitations

12-65

MATLAB COM Support Limitations

Microsoft does not support loading 32-bit DLLs or in-process COM servers into a 64-bit
application, or vice-versa. So you cannot use 32-bit DLL COM objects in 64-bit MATLAB.

Limitations of MATLAB COM support are:

• MATLAB does not support custom COM interfaces (IUnknown) with 64-bit MATLAB.
• MATLAB only supports indexed collections.
• COM controls are not printed with figure windows.
• “Unsupported Types” on page 12-15
• MATLAB does not support asynchronous events.
• A MATLAB COM ActiveX control container does not in-place activate controls until

they are visible.

12 MATLAB COM Client Support

12-66

Interpreting Argument Callouts in COM Error Messages

When a MATLAB client sends a command with an invalid argument to a COM server
application, the server sends back an error message in the followingformat.

??? Error: Type mismatch, argument n.

If you do not use the dot syntax format, be careful interpreting the argument number in
this message.

For example, using dot syntax, if you type:

handle.PutFullMatrix('a','base',7,[5 8]);

MATLAB displays:

??? Error: Type mismatch, argument 3.

In this case, the argument, 7, is invalid because PutFullMatrix expects the third
argument to be an array data type, not a scalar. In this example, the error message
identifies 7 as argument 3.

However, if you use the syntax:

PutFullMatrix(handle,'a','base',7,[5 8]);

MATLAB displays:

??? Error: Type mismatch, argument 3.

In this call to the PutFullMatrix function, 7 is argument four. However, the COM
server does not receive the first argument. The handle argument merely identifies the
server. It does not get passed to the server. The server reads 'a' as the first argument,
and the invalid argument, 7, as the third.

More About
• “COM Methods” on page 12-24

13

MATLAB COM Automation Server
Support

• “Register MATLAB as Automation Server” on page 13-2
• “MATLAB COM Automation Server Interface” on page 13-4
• “Create MATLAB Server” on page 13-7
• “Connect to Existing MATLAB Server” on page 13-9
• “MATLAB Application as DCOM Server” on page 13-10
• “VT_DATE Data Type” on page 13-11
• “Data Types For Visual Basic .NET Clients” on page 13-12
• “Visible Property” on page 13-13
• “Shared or Dedicated Server” on page 13-14
• “Manually Create Automation Server” on page 13-15
• “Launch MATLAB as Automation Server in Desktop Mode” on page 13-16
• “Call MATLAB Function from Visual Basic .NET Client” on page 13-17
• “Pass Complex Data to MATLAB from C# Client” on page 13-18
• “Call MATLAB Function from C# Client” on page 13-20
• “View MATLAB Functions from Visual Basic .NET Object Browser” on page 13-22
• “Waiting for MATLAB Application to Complete” on page 13-23
• “Conversion of MATLAB Types to COM Types” on page 13-24
• “Conversion of COM Types to MATLAB Types” on page 13-26

13 MATLAB COM Automation Server Support

13-2

Register MATLAB as Automation Server

In this section...

“When to Register MATLAB” on page 13-2
“Register from System Prompt” on page 13-2
“Register from MATLAB Command Prompt” on page 13-3

When to Register MATLAB

To use MATLAB as an Automation server, you first must register the application in
the Windows registry, which happens when you install a new version of MATLAB. If
you have multiple versions of MATLAB installed on your system, only one version is
registered. By default, this version is the last version you installed. This version remains
registered until you manually change the registry, or install a new version.

To manually register MATLAB, choose one of these options:

• “Register from System Prompt” on page 13-2
• “Register from MATLAB Command Prompt” on page 13-3

You must have administrator privileges to change the Windows registry. Based on
your User Account Control (UAC) settings, you might need to right-click the Windows
Command Processor or the MATLAB icon and select Run as administrator. If that
option is not available, contact your system administrator.

If MATLAB is unable to update the registry, it still displays a new minimized command
window. Open this window and exit MATLAB.

Register from System Prompt

To register MATLAB as an Automation server from the Windows system prompt, first
open a Windows Command Processor using the Run as administrator option, if
necessary.

Move to the folder containing the executable file for the MATLAB version you want.

cd matlabroot\bin\arch

If you do not use this folder, the matlab command starts the first instance of MATLAB
on the system path.

 Register MATLAB as Automation Server

13-3

matlab -regserver

MATLAB displays a minimized command window. Open this window and exit MATLAB.

Register from MATLAB Command Prompt

To register MATLAB as an Automation server from within MATLAB, first start
MATLAB, with the Run as administrator option, if necessary. Because you open
MATLAB to run this command, you know what MATLAB version you will register.

!matlab -regserver

MATLAB opens a minimized command window. Open this window and exit MATLAB.

See Also
matlab (Windows)

More About
• “Create MATLAB Server” on page 13-7

13 MATLAB COM Automation Server Support

13-4

MATLAB COM Automation Server Interface

In this section...

“COM Server Types” on page 13-4
“Shared and Dedicated Servers” on page 13-4
“Programmatic Identifiers” on page 13-4
“In-Process and Out-of-Process Servers” on page 13-5

COM Server Types

There are three types of COM servers:

• Automation — A server that supports the OLE Automation standard. Automation
servers are based on the IDispatch interface. Clients of all types, including scripting
clients, access Automation servers.

• Custom — A server that implements an interface directly derived from IUnknown.
Custom servers are preferred when faster client access is critical.

• Dual — A server that implements a combination of Automation and Custom
interfaces.

Shared and Dedicated Servers

The MATLAB Automation server has two modes:

• Shared — One or more client applications connect to the same MATLAB server. All
clients share server.

• Dedicated — Each client application creates its own dedicated MATLAB server.

If you use matlab.application as your ProgID, MATLAB creates a shared server. For
more information, see “Shared or Dedicated Server” on page 13-14.

Programmatic Identifiers

To create an instance of a COM object, you use its programmatic identifier, or ProgID.
The ProgID is a unique string defined by the component vendor to identify the COM
object. You obtain a ProgID from your vendor documentation.

 MATLAB COM Automation Server Interface

13-5

The MATLAB ProgIDs for shared servers are:

• Matlab.Application — Starts a command window Automation server with the
version of MATLAB that was most recently used as an Automation server (might not
be the latest installed version of MATLAB).

• Matlab.Autoserver — Starts a command window Automation server using the
most recent version of MATLAB.

• Matlab.Desktop.Application — Starts the full desktop MATLAB as an
Automation server using the most recent version of MATLAB.

The ProgIDs for dedicated servers are:

• Matlab.Application.Single

• Matlab.Autoserver.Single

These version-independent MATLAB ProgIDs specify the currently installed and
registered version of MATLAB.

In order to create an instance of a specific installed and registered MATLAB
version, you can use a version-dependent ProgID. For example, using the ProgID
Matlab.Application.7.14 creates an instance of MATLAB version 7.14 (R2012a).

In-Process and Out-of-Process Servers

You can configure a server three ways. MATLAB supports all of these configurations.

• “In-Process Server” on page 13-5
• “Local Out-of-Process Server” on page 13-5
• “Remote Out-of-Process Server” on page 13-6

In-Process Server

An in-process server is a component implemented as a dynamic link library (DLL) or
ActiveX control that runs in the same process as the client application, sharing address
space. Communication between client and server is relatively fast and simple.

Local Out-of-Process Server

A local out-of-process server is a component implemented as an executable (EXE) file that
runs in a separate process from the client application. The client and server processes are

13 MATLAB COM Automation Server Support

13-6

on the same computer system. This configuration is slower due to the overhead required
when transferring data across process boundaries.

Remote Out-of-Process Server

This is a type of out-of-process server; however, the client and server processes are
on different systems and communicate over a network. Network communications, in
addition to the overhead required for data transfer, can make this configuration slower
than the local out-of-process configuration. This configuration runs only on systems that
support the Distributed Component Object Model (DCOM).

 Create MATLAB Server

13-7

Create MATLAB Server

In this section...

“Getting Started” on page 13-7
“Get or Set the Status of a MATLAB Automation Server” on page 13-8

Getting Started

To create a server, you need a programmatic identifier (ProgID) to identify the
server. The ProgID for MATLAB is matlab.application. For a complete list, see
“Programmatic Identifiers” on page 13-4.

How you create an Automation server depends on the controller you are using. Consult
your controller's documentation for this information. Possible options include:

• Add this statement to a Visual Basic .NET application.

MatLab = CreateObject("Matlab.Application")

• “Manually Create Automation Server” on page 13-15.
• Use the Visual Basic Object Browser to access methods.

Access Methods from the Visual Basic Object Browser

You can use the Object Browser of your Visual Basic client application to see what
methods are available from a MATLAB Automation server. To do this you need to
reference the MATLAB type library in your Visual Basic project.

To set up your Visual Basic project:

1 Select the Project menu.
2 Select Reference from the subsequent menu.
3 Check the box next to the MATLAB Application Type Library.
4 Click OK.

In your Visual Basic code, use the New method to create the server:

Matlab = New MLApp.MLApp

View MATLAB Automation methods from the Visual Basic Object Browser under the
Library called MLAPP.

13 MATLAB COM Automation Server Support

13-8

Get or Set the Status of a MATLAB Automation Server

To make MATLAB an Automation server, use the enableservice function. For
example, type:

enableservice('AutomationServer',true)

To determine the current state of a MATLAB Automation server. type:

enableservice('AutomationServer')

If MATLAB displays:

ans =

 1

then MATLAB is currently an Automation server.

See Also
enableservice

Related Examples
• “Manually Create Automation Server” on page 13-15

More About
• “Register MATLAB as Automation Server” on page 13-2
• “Programmatic Identifiers” on page 13-4
• “MATLAB Startup Folder”

 Connect to Existing MATLAB Server

13-9

Connect to Existing MATLAB Server

It is not always necessary to create a new instance of a MATLAB server whenever
your application needs some task done in MATLAB. Clients can connect to an existing
MATLAB Automation server using the actxGetRunningServer function or by using a
command similar to the Visual Basic .NET GetObject command.

Using Visual Basic .NET Code

The Visual Basic .NET command shown here returns a handle h to the MATLAB server
application:

h = GetObject(, "matlab.application")

Note: It is important to use the syntax shown above to connect to an existing MATLAB
Automation server. Omit the first argument, and make sure the second argument is as
shown.

The following Visual Basic .NET example connects to an existing MATLAB server, then
executes a plot command in the server. If you do not already have a MATLAB server
running, create one following the instructions in “Access Methods from the Visual Basic
Object Browser” on page 13-7.

Dim h As Object

h = GetObject(, "matlab.application")

' Handle h should be valid now.

' Test it by calling Execute.

h.Execute ("plot([0 18], [7 23])")

13 MATLAB COM Automation Server Support

13-10

MATLAB Application as DCOM Server

Distributed Component Object Model (DCOM) is a protocol that allows COM connections
to be established over a network. If you are using a version of the Windows operating
system that supports DCOM and a controller that supports DCOM, you can use the
controller to start a MATLAB server on a remote machine.

To do this, DCOM must be configured properly, and MATLAB must be installed on each
machine that is used as a client or server. (Even though the client machine may not be
running MATLAB in such a configuration, the client machine must have a MATLAB
installation because certain MATLAB components are required to establish the remote
connection.) Consult the DCOM documentation for how to configure DCOM for your
environment.

External Websites
• http://www.mathworks.com/matlabcentral/answers/102255-how-can-i-make-a-dcom-

server-instance-of-matlab-visible
• http://www.mathworks.com/matlabcentral/answers/95647-how-can-i-utilize-matlab-

on-a-remote-machine-as-a-distributed-com-dcom-server

http://www.mathworks.com/matlabcentral/answers/102255-how-can-i-make-a-dcom-server-instance-of-matlab-visible
http://www.mathworks.com/matlabcentral/answers/102255-how-can-i-make-a-dcom-server-instance-of-matlab-visible
http://www.mathworks.com/matlabcentral/answers/95647-how-can-i-utilize-matlab-on-a-remote-machine-as-a-distributed-com-dcom-server
http://www.mathworks.com/matlabcentral/answers/95647-how-can-i-utilize-matlab-on-a-remote-machine-as-a-distributed-com-dcom-server

 VT_DATE Data Type

13-11

VT_DATE Data Type

To pass a VT_DATE type input to a Visual Basic program or an ActiveX control method,
use the MATLAB class COM.date. For example:

d = COM.date(2005,12,21,15,30,05);

get(d)

 Value: 7.3267e+005

 String: '12/21/2005 3:30:05 PM'

Use the now function to set the Value property to a date number:

d.Value = now;

COM.date accepts the same input arguments as datenum.

13 MATLAB COM Automation Server Support

13-12

Data Types For Visual Basic .NET Clients

Data types for the arguments and return values of the server functions are expressed
as Automation data types, which are language-independent types defined by the
Automation protocol.

For example, BSTR is a wide-character string type defined as an Automation type, and
is the same data format used by the Visual Basic language to store strings. Any COM-
compliant controller should support these data types, although the details of how you
declare and manipulate these are controller specific.

 Visible Property

13-13

Visible Property

You have the option of making MATLAB visible or not by setting the Visible property.
When visible, MATLAB appears on the desktop, enabling the user to interact with it.
This might be useful for such purposes as debugging. When not visible, the MATLAB
window does not appear, thus perhaps making for a cleaner interface and also preventing
any interaction with the application.

By default, the Visible property is enabled, or set to 1. You can change the Visible
property by setting it to 0 (invisible) or 1 (visible).

13 MATLAB COM Automation Server Support

13-14

Shared or Dedicated Server

You can start the MATLAB Automation server in one of two modes – shared or
dedicated. A dedicated server is dedicated to a single client; a shared server is shared by
multiple clients. The mode is determined by the programmatic identifier (ProgID) used
by the client to start MATLAB.

Starting a Shared Server

The ProgID, matlab.application, specifies the default mode, which is shared. You can
also use the version-specific ProgID, matlab.application.N.M, where N is the major
version and M is the minor version of your MATLAB. For example, use N = 7 and M = 4 for
MATLAB version 7.4.

Once MATLAB is started as a shared server, all clients that request a connection to
MATLAB using the shared server ProgID connect to the already running instance of
MATLAB. In other words, there is never more than one instance of a shared server
running, since it is shared by all clients that use the shared server ProgID.

Starting a Dedicated Server

To specify a dedicated server, use the ProgID, matlab.application.single, (or the
version-specific ProgID, matlab.application.single.N.M).

Each client that requests a connection to MATLAB using a dedicated ProgID creates
a separate instance of MATLAB; it also requests the server not be shared with any
other client. Therefore, there can be several instances of a dedicated server running
simultaneously, since the dedicated server is not shared by multiple clients.

 Manually Create Automation Server

13-15

Manually Create Automation Server

Microsoft Windows operating system automatically creates an Automation server when
a controller application first establishes a server connection. Alternatively, you can
manually create the server before starting any of the client processes.

To create a MATLAB server manually, use the -automation switch in the matlab
startup command. From the operating system prompt, type:

matlab -automation

Alternatively, you can add this switch every time you run MATLAB, as follows:

1 Right-click the MATLAB shortcut icon

and select Properties from the context menu. The Properties dialog box for
matlab.exe opens to the Shortcut tab.

2 In the Target field, add -automation to the end of the target path for
matlab.exe. Be sure to include a space between the file name and the symbol -. For
example:
"C:\Program Files\MATLAB\R2006a\bin\win32\MATLAB.exe -automation"

Note: When the operating system automatically creates a MATLAB server, it too uses
the -automation switch. In this way, MATLAB servers are differentiated from other
MATLAB sessions. This protects controllers from interfering with any interactive
MATLAB sessions that might be running.

13 MATLAB COM Automation Server Support

13-16

Launch MATLAB as Automation Server in Desktop Mode

To launch MATLAB as a COM Automation server in full desktop mode, use the
programmatic identifier Matlab.Desktop.Application. For example, in Microsoft
Visual Basic .NET:

Dim MatLab As Object

Dim Result As String

MatLab = CreateObject("Matlab.Desktop.Application")

Result = MatLab.Execute("surf(peaks)")

 Call MATLAB Function from Visual Basic .NET Client

13-17

Call MATLAB Function from Visual Basic .NET Client

This example calls a user-defined MATLAB function named solve_bvp from a Microsoft
Visual Basic client application through a COM interface. It also plots a graph in a new
MATLAB window and performs a simple computation:

Dim MatLab As Object

Dim Result As String

Dim MReal(1, 3) As Double

Dim MImag(1, 3) As Double

MatLab = CreateObject("Matlab.Application")

'Calling MATLAB function from VB

'Assuming solve_bvp exists at specified location

Result = MatLab.Execute("cd d:\matlab\work\bvp")

Result = MatLab.Execute("solve_bvp")

'Executing other MATLAB commands

Result = MatLab.Execute("surf(peaks)")

Result = MatLab.Execute("a = [1 2 3 4; 5 6 7 8]")

Result = MatLab.Execute("b = a + a ")

'Bring matrix b into VB program

MatLab.GetFullMatrix("b", "base", MReal, MImag)

13 MATLAB COM Automation Server Support

13-18

Pass Complex Data to MATLAB from C# Client

This example creates complex data in the client C# program and passes it to MATLAB.
The matrix consists of a vector of real values in variable pr and of imaginary values in
pi. The example reads the matrix back into the C# program.

The reference to the MATLAB Type Library for C# is:

MLApp.MLApp matlab = new MLApp.MLApp();

From your C# client program, add a reference to your project to the MATLAB COM
object. For example, in Microsoft Visual Studio, open your project. From the Project
menu, select Add Reference. Select the COM tab in the Add Reference dialog box.
Select the MATLAB application.

Here is the complete example:

using System;

namespace ConsoleApplication4

{

class Class1

{

[STAThread]

static void Main(string[] args)

{

MLApp.MLApp matlab = new MLApp.MLApp();

System.Array pr = new double[4];

pr.SetValue(11,0);

pr.SetValue(12,1);

pr.SetValue(13,2);

pr.SetValue(14,3);

System.Array pi = new double[4];

pi.SetValue(1,0);

pi.SetValue(2,1);

pi.SetValue(3,2);

pi.SetValue(4,3);

matlab.PutFullMatrix("a", "base", pr, pi);

System.Array prresult = new double[4];

System.Array piresult = new double[4];

 Pass Complex Data to MATLAB from C# Client

13-19

matlab.GetFullMatrix("a", "base", ref prresult, ref piresult);

}

}

}

See Also
GetFullMatrix | PutFullMatrix

13 MATLAB COM Automation Server Support

13-20

Call MATLAB Function from C# Client

This example shows how to call a user-defined MATLAB function, myfunc, from a C#
application.

Create a MATLAB function, myfunc, in the folder c:\temp\example.

function [x,y] = myfunc(a,b,c)

x = a + b;

y = sprintf('Hello %s',c);

Create the C# application.

using System;

using System.Collections.Generic;

using System.Text;

namespace ConsoleApplication2

{

 class Program

 {

 static void Main(string[] args)

 {

 // Create the MATLAB instance

 MLApp.MLApp matlab = new MLApp.MLApp();

 // Change to the directory where the function is located

 matlab.Execute(@"cd c:\temp\example");

 // Define the output

 object result = null;

 // Call the MATLAB function myfunc

 matlab.Feval("myfunc", 2, out result, 3.14, 42.0, "world");

 // Display result

 object[] res = result as object[];

 Console.WriteLine(res[0]);

 Console.WriteLine(res[1]);

 Console.ReadLine();

 }

 }

}

 Call MATLAB Function from C# Client

13-21

In Microsoft Visual Studio, add a reference to your C# project to the MATLAB COM
object. From the Project menu, select Add Reference.

Select the COM tab in the Add Reference dialog box.

Select the MATLAB application.

13 MATLAB COM Automation Server Support

13-22

View MATLAB Functions from Visual Basic .NET Object Browser

You can find out what methods are available from a MATLAB Automation server using
the Object Browser of your Microsoft Visual Basic client application. To do this, follow
this procedure in the client application to reference the MATLAB Application Type
Library:

1 Select the Project menu.
2 Select Reference from the subsequent menu.
3 Check the box next to the MATLAB Application Type Library.
4 Click OK.

This enables you to view MATLAB Automation methods from the Visual Basic Object
Browser under the Library called MLAPP. You can also see a list of MATLAB Automation
methods when you use the term Matlab followed by a period. For example:

Dim Matlab As MLApp.MLApp

Private Sub View_Methods()

Matlab = New MLApp.MLApp

'The next line shows a list of MATLAB Automation methods

Matlab.

End Sub

 Waiting for MATLAB Application to Complete

13-23

Waiting for MATLAB Application to Complete

When you call a MATLAB function from another program, the program might display a
timeout message while waiting for the MATLAB function to complete. Refer to solutions
posted in MATLAB Answers™ for tips for handling alerts from other programming
languages.

External Websites
• Why does Microsoft Excel generate the message "Microsoft Excel is waiting for

another application to complete an OLE action." when I use Spreadsheet Link EX?
• Server Busy: Matlab called from Visual Basic (VB, VBA)

http://www.mathworks.com/matlabcentral/answers/95473-why-does-microsoft-excel-generate-the-message-microsoft-excel-is-waiting-for-another-application-to
http://www.mathworks.com/matlabcentral/answers/95473-why-does-microsoft-excel-generate-the-message-microsoft-excel-is-waiting-for-another-application-to
http://www.mathworks.com/matlabcentral/newsreader/view_thread/317633

13 MATLAB COM Automation Server Support

13-24

Conversion of MATLAB Types to COM Types

In this section...

“Variant Data” on page 13-25
“SAFEARRAY Data” on page 13-25

The following table shows how MATLAB converts data from MATLAB to COM types.

MATLAB Type Closest COM Type Allowed Types

handle VT_DISPATCH

VT_UNKNOWN

VT_DISPATCH

VT_UNKNOWN

string VT_BSTR VT_LPWSTR

VT_LPSTR

VT_BSTR

VT_FILETIME

VT_ERROR

VT_DECIMAL

VT_CLSID

VT_DATE

int16 VT_I2 VT_I2

uint16 VT_UI2 VT_UI2

int32 VT_I4 VT_I4

VT_INT

uint32 VT_UI4 VT_UI4

VT_UINT

int64 VT_I8 VT_I8

uint64 VT_UI8 VT_UI8

single VT_R4 VT_R4

double VT_R8 VT_R8

VT_CY

logical VT_BOOL VT_BOOL

char VT_I1 VT_I1

VT_UI1

 Conversion of MATLAB Types to COM Types

13-25

Variant Data

variant is any data type except a structure or a sparse array. (For more information,
see “Fundamental MATLAB Classes”.)

When used as an input argument, MATLAB treats variant and variant(pointer) the
same way.

MATLAB Argument Closest COM Type Allowed Types

variant VT_VARIANT VT_VARIANT

VT_USERDEFINED

VT_ARRAY

variant(pointer) VT_VARIANT VT_VARIANT | VT_BYREF

SAFEARRAY Data

When a COM method identifies a SAFEARRAY or SAFEARRAY(pointer), the MATLAB
equivalent is a matrix.

MATLAB Argument Closest COM Type Allowed Types

SAFEARRAY VT_SAFEARRAY VT_SAFEARRAY

SAFEARRAY(pointer) VT_SAFEARRAY VT_SAFEARRAY | VT_BYREF

See Also
GetWorkspaceData

13 MATLAB COM Automation Server Support

13-26

Conversion of COM Types to MATLAB Types

The following table shows how MATLAB converts data from a COM application into
MATLAB types.

COM Variant Type Description MATLAB Type

VT_DISPATCH

VT_UNKNOWN

IDispatch *

IUnknown *

MATLAB does not support
the IUnknown and
IDispatch interfaces with
64-bit MATLAB.

handle

VT_LPWSTR

VT_LPSTR

VT_BSTR

VT_FILETIME

VT_ERROR

VT_DECIMAL

VT_CLSID

VT_DATE

wide null terminated
string
null terminated string
OLE Automation string
FILETIME

SCODE

16-byte fixed point
Class ID
date

string

VT_INT

VT_UINT

VT_I2

VT_UI2

VT_I4

VT_UI4

VT_R4

VT_R8

VT_CY

signed machine int

unsigned machine int

2 byte signed int
unsigned short

4 byte signed int
unsigned long

4 byte real
8 byte real
currency

double

VT_I8 signed int64 int64

VT_UI8 unsigned int64 uint64

VT_BOOL logical

VT_I1

VT_UI1

signed char

unsigned char

char

VT_VARIANT VARIANT * variant

 Conversion of COM Types to MATLAB Types

13-27

COM Variant Type Description MATLAB Type

VT_USERDEFINED

VT_ARRAY

user-defined type
SAFEARRAY*

VT_VARIANT | VT_BYREF VARIANT *

void* for local use
variant(pointer)

VT_SAFEARRAY use VT_ARRAY in VARIANT SAFEARRAY

VT_SAFEARRAY | VT_BYREF SAFEARRAY(pointer)

See Also
PutWorkspaceData

14

Using Web Services with MATLAB

• “Set Up WSDL Tools” on page 14-2
• “Display a World Map” on page 14-3
• “Using WSDL Web Service with MATLAB” on page 14-8
• “Access Services That Use WSDL Documents” on page 14-10
• “Error Handling” on page 14-12
• “XML-MATLAB Data Type Conversion” on page 14-14
• “Limitations to WSDL Document Support” on page 14-16

14 Using Web Services with MATLAB

14-2

Set Up WSDL Tools

This example shows how to find information to install the programs required to use a
WSDL Web service in MATLAB. You need supported versions of the Oracle® Java JDK
and the Apache™ CXF programs. While the programs are available at no charge, they
require several hundred megabytes of disk space.

• Download and install the JDK software from the Java SE Downloads Web page. Use
Java SE version 7uXX, where XX is the latest update.

• Download and install Apache CXF software from the Apache CXF Web page. Choose
the latest release of version 2.7.

• Make note of the installation folders created by these programs. Set the paths to the
these variables, jdk = 'YOUR_JDK_PATH' and cxf = 'YOUR_CXF_PATH', then
call:

matlab.wsdl.setWSDLToolPath('JDK',jdk,'CXF',cxf)

See Also
matlab.wsdl.setWSDLToolPath

External Websites
• http://www.oracle.com/technetwork/java/javase/downloads
• http://cxf.apache.org/download

http://www.oracle.com/technetwork/java/javase/downloads
http://cxf.apache.org/download

 Display a World Map

14-3

Display a World Map

This example shows how to access imagery from the United States Geological Survey
(USGS) National Map SOAP server. To create the map, you need the following
information.

• Get a map tile.
• Get the map name.
• Get the format of the tiles.

This example shows you how to call functions in the USGS Web service,
USGSImageryOnly_MapServer, to get this information.

You must install the Java JDK and Apache CXF programs and set the tool paths to run
this example.

p = matlab.wsdl.setWSDLToolPath;

if (isempty(p.JDK) || isempty(p.CXF))

 disp('Install the Java Development Kit (JDK) and Apache CXF programs.')

 disp('See the Set Up WSDL Tools link at the end of this example.')

else

 disp('Paths set to:')

 matlab.wsdl.setWSDLToolPath

end

Change your current folder to a writable folder.

Assign the WSDL URL.

wsdlFile = ...

'http://basemap.nationalmap.gov/arcgis/services/USGSImageryOnly/MapServer?wsdl';

Create the class files for the client.

matlab.wsdl.createWSDLClient(wsdlFile)

Created USGSImageryOnly_MapServer.

 .\USGSImageryOnly_MapServer.m

 .\+wsdl

In order to use USGSImageryOnly_MapServer, you must run javaaddpath('.\+wsdl\mapserver.jar').

ans =

14 Using Web Services with MATLAB

14-4

 @USGSImageryOnly_MapServer

Add the jar files to the Java path.

javaaddpath('.\+wsdl\mapserver.jar')

Start the service.

wsdl = USGSImageryOnly_MapServer;

Explore the service.

help USGSImageryOnly_MapServer

USGSImageryOnly_MapServer A client to connect to the USGSImageryOnly_MapServer service

 SERVICE = USGSImageryOnly_MapServer connects to http://basemap.nationalmap.gov/arcgis/services/USGSImageryOnly/MapServer and returns a SERVICE.

 To communicate with the service, call a function on the SERVICE:

 [...] = FUNCTION(SERVICE,arg,...)

 See doc USGSImageryOnly_MapServer for a list of functions.

Click the link doc USGSImageryOnly_MapServer. MATLAB opens a reference page for
USGSImageryOnly_MapServer in the Help browser.

Read the documentation for the required inputs to the GetMapTile function.

help GetMapTile

 --- help for USGSImageryOnly_MapServer/GetMapTile ---

 GetMapTile

 Result = GetMapTile(obj,MapName,Level,Row,Column,Format)

 Inputs:

 obj - USGSImageryOnly_MapServer object

 MapName - string

 Level - numeric scalar (XML int)

 Row - numeric scalar (XML int)

 Column - numeric scalar (XML int)

 Format - string

 Output:

 Result - vector of numbers 0-255 (XML base64Binary)

 Display a World Map

14-5

 See also USGSImageryOnly_MapServer.

You need MapName, Level, Row, Column, and Format input arguments.

Read the documentation for a function that provides a map name, GetDefaultMapName.

help GetDefaultMapName

--- help for USGSImageryOnly_MapServer/GetDefaultMapName ---

 GetDefaultMapName

 Result = GetDefaultMapName(obj)

 Inputs:

 obj - USGSImageryOnly_MapServer object

 Output:

 Result - string

 See also USGSImageryOnly_MapServer.

This function provides a map name.

Read the documentation for a function that provides a map format information,
GetTileImageInfo.

help GetTileImageInfo

--- help for USGSImageryOnly_MapServer/GetTileImageInfo ---

 GetTileImageInfo

 Result = GetTileImageInfo(obj,MapName)

 Inputs:

 obj - USGSImageryOnly_MapServer object

 MapName - string

 Output:

 Result - TileImageInfo object

 See also USGSImageryOnly_MapServer.

This function returns a TileImageInfo object.

Read the documentation for the TileImageInfo object by clicking the link in the help
display to TileImageInfo.

TileImageInfo(CacheTileFormat,CompressionQuality,Antialiasing) TileImageInfo object for use with USGSImageryOnly_MapServer web client

14 Using Web Services with MATLAB

14-6

 CacheTileFormat - string

 The cache tile format.

 CompressionQuality - numeric scalar (XML int)

 The cache tile image compression quality.

 Antialiasing - string

See also

USGSImageryOnly_MapServer.

MATLAB opens a document in the Help browser. The format information is
CacheTileFormat.

Create the JPEG data. The following codes requires knowledge of the JPEG image
format and the tiling scheme used by the USGS server.

% Get the default map name.

defaultMapName = GetDefaultMapName(wsdl);

% Get the map count.

count = GetMapCount(wsdl);

% Get the map name. There is only one map (count value),

% but the index is zero-based.

mapName = GetMapName(wsdl, count-1);

% Get information about the tiles.

tileImageInfo = GetTileImageInfo(wsdl, mapName);

% Get the format of the data.

format = tileImageInfo.CacheTileFormat;

% Since format is specified as 'Mixed' it implies that

% the result of GetMapTile is a JPEG-encoded stream.

% The map tiles are organized with the lowest level as

% the lowest level of detail and the tiles use

% zero-based indexing.

level = 0;

row = 0;

col = 0;

jpeg = GetMapTile(wsdl,mapName,level,row,col,format);

Write the JPEG-encoded data to a file. Use imread to read and decode the JPEG data
and return a M-by-N-by-3 uint8 matrix.

ext = '.jpg';

tilename = ['USGSImageryOnly_MapServer' '0_0_0' ext];

 Display a World Map

14-7

fid = fopen(tilename,'w');

fwrite(fid,jpeg);

fclose(fid);

View the map.

tileImage = imread(tilename);

figure

imshow(tileImage)

Related Examples
• “Set Up WSDL Tools” on page 14-2

14 Using Web Services with MATLAB

14-8

Using WSDL Web Service with MATLAB

In this section...

“What Are Web Services in MATLAB?” on page 14-8
“What are WSDL Documents?” on page 14-8
“What You Need to Use WSDL with MATLAB” on page 14-9

What Are Web Services in MATLAB?

Web services allow applications running on disparate computers, operating systems, and
development environments to communicate with each other. There are two ways to use
Web services in MATLAB. When the service you want to use provides:

• RESTful (Representational state transfer), use the webread and websave functions
in “Web Access”.

• Web Services Description Language (WSDL) document, use the MATLAB
matlab.wsdl.createWSDLClient function, described in the following topics.

What are WSDL Documents?

Using a Web service based on Web Services Description Language (WSDL) document
technologies, client workstations access and execute APIs residing on a remote server.
The client and server communicate via XML-formatted messages, following the W3C®

SOAP protocol, and typically via the HTTP protocol.

Using the WSDL interface, MATLAB acts as a Web service client, providing functions
you use to access existing services on a server. The functions facilitate communication
with the server, relieving you of the need to work with XML, complex SOAP messages,
and special Web service tools. Through these functions, you use services in your normal
MATLAB environment, such as in the Command Window and in MATLAB programs you
write.

 Using WSDL Web Service with MATLAB

14-9

Diagram Showing Web Services in MATLAB

An organization that wants to make APIs available to disparate clients creates the APIs
and related Web service facilities for the server. Organizations either choose to make the
services available only to local clients via the organization's intranet, or offer them to the
general public via the Web.

What You Need to Use WSDL with MATLAB

You need to find out from your own organization and the organizations you work with if
they provide a Web service of interest to you. There are publicly available services, some
for free and some provided for a fee.

Functions for MATLAB WSDL Web services work with services that comply with the
Basic Profile 1 to SOAP Binding specification.

You need to know basic information about the service you want to use, provided by the
documentation for the service.

You need access to the server from the workstation where you use MATLAB. If there is a
proxy server, provide any required settings using Web preferences. To do so, see “Specify
Proxy Server Settings for Connecting to the Internet”.

14 Using Web Services with MATLAB

14-10

Access Services That Use WSDL Documents

A WSDL document uses a standard format to describe a server's operations, arguments,
and transactions. The matlab.wsdl.createWSDLClient function creates a MATLAB
class that allows you to use the server APIs.

To use the matlab.wsdl.createWSDLClient function, you need to know the location
of the service's WSDL document. The function works with WSDL documents that comply
with the WS-I 1.0 standard and use one of these forms: RPC-literal, Document-literal, or
Document-literal-wrapped. matlab.wsdl.createWSDLClient does not support RPC-
encoded.

You must download supported versions of the Oracle Java JDK and the Apache CXF
programs.

To access a service:

1 Install and/or locate the Java JDK and Apache CXF programs.
2 Set the paths to the JDK and CXF programs using the

matlab.wsdl.setWSDLToolPath function. Values for the paths are saved across
sessions in your user preferences, so you only need to specify them once.

3 Change the MATLAB current folder to the location where you want to use the files
generated from the WSDL document. You must have write-permission for this folder.

4 Run matlab.wsdl.createWSDLClient, supplying the WSDL document location,
which can be a URL or a path to a file.

The function converts the server's APIs to a MATLAB class, and creates a class
folder in the current folder. The class folder contains methods for using the server's
APIs. The function always creates a constructor method that has the same name as
the class.

You only need to run the matlab.wsdl.createWSDLClient function once. You can
access the class anytime after that.

5 Create an object of the class whenever you want to use the operations of the service.
6 View information about the class to see what methods (operations) are available for

you to use.
7 Use the methods of the object to run applications on and exchange data with the

server.

 Access Services That Use WSDL Documents

14-11

MATLAB automatically converts XML data types to MATLAB types, and vice versa.

See Also
matlab.wsdl.createWSDLClient | matlab.wsdl.setWSDLToolPath

Related Examples
• “Set Up WSDL Tools” on page 14-2

More About
• “XML-MATLAB Data Type Conversion” on page 14-14
• “Limitations to WSDL Document Support” on page 14-16

14 Using Web Services with MATLAB

14-12

Error Handling

In this section...

“Considerations Using Web Services” on page 14-12
“Error Handling with try/catch Statements” on page 14-12
“Use a Local Copy of the WSDL Document” on page 14-12
“Java Errors Accessing Service” on page 14-13
“Anonymous Types Not Supported” on page 14-13

Considerations Using Web Services

When creating MATLAB files that rely on a Web service, consider the following:

• A server issues a time-out error. Repeat the MATLAB command.
• Internet performance might make your application performance unpredictable.
• Conventions and established procedures for services and related technologies, like

WSDL and SOAP, are still evolving. You might find inconsistencies or unexpected
behavior when using a Web service.

• A service might change over time, which can impact its usage and results in
MATLAB.

• A server issues other unrecoverable errors.

Error Handling with try/catch Statements

Use the error function in try/catch statements to catch errors that result from
method calls or from the matlab.wsdl.createWSDLClient function.

Use a Local Copy of the WSDL Document

You can achieve better performance if you create a local copy and use the local copy
instead of the version at the URL.

wsdlURL = ...

['http://basemap.nationalmap.gov/arcgis/services/USGSImageryOnly/MapServer?wsdl'];

wsdlFile = 'USGSImageryOnly_MapServer';

if ~exist(wsdlFile,'file')

 Error Handling

14-13

 websave(wsdlFile, wsdlURL)

end

Use this strategy when you do not need immediate access to data at the URL.

Java Errors Accessing Service

Once you access a service from MATLAB using the generated client code, you might get
Java errors if:

• The WSDL for the service changes and you run matlabl.wsdl.createWSDLClient
again for the same service in the same MATLAB session.

• You try to access the service using the regenerated code.

These errors are likely to occur if you modify the service between successive calls to
matlabl.wsdl.createWSDLClient.

If you change a service you already accessed or generate the class files in another
location, restart MATLAB.

Anonymous Types Not Supported

Anonymous XML types are unnamed types embedded in other types.

For more information, see the IBM® article, “Web services hints and tips: avoid
anonymous types,” at http://www.ibm.com/developerworks/library/ws-avoid-anonymous-
types.

See Also
error

More About
• “Exception Handling in a MATLAB Application”

External Websites
• W3C status codes for HTTP errors

http://www.ibm.com/developerworks/library/ws-avoid-anonymous-types
http://www.ibm.com/developerworks/library/ws-avoid-anonymous-types
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

14 Using Web Services with MATLAB

14-14

XML-MATLAB Data Type Conversion

MATLAB SOAP functions automatically convert XML data types used in SOAP
messages to MATLAB types (classes), and vice-versa. The following table contains
the XML type and the corresponding MATLAB type for scalar values used in a WSDL
document.

XML Schema Type MATLAB Type Returned—Scalar

boolean logical

byte int8

unsignedByte uint8

short int16

unsignedShort uint16

int int32

unsignedInt uint32

long int64

unsignedLong uint64

float double

double double

string char array
gYear, gMonth, gDay, gYearMonth,
gMonthDay

calendarDuration array

dateTime dateTime

date dateTime with Year, Month, Day fields
undefined.

time dateTime with Hours, Minutes, Seconds
fields undefined.

duration duration if no year, month or day
calendarDuration otherwise

NOTATION, QName string containing a legal QName
hexbinary, base64Binary N-by-1 vector of uint8 representing byte

values (0-255) of encoded data

 XML-MATLAB Data Type Conversion

14-15

XML Schema Type MATLAB Type Returned—Scalar

decimal, integer,
nonPositiveInteger,
nonNegativeInteger,
positiveInteger, negativeInteger

double array

The following table contains the XML type and the corresponding MATLAB type for
arrays.

XML Schema Type—Array MATLAB Type Returned—Array

array of string N-by-1 cell array of string
array of any type N-by-1 vector of specified type
array of hexbinary, base64Binary Not supported

14 Using Web Services with MATLAB

14-16

Limitations to WSDL Document Support

RPC-encoded WSDL documents are not supported. For these documents, use
createClassFromWsdl.

The following WSDL documents are not supported:

• Documents that the Apache CXF program cannot compile into complete code.
• Documents that import other WSDL documents that contain WSDL type definitions.

Workaround

Move all schema definitions from the imported files into the top-level WSDL file.
Schema definitions appear as schema elements inside types elements.

If the imported files are not local, copy them locally and modify the import elements
of all the files to point to the local files.

For example, consider the following top-level file.

 <definitions>

 <import location="http://foo/bar?wsdl" />

 <types>

 ...top level type definitions...

 </types>

 </definitions>

Download the file in the location attribute, http://foo/bar?wsdl, to a local
file, and save it as imported_file. This file contains information similar to the
following.

 <wsdl:types>

 ...low level type definitions...

 <xsd:schema>

 ...schema definitions...

 </xsd:schema>

 </wsdl:types>

Look for types and schema elements. The text prefixes, wsdl and xsd, do not have
standard naming conventions and might not appear at all. Do not download import
elements within the schema definitions. Move all schema elements in the imported
file, including the opening and closing tags, from the imported file to the end of the

 Limitations to WSDL Document Support

14-17

types element of the top-level file. Then delete the elements from the imported file.
Do not modify existing schema elements in the top-level file. If the top-level file
already contains a types section, add the schema elements to the existing types
content. Otherwise, create a types section within the definitions element of the
top-level file to contain the schema elements.

The top-level file now contains the following.

 <definitions>

 <import location="imported_file" />

 <types>

 ...top level type definitions...

 <xsd:schema>

 ...schema definitions...

 </xsd:schema>

 </types>

 </definitions>

The imported_file file contains the following.

 <wsdl:types>

 ...low level type definitions...

 </wsdl:types>

There must be exactly one types element in the top-level file inside the
definitions element, containing all the schema defined in the imported WSDL
files. None of the imported WSDL files should contain any schema elements.

• On Windows, documents that import other WSDL documents might fail if the
imported URI contains certain punctuation characters.

• Some documents with messages containing multiple parts.
• Some documents with schemas containing anonymous complex types.
• Some documents defining an input parameter to an operation as a simple type. When

you invoke such an operation, for example GetMyOp, MATLAB displays one of the
following errors.

Error using xxx/GetMyOp. Too many input arguments.

Or:

Error using matlab.internal.callJava

No GetMyOp method with appropriate signature exists in Java class $Proxy57

15

System Commands

• “Shell Escape Functions” on page 15-2
• “Run External Commands, Scripts, and Programs” on page 15-3
• “Change Environment Variable for Shell Command” on page 15-6

15 System Commands

15-2

Shell Escape Functions

It is sometimes useful to access your own C or Fortran programs using shell escape
functions. Shell escape functions use the shell escape command ! to make external stand-
alone programs act like new MATLAB functions.

For example, the following function, garfield.m, uses an external function, gareqn, to
find the solution to Garfield's equation.

function y = garfield(a,b,q,r)

save gardata a b q r

!gareqn

load gardata

This function:

1 Saves the input arguments a, b, q, and r to a MAT-file in the workspace using the
save command.

2 Uses the shell escape operator to access a C or Fortran program called gareqn that
uses the workspace variables to perform its computation. gareqn writes its results
to the gardata MAT-file.

3 Loads the gardata MAT-file to obtain the results.

Related Examples
• “Run External Commands, Scripts, and Programs” on page 15-3

 Run External Commands, Scripts, and Programs

15-3

Run External Commands, Scripts, and Programs

The exclamation point character (!) sometimes called bang, is a shell escape. The
character indicates that the rest of the input line is a command to the operating system.
Use it to invoke utilities or call other executable programs without quitting MATLAB. To
use the exclamation point in a factorial expression, call the factorial function.

For example, the following code opens the vi editor for a file named yearlystats.m on a
UNIX platform.

!vi yearlystats.m

After the external program completes or you quit the program, the operating system
returns control to MATLAB. Add & to the end of the line, such as

!dir &

on Windows platforms to display the output in a separate window or to run the
application in background mode. For example:

!excel.exe &

opens Microsoft Excel software and returns control to the Command Window so you can
continue running MATLAB language statements.

Restrictions maintained within the operating system determine the maximum length of
the argument list you can provide as input to the bang (!) command.

For details about running external programs that return results and status, see the
unix, dos, and system functions.

Note To execute operating system commands with specific environment variables,
include all commands to the operating system within the system call. Separate the
commands using & (ampersand) for DOS, and ; (semicolon) for UNIX platforms. This
applies to the MATLAB ! (bang), dos, unix, and system functions. Another approach is
to set environment variables before starting MATLAB.

On Mac platforms, you cannot run AppleScript (from Apple) directly from MATLAB.
To run AppleScript commands, call the Apple Mac OS X osascript function using the
MATLAB unix or ! (bang) functions.

15 System Commands

15-4

Run UNIX Programs off System Path

You can run a UNIX program from MATLAB when the folder containing that file is not
on the UNIX system path that is visible to MATLAB. To determine the system path that
is visible to MATLAB, type the following in the Command Window:

getenv('PATH')

You can make modifications to the system path that persist for the current MATLAB
session or across subsequent MATLAB sessions, as described in the sections that follow.

Modify System Path for Current MATLAB Session

Do one of the following:

• Change the current folder in MATLAB to the folder that contains the program you
want to run.

• Issue these commands using the Command Window:

path1 = getenv('PATH')

path1 = [path1 ':/usr/local/bin']

setenv('PATH', path1)

!echo $PATH

If you restart MATLAB, the folder is no longer on the system path visible to MATLAB.

Modify System Path Across MATLAB Sessions Within Current Shell Session

To add a folder to the system path from the shell:

1 Stop MATLAB.
2 Depending on the shell you are using, type one of the following at the system

command prompt, where myfolder is the folder that contains the program you want
to run:

• If you are using bash or a related shell, type:

export PATH="$PATH:myfolder"

• If you are using tcsh or a related shell, type:

setenv PATH "${PATH}:myfolder"

3 Start MATLAB.
4 In the MATLAB Command Window, type:

 Run External Commands, Scripts, and Programs

15-5

!echo $PATH

If you restart MATLAB within the current shell session, the folder remains on the
system path visible to MATLAB. However, if you restart the shell session, and then
restart MATLAB, the folder is no longer on the system path visible to MATLAB.

Modify System Path Across All MATLAB Sessions

To modify the system path across shell and MATLAB sessions, add the following
commands to the MATLAB startup file as described in “Startup Options in MATLAB
Startup File”.

path1 = getenv('PATH')

path1 = [path1 ':/usr/local/bin']

setenv('PATH', path1)

!echo $PATH

See Also
dos | factorial | system | unix

15 System Commands

15-6

Change Environment Variable for Shell Command

This example shows how to substitute a user-specified value for an environment variable
value set by MATLAB when you call a function using the system command.

When you use the system command to call a function, the function inherits the
MATLAB environment. To change environment variable values, use a shell wrapper.
Use the environment variable MATLAB_SHELL to specify a shell containing your
updated variable. This example uses a custom value for the environment variable
LD_LIBRARY_PATH.

Create a wrapper file matlab_shell.sh in the folder <PATH_TO_SHELL_SCRIPT> with
the following contents, where <MY_LIBRARY_PATH> is your custom value.

#!/bin/sh

LD_LIBRARY_PATH=<MY_LIBRARY_PATH>

export LD_LIBRARY_PATH

exec ${SHELL:-/bin/sh} $*

If you have a user-defined value for SHELL, the expression ${SHELL:-/bin/sh} uses
your SHELL value. Otherwise, MATLAB uses the Bourne shell.

From the operating system prompt, call MATLAB setting MATLAB_SHELL to:

<PATH_TO_SHELL_SCRIPT>/matlab_shell.sh

Display your value of LD_LIBRARY_PATH from the MATLAB command prompt.

!echo $LD_LIBRARY_PATH

Now when you call a function using the system command, the function uses the
LD_LIBRARY_PATH value specified by <MY_LIBRARY_PATH>.

See Also
system

16

Serial Port I/O

• “Capabilities and Supported Interfaces and Platforms” on page 16-2
• “Overview of the Serial Port” on page 16-4
• “Getting Started with Serial I/O” on page 16-16
• “Create a Serial Port Object” on page 16-22
• “Connect to the Device” on page 16-26
• “Configure Communication Settings” on page 16-27
• “Write and Read Data” on page 16-28
• “Events and Callbacks” on page 16-46
• “Control Pins” on page 16-54
• “Debugging: Recording Information to Disk” on page 16-60
• “Save and Load” on page 16-66
• “Disconnect and Clean Up” on page 16-68
• “Property Reference” on page 16-70
• “Properties — Alphabetical List” on page 16-74

16 Serial Port I/O

16-2

Capabilities and Supported Interfaces and Platforms

In this section...

“What Is the MATLAB Serial Port Interface?” on page 16-2
“Supported Serial Port Interface Standards” on page 16-3
“Supported Platforms” on page 16-3
“Using the Examples with Your Device” on page 16-3

What Is the MATLAB Serial Port Interface?

The MATLAB serial port interface provides direct access to peripheral devices such as
modems, printers, and scientific instruments that you connect to your computer's serial
port. This interface is established through a serial port object. The serial port object
supports functions and properties that allow you to

• Configure serial port communications
• Use serial port control pins
• Write and read data
• Use events and callbacks
• Record information to disk

Instrument Control Toolbox™ software provides additional serial port functionality.
In addition to command-line access, this toolbox has a graphical tool called the Test
& Measurement Tool, which allows you to communicate with, configure, and transfer
data with your serial device without writing code. The Test & Measurement Tool
generates MATLAB code for your serial device that you can later reuse to communicate
with your device or to develop UI-based applications. The toolbox includes additional
serial I/O utility functions that facilitate object creation and configuration, instrument
communication, and so on. With the toolbox you can communicate with GPIB- or VISA-
compatible instruments.

If you want to communicate with PC-compatible data acquisition hardware such as
multifunction I/O boards, you need Data Acquisition Toolbox™ software.

For more information about these products, visit the MathWorks website at http://
www.mathworks.com/products.

http://www.mathworks.com/products
http://www.mathworks.com/products

 Capabilities and Supported Interfaces and Platforms

16-3

Supported Serial Port Interface Standards

Over the years, several serial port interface standards have been developed. These
standards include RS-232, RS-422, and RS-485 - all of which are supported by the
MATLAB serial port object. Of these, the most widely used interface standard for
connecting computers to peripheral devices is RS-232.

This guide assumes you are using the RS-232 standard, discussed in “Overview of the
Serial Port” on page 16-4. Refer to your computer and device documentation to see
which interface standard you can use.

Supported Platforms

The MATLAB serial port interface is supported on:

• Linux 32-bit
• Linux 64-bit
• Mac OS X
• Mac OS X 64-bit
• Microsoft Windows 32-bit
• Microsoft Windows 64-bit

Using the Examples with Your Device

Many of the examples in this section reflect specific peripheral devices connected to a
serial port — in particular a Tektronix® TDS 210 two-channel oscilloscope connected to
the COM1 port, on a Windows platform. Therefore, many of the string commands are
specific to this instrument and platform.

If you are using a different platform, or your peripheral device is connected to a different
serial port, or if it accepts different commands, modify the examples accordingly.

16 Serial Port I/O

16-4

Overview of the Serial Port

In this section...

“Introduction” on page 16-4
“What Is Serial Communication?” on page 16-4
“The Serial Port Interface Standard” on page 16-4
“Connecting Two Devices with a Serial Cable” on page 16-5
“Serial Port Signals and Pin Assignments” on page 16-6
“Serial Data Format” on page 16-10
“Finding Serial Port Information for Your Platform” on page 16-13
“Using Virtual USB Serial Ports” on page 16-15
“Selected Bibliography” on page 16-15

Introduction

For many serial port applications, you can communicate with your device without
detailed knowledge of how the serial port works. If your application is straightforward, or
if you are already familiar with the previously mentioned topics, you might want to begin
with “The Serial Port Session” on page 16-16 to see how to use your serial port device
with MATLAB software.

What Is Serial Communication?

Serial communication is the most common low-level protocol for communicating between
two or more devices. Normally, one device is a computer, while the other device can be a
modem, a printer, another computer, or a scientific instrument such as an oscilloscope or
a function generator.

As the name suggests, the serial port sends and receives bytes of information in a
serial fashion — one bit at a time. These bytes are transmitted using either a binary
(numerical) format or a text format.

The Serial Port Interface Standard

The serial port interface for connecting two devices is specified by the TIA/EIA-232C
standard published by the Telecommunications Industry Association.

 Overview of the Serial Port

16-5

The original serial port interface standard was given by RS-232, which stands for
Recommended Standard number 232. The term RS-232 is still in popular use, and is
used in this guide when referring to a serial communication port that follows the TIA/
EIA-232 standard. RS-232 defines these serial port characteristics:

• The maximum bit transfer rate and cable length
• The names, electrical characteristics, and functions of signals
• The mechanical connections and pin assignments

Primary communication is accomplished using three pins: the Transmit Data pin, the
Receive Data pin, and the Ground pin. Other pins are available for data flow control, but
are not required.

Other standards such as RS-485 define additional functionality such as higher bit
transfer rates, longer cable lengths, and connections to as many as 256 devices.

Connecting Two Devices with a Serial Cable

The RS-232 standard defines the two devices connected with a serial cable as the Data
Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE). This
terminology reflects the RS-232 origin as a standard for communication between a
computer terminal and a modem.

Throughout this guide, your computer is considered a DTE, while peripheral devices such
as modems and printers are considered DCEs. Many scientific instruments function as
DTEs.

Because RS-232 mainly involves connecting a DTE to a DCE, the pin assignments are
defined such that straight-through cabling is used, where pin 1 is connected to pin 1,
pin 2 is connected to pin 2, and so on. The following diagram shows a DTE to DCE serial
connection using the transmit data (TD) pin and the receive data (RD) pin.

For more information about serial port pins, see “Serial Port Signals and Pin
Assignments” on page 16-6.

16 Serial Port I/O

16-6

If you connect two DTEs or two DCEs using a straight serial cable, the TD pins on each
device are connected to each other, and the RD pins on each device are connected to each
other. Therefore, to connect two like devices, you must use a null modem cable. As shown
in the following diagram, null modem cables cross the transmit and receive lines in the
cable.

Note: You can connect multiple RS-422 or RS-485 devices to a serial port. If you have an
RS-232/RS-485 adaptor, you can use the MATLAB serial port object with these devices.

Serial Port Signals and Pin Assignments

Serial ports consist of two signal types: data signals and control signals. To support
these signal types, as well as the signal ground, the RS-232 standard defines a 25-pin
connection. However, most Windows and UNIX platforms use a 9-pin connection. In fact,
only three pins are required for serial port communications: one for receiving data, one
for transmitting data, and one for the signal ground.

The following diagram shows the pin assignment scheme for a 9-pin male connector on a
DTE.

The pins and signals associated with the 9-pin connector are described in the following
table. Refer to the RS-232 standard for a description of the signals and pin assignments
used for a 25-pin connector.

Serial Port Pin and Signal Assignments

 Overview of the Serial Port

16-7

Pin Label Signal Name Signal Type

1 CD Carrier Detect Control
2 RD Received Data Data
3 TD Transmitted Data Data
4 DTR Data Terminal Ready Control
5 GND Signal Ground Ground
6 DSR Data Set Ready Control
7 RTS Request to Send Control
8 CTS Clear to Send Control
9 RI Ring Indicator Control

The term data set is synonymous with modem or device, while the term data terminal is
synonymous with computer.

Note: The serial port pin and signal assignments are with respect to the DTE. For
example, data is transmitted from the TD pin of the DTE to the RD pin of the DCE.

Signal States

Signals can be in either an active state or an inactive state. An active state corresponds
to the binary value 1, while an inactive state corresponds to the binary value 0. An active
signal state is often described as logic 1, on, true, or a mark. An inactive signal state is
often described as logic 0, off, false, or a space.

For data signals, the on state occurs when the received signal voltage is more negative
than -3 volts, while the off state occurs for voltages more positive than 3 volts. For
control signals, the on state occurs when the received signal voltage is more positive than
3 volts, while the off state occurs for voltages more negative than -3 volts. The voltage
between -3 volts and +3 volts is considered a transition region, and the signal state is
undefined.

To bring the signal to the on state, the controlling device unasserts (or lowers) the value
for data pins and asserts (or raises) the value for control pins. Conversely, to bring
the signal to the off state, the controlling device asserts the value for data pins and
unasserts the value for control pins.

16 Serial Port I/O

16-8

The following diagram shows the on and off states for a data signal and for a control
signal.

The Data Pins

Most serial port devices support full-duplex communication meaning that they can send
and receive data at the same time. Therefore, separate pins are used for transmitting
and receiving data. For these devices, the TD, RD, and GND pins are used. However,
some types of serial port devices support only one-way or half-duplex communications.
For these devices, only the TD and GND pins are used. This guide assumes that a full-
duplex serial port is connected to your device.

The TD pin carries data transmitted by a DTE to a DCE. The RD pin carries data that is
received by a DTE from a DCE.

The Control Pins

The control pins of a 9-pin serial port are used to determine the presence of connected
devices and control the flow of data. The control pins include

• “The RTS and CTS Pins” on page 16-8
• “The DTR and DSR Pins” on page 16-9
• “The CD and RI Pins” on page 16-9

The RTS and CTS Pins

The RTS and CTS pins are used to signal whether the devices are ready to send or
receive data. This type of data flow control—called hardware handshaking—is used

 Overview of the Serial Port

16-9

to prevent data loss during transmission. When enabled for both the DTE and DCE,
hardware handshaking using RTS and CTS follows these steps:

1 The DTE asserts the RTS pin to instruct the DCE that it is ready to receive data.
2 The DCE asserts the CTS pin indicating that it is clear to send data over the TD pin.

If data can no longer be sent, the CTS pin is unasserted.
3 The data is transmitted to the DTE over the TD pin. If data can no longer be

accepted, the RTS pin is unasserted by the DTE and the data transmission is
stopped.

To enable hardware handshaking in MATLAB software, see “Controlling the Flow of
Data: Handshaking” on page 16-57.

The DTR and DSR Pins

Many devices use the DSR and DTR pins to signal if they are connected and powered.
Signaling the presence of connected devices using DTR and DSR follows these steps:

1 The DTE asserts the DTR pin to request that the DCE connect to the communication
line.

2 The DCE asserts the DSR pin to indicate it is connected.
3 DCE unasserts the DSR pin when it is disconnected from the communication line.

The DTR and DSR pins were originally designed to provide an alternative method of
hardware handshaking. However, the RTS and CTS pins are usually used in this way,
and not the DSR and DTR pins. Refer to your device documentation to determine its
specific pin behavior.

The CD and RI Pins

The CD and RI pins are typically used to indicate the presence of certain signals during
modem-modem connections.

A modem uses a CD pin to signal that it has made a connection with another modem,
or has detected a carrier tone. CD is asserted when the DCE is receiving a signal of a
suitable frequency. CD is unasserted if the DCE is not receiving a suitable signal.

The RI pin is used to indicate the presence of an audible ringing signal. RI is asserted
when the DCE is receiving a ringing signal. RI is unasserted when the DCE is not
receiving a ringing signal (e.g., it is between rings).

16 Serial Port I/O

16-10

Serial Data Format

The serial data format includes one start bit, between five and eight data bits, and one
stop bit. A parity bit and an additional stop bit might be included in the format as well.
The following diagram illustrates the serial data format.

The following notation expresses the format for serial port data:

number of data bits - parity type - number of stop bits

For example, 8-N-1 is interpreted as eight data bits, no parity bit, and one stop bit, while
7-E-2 is interpreted as seven data bits, even parity, and two stop bits.

The data bits are often referred to as a character because these bits usually represent an
ASCII character. The remaining bits are called framing bits because they frame the data
bits.

Bytes Versus Values

A byte is the collection of bits that comprise the serial data format. At first, this term
might seem inaccurate because a byte is 8 bits and the serial data format can range
between 7 bits and 12 bits. However, when serial data is stored on your computer, the
framing bits are stripped away, and only the data bits are retained. Moreover, eight data
bits are always used regardless of the number of data bits specified for transmission,
with the unused bits assigned a value of 0.

When reading or writing data, you might need to specify a value, which can consist of one
or more bytes. For example, if you read one value from a device using the int32 format,
that value consists of four bytes. For more information about reading and writing values,
see “Write and Read Data” on page 16-28.

Synchronous and Asynchronous Communication

The RS-232 standard supports two types of communication protocols: synchronous and
asynchronous.

 Overview of the Serial Port

16-11

Using the synchronous protocol, all transmitted bits are synchronized to a common clock
signal. The two devices initially synchronize themselves to each other, and continually
send characters to stay synchronized. Even when actual data is not really being sent,
a constant flow of bits allows each device to know where the other is at any given time.
That is, each bit that is sent is either actual data or an idle character. Synchronous
communications allows faster data transfer rates than asynchronous methods, because
additional bits to mark the beginning and end of each data byte are not required.

Using the asynchronous protocol, each device uses its own internal clock, resulting
in bytes that are transferred at arbitrary times. So, instead of using time as a way to
synchronize the bits, the data format is used.

In particular, the data transmission is synchronized using the start bit of the word,
while one or more stop bits indicate the end of the word. The requirement to send
these additional bits causes asynchronous communications to be slightly slower than
synchronous. However, it has the advantage that the processor does not have to deal with
the additional idle characters. Most serial ports operate asynchronously.

Note: When used in this guide, the terms synchronous and asynchronous refer to
whether read or write operations block access to the MATLAB command line. For more
information, see “Controlling Access to the MATLAB Command Line” on page 16-29.

How Are the Bits Transmitted?

By definition, serial data is transmitted one bit at a time. The order in which the bits are
transmitted is:

1 The start bit is transmitted with a value of 0.
2 The data bits are transmitted. The first data bit corresponds to the least significant

bit (LSB), while the last data bit corresponds to the most significant bit (MSB).
3 The parity bit (if defined) is transmitted.
4 One or two stop bits are transmitted, each with a value of 1.

The baud rate is the number of bits transferred per second. The transferred bits include
the start bit, the data bits, the parity bit (if defined), and the stop bits.

Start and Stop Bits

As described in “Synchronous and Asynchronous Communication” on page 16-10,
most serial ports operate asynchronously. This means that the transmitted byte must be

16 Serial Port I/O

16-12

identified by start and stop bits. The start bit indicates when the data byte is about to
begin; the stop bit(s) indicate(s) when the data byte has been transferred. The process of
identifying bytes with the serial data format follows these steps:

1 When a serial port pin is idle (not transmitting data), it is in an on state.
2 When data is about to be transmitted, the serial port pin switches to an off state

due to the start bit.
3 The serial port pin switches back to an on state due to the stop bit(s). This indicates

the end of the byte.

Data Bits

The data bits transferred through a serial port might represent device commands, sensor
readings, error messages, and so on. The data can be transferred as either binary data or
ASCII data.

Most serial ports use between five and eight data bits. Binary data is typically
transmitted as eight bits. Text-based data is transmitted as either seven bits or eight
bits. If the data is based on the ASCII character set, a minimum of seven bits is required
because there are 27 or 128 distinct characters. If an eighth bit is used, it must have a
value of 0. If the data is based on the extended ASCII character set, eight bits must be
used because there are 28 or 256 distinct characters.

The Parity Bit

The parity bit provides simple error (parity) checking for the transmitted data. The
following table shows the types of parity checking.

Parity Types

Parity Type Description

Even The data bits plus the parity bit result in an even number of 1s.
Mark The parity bit is always 1.
Odd The data bits plus the parity bit result in an odd number of 1s.
Space The parity bit is always 0.

Mark and space parity checking are seldom used because they offer minimal error
detection. You might choose to not use parity checking at all.

 Overview of the Serial Port

16-13

The parity checking process follows these steps:

1 The transmitting device sets the parity bit to 0 or to 1, depending on the data bit
values and the type of parity-checking selected.

2 The receiving device checks if the parity bit is consistent with the transmitted data.
If it is, the data bits are accepted. If it is not, an error is returned.

Note: Parity checking can detect only 1-bit errors. Multiple-bit errors can appear as valid
data.

For example, suppose the data bits 01110001 are transmitted to your computer. If even
parity is selected, the parity bit is set to 0 by the transmitting device to produce an even
number of 1s. If odd parity is selected, the parity bit is set to 1 by the transmitting device
to produce an odd number of 1s.

Finding Serial Port Information for Your Platform

This section describes the ways to find serial port information for Windows and UNIX
platforms.

Note: Your operating system provides default values for all serial port settings. However,
these settings are overridden by your MATLAB code, and will have no effect on your
serial port application.

Microsoft Windows Platform

1 Open the Windows Control Panel.
2 Click Device Manager.
3 In the Device Manager dialog box, expand the Ports node.
4 Double-click the Communications Port (COM1) node.
5 Select the Port Settings tab.

MATLAB displays the following Ports dialog box.

16 Serial Port I/O

16-14

UNIX Platform

To find serial port information for UNIX platforms, you need to know the serial port
names. These names might vary between different operating systems.

On a Linux platform, serial port devices are typically named ttyS0, ttyS1, etc. Use the
setserial command to display or configure serial port information. For example, to
display which ports are available:

setserial -bg /dev/ttyS*

/dev/ttyS0 at 0x03f8 (irq = 4) is a 16550A

/dev/ttyS1 at 0x02f8 (irq = 3) is a 16550A

To display detailed information about ttyS0:

setserial -ag /dev/ttyS0

/dev/ttyS0, Line 0, UART: 16550A, Port: 0x03f8, IRQ: 4

 Baud_base: 115200, close_delay: 50, divisor: 0

 Overview of the Serial Port

16-15

 closing_wait: 3000, closing_wait2: infinte

 Flags: spd_normal skip_test session_lockout

Note: If the setserial -ag command does not work, make sure you have read and
write permission for the port.

For all supported UNIX platforms, use the stty command to display or configure serial
port information. For example, to display serial port properties for ttyS0, enter:

stty -a < /dev/ttyS0

To configure the baud rate to 4800 bits per second, enter:

stty speed 4800 < /dev/ttyS0 > /dev/ttyS0

Using Virtual USB Serial Ports

If you have devices that present themselves as serial ports on your operating system,
you can use them as virtual USB serial ports in MATLAB. An example of such devices
would be a USB Serial Dongle. For Bluetooth® devices, use the Bluetooth support in the
Instrument Control Toolbox. See “Bluetooth Interface Overview” for more information.

MATLAB can communicate with these devices as long as the serial drivers provided
by the device vendor are able to emulate the native hardware. Certain software, like
HyperTerminal, does not require the device driver to fully implement and support the
native hardware.

Selected Bibliography

[1] TIA/EIA-232-F, Interface Between Data Terminal Equipment and Data Circuit-
Terminating Equipment Employing Serial Binary Data Interchange.

[2] Jan Axelson, Serial Port Complete, Lakeview Research, Madison, WI, 1998.

[3] Instrument Communication Handbook, IOTech, Inc., Cleveland, OH, 1991.

[4] TDS 200-Series Two Channel Digital Oscilloscope Programmer Manual, Tektronix,
Inc., Wilsonville, OR.

[5] Courier High Speed Modems User's Manual, U.S. Robotics, Inc., Skokie, IL, 1994.

16 Serial Port I/O

16-16

Getting Started with Serial I/O
In this section...

“Example: Getting Started” on page 16-16
“The Serial Port Session” on page 16-16
“Configuring and Returning Properties” on page 16-17

Example: Getting Started

This example illustrates some basic serial port commands.

Note: This example is shown on a Windows platform.

If you have a device connected to the serial port COM1 and configured for a baud rate of
4800, execute the following example.

s = serial('COM1');

set(s,'BaudRate',4800);

fopen(s);

fprintf(s,'*IDN?')

out = fscanf(s);

fclose(s)

delete(s)

clear s

The *IDN? command queries the device for identification information, which is returned
to out. If your device does not support this command, or if it is connected to a different
serial port, modify the previous example accordingly.

Note: *IDN? is one of the commands supported by the Standard Commands for
Programmable Instruments (SCPI) language, which is used by many modern devices.
Refer to your device documentation to see if it supports the SCPI language.

The Serial Port Session

This example describes the steps you use to perform any serial port task from beginning
to end.

 Getting Started with Serial I/O

16-17

The serial port session comprises all the steps you are likely to take when communicating
with a device connected to a serial port. These steps are:

1 Create a serial port object — Create a serial port object for a specific serial port using
the serial creation function.

Configure properties during object creation if necessary. In particular, you might
want to configure properties associated with serial port communications such as the
baud rate, the number of data bits, and so on.

2 Connect to the device — Connect the serial port object to the device using the fopen
function.

After the object is connected, alter the necessary device settings by configuring
property values, read data, and write data.

3 Configure properties — To establish the desired serial port object behavior, assign
values to properties using the set function or dot notation.

In practice, you can configure many of the properties at any time including during,
or just after, object creation. Conversely, depending on your device settings and the
requirements of your serial port application, you might be able to accept the default
property values and skip this step.

4 Write and read data — Write data to the device using the fprintf or fwrite
function, and read data from the device using the fgetl, fgets, fread, fscanf, or
readasync function.

The serial port object behaves according to the previously configured or default
property values.

5 Disconnect and clean up — When you no longer need the serial port object,
disconnect it from the device using the fclose function, remove it from memory
using the delete function, and remove it from the MATLAB workspace using the
clear command.

The serial port session is reinforced in many of the serial port documentation examples.
To see a basic example that uses the steps shown above, see “Example: Getting Started”
on page 16-16.

Configuring and Returning Properties

This example describes how you display serial port property names and property values,
and how you assign values to properties.

16 Serial Port I/O

16-18

You establish the desired serial port object behavior by configuring property values. You
can display or configure property values using the set function, the get function, or dot
notation.

Displaying Property Names and Property Values

After you create the serial port object, use the set function to display all the configurable
properties to the command line. Additionally, if a property has a finite set of string
values, set also displays these values.

s = serial('COM1');

set(s)

 ByteOrder: [{littleEndian} | bigEndian]

 BytesAvailableFcn

 BytesAvailableFcnCount

 BytesAvailableFcnMode: [{terminator} | byte]

 ErrorFcn

 InputBufferSize

 Name

 OutputBufferSize

 OutputEmptyFcn

 RecordDetail: [{compact} | verbose]

 RecordMode: [{overwrite} | append | index]

 RecordName

 Tag

 Timeout

 TimerFcn

 TimerPeriod

 UserData

 SERIAL specific properties:

 BaudRate

 BreakInterruptFcn

 DataBits

 DataTerminalReady: [{on} | off]

 FlowControl: [{none} | hardware | software]

 Parity: [{none} | odd | even | mark | space]

 PinStatusFcn

 Port

 ReadAsyncMode: [{continuous} | manual]

 RequestToSend: [{on} | off]

 StopBits

 Terminator

 Getting Started with Serial I/O

16-19

Use the get function to display one or more properties and their current values to the
command line. To display all properties and their current values:

get(s)

 ByteOrder = littleEndian

 BytesAvailable = 0

 BytesAvailableFcn =

 BytesAvailableFcnCount = 48

 BytesAvailableFcnMode = terminator

 BytesToOutput = 0

 ErrorFcn =

 InputBufferSize = 512

 Name = Serial-COM1

 OutputBufferSize = 512

 OutputEmptyFcn =

 RecordDetail = compact

 RecordMode = overwrite

 RecordName = record.txt

 RecordStatus = off

 Status = closed

 Tag =

 Timeout = 10

 TimerFcn =

 TimerPeriod = 1

 TransferStatus = idle

 Type = serial

 UserData = []

 ValuesReceived = 0

 ValuesSent = 0

 SERIAL specific properties:

 BaudRate = 9600

 BreakInterruptFcn =

 DataBits = 8

 DataTerminalReady = on

 FlowControl = none

 Parity = none

 PinStatus = [1x1 struct]

 PinStatusFcn =

 Port = COM1

 ReadAsyncMode = continuous

 RequestToSend = on

 StopBits = 1

 Terminator = LF

16 Serial Port I/O

16-20

To display the current value for one property, supply the property name to get.

get(s,'OutputBufferSize')

ans =

 512

To display the current values for multiple properties, include the property names as
elements of a cell array.

get(s,{'Parity','TransferStatus'})

ans =

 'none' 'idle'

Use the dot notation to display a single property value.

s.Parity

ans =

none

Configuring Property Values

You can configure property values using the set function:

set(s,'BaudRate',4800);

or the dot notation:

s.BaudRate = 4800;

To configure values for multiple properties, supply multiple property name/property
value pairs to set.

set(s,'DataBits',7,'Name','Test1-serial')

Note that you can configure only one property value at a time using the dot notation.

In practice, you can configure many of the properties at any time while the serial port
object exists — including during object creation. However, some properties are not
configurable while the object is connected to the device or when recording information to
disk. For information about when a property is configurable, see “Property Reference” on
page 16-70.

Specifying Property Names

Serial port property names are presented using mixed case. While this makes property
names easier to read, use any case you want when specifying property names. For
example, to configure the BaudRate property:

 Getting Started with Serial I/O

16-21

s.BaudRate = 4800;

s.baudrate = 4800;

Default Property Values

Whenever you do not explicitly define a value for a property, the default value is used. All
configurable properties have default values.

Note: Your operating system provides default values for all serial port settings such as
the baud rate. However, these settings are overridden by your MATLAB code and have
no effect on your serial port application.

If a property has a finite set of string values, the default value is enclosed by {}. For
example, the default value for the Parity property is none.

set(s,'Parity')

[{none} | odd | even | mark | space]

You can find the default value for any property in the property reference pages.

16 Serial Port I/O

16-22

Create a Serial Port Object

In this section...

“Overview of a Serial Port Object” on page 16-22
“Configuring Properties During Object Creation” on page 16-23
“The Serial Port Object Display” on page 16-24
“Creating an Array of Serial Port Objects” on page 16-24

Overview of a Serial Port Object

The serial function requires the name of the serial port connected to your device as an
input argument. Additionally, you can configure property values during object creation.
To create a serial port object associated with the serial port enter:

s = serial('port');

This creates a serial port object associated with the serial port specified by 'port'. If
'port' does not exist, or if it is in use, you will not be able to connect the serial port
object to the device. 'port' object name will depend upon the platform that the serial
port is on. The Instrument Control Toolbox function

 instrhwinfo('serial')

provides a list of available serial ports. This list is an example of serial constructors on
different platforms:

Platform Serial Constructor

Linux 32 and 64-bit serial('/dev/ttyS0');

Mac OS X
and Mac OS X 64-bit

serial('/dev/tty.KeySerial1');

Microsoft Windows 32 and 64-bit serial('com1');

Sun™ Solaris™ 64-bit serial('/dev/term/a');

The serial port object s now exists in the MATLAB workspace. To display the class of s,
use the whos command.

whos s

 Name Size Bytes Class

 Create a Serial Port Object

16-23

 s 1x1 512 serial object

Grand total is 11 elements using 512 bytes

Note: The first time you try to access a serial port in MATLAB using the s =
serial('port') call, make sure that the port is free and is not already open in any
other application. If the port is open in another application, MATLAB cannot access it.
Once you have accessed in MATLAB, you can open the same port in other applications
and MATLAB will continue to use it along with any other application that has it open as
well.

Once the serial port object is created, the following properties are automatically assigned
values. These general-purpose properties provide descriptive information about the serial
port object based on the object type and the serial port.

Descriptive General Purpose Properties

Property Name Description

Name Specify a descriptive name for the serial port object
Port Indicate the platform-specific serial port name
Type Indicate the object type

Display the values of these properties for s with the get function. On a Windows
platform, it will look like this:

get(s,{'Name','Port','Type'})

ans =

 'Serial-COM1' 'COM1' 'serial'

Configuring Properties During Object Creation

You can configure serial port properties during object creation. serial accepts property
names and property values in the same format as the set function. For example, you can
specify property name/property value pairs.

s = serial('port','BaudRate',4800,'Parity','even');

If you specify an invalid property name, the object is not created. However, if you specify
an invalid value for some properties (for example, BaudRate is set to 50), the object

16 Serial Port I/O

16-24

might be created but you are not informed of the invalid value until you connect the
object to the device with the fopen function.

The Serial Port Object Display

The serial port object provides you with a convenient display that summarizes important
configuration and state information. You can invoke the display summary these three
ways:

• Type the serial port object variable name at the command line.
• Exclude the semicolon when creating a serial port object.
• Exclude the semicolon when configuring properties using the dot notation.

To display summary information using the Workspace browser, right-click an instrument
object and select Display Summary from the context menu.

The display summary for the serial port object s on a Windows platform is:

Serial Port Object : Serial-COM1

Communication Settings

 Port: COM1

 BaudRate: 9600

 Terminator: 'LF'

Communication State

 Status: closed

 RecordStatus: off

Read/Write State

 TransferStatus: idle

 BytesAvailable: 0

 ValuesReceived: 0

 ValuesSent: 0

Creating an Array of Serial Port Objects

In MATLAB, you create an array from existing variables by concatenating those
variables together. The same is true for serial port objects. For example, suppose you
create the serial port objects s1 and s2 on a Windows platform.

s1 = serial('COM1');

 Create a Serial Port Object

16-25

s2 = serial('COM2');

Create a serial port object array, consisting of s1 and s2, using the usual MATLAB
syntax. To create the row array x, enter:

x = [s1 s2]

Instrument Object Array

 Index: Type: Status: Name:

 1 serial closed Serial-COM1

 2 serial closed Serial-COM2

To create the column array y, enter:

y = [s1;s2];

Note that you cannot create a matrix of serial port objects. For example, you cannot
create the matrix:
z = [s1 s2;s1 s2];

??? Error using ==> serial/vertcat

Only a row or column vector of instrument objects can be created.

Depending on your application, you might want to pass an array of serial port objects to a
function. For example, to configure the baud rate and parity for s1 and s2 using one call
to set:

set(x,'BaudRate',19200,'Parity','even')

16 Serial Port I/O

16-26

Connect to the Device

Before using the serial port object to write or read data, you must connect it to your
device via the serial port specified in the serial function. You connect a serial port
object to the device with the fopen function.

fopen(s)

Some properties are read only while the serial port object is connected and must be
configured before using fopen. Examples include the InputBufferSize and the
OutputBufferSize properties. To determine when you can configure a property, see
“Property Reference” on page 16-70.

Note: You can create any number of serial port objects, but you can connect only one
serial port object per MATLAB session to a given serial port at a time. However, the
serial port is not locked by the session, so other applications or other instances of
MATLAB software can access the same serial port, which could result in a conflict, with
unpredictable results.

To verify that the serial port object is connected to the device, examine the Status
property.

s.Status

ans =

open

As shown in the following illustration, the connection between the serial port object and
the device is complete; data is readable and writable.

 Configure Communication Settings

16-27

Configure Communication Settings

Before you can write or read data, both the serial port object and the device must have
identical communication settings. Configuring serial port communications involves
specifying values for properties that control the baud rate and the serial data format. The
following table describes these properties.

Communication Properties

Property Name Description

BaudRate Specify the rate at which bits are transmitted
DataBits Specify the number of data bits to transmit
Parity Specify the type of parity checking
StopBits Specify the number of bits used to indicate the end of a byte
Terminator Specify the terminator character

Note: If the serial port object and the device communication settings are not identical,
data is not readable or writable.

Refer to the device documentation for an explanation of its supported communication
settings.

16 Serial Port I/O

16-28

Write and Read Data

In this section...

“Before You Begin” on page 16-28
“Example — Introduction to Writing and Reading Data” on page 16-28
“Controlling Access to the MATLAB Command Line” on page 16-29
“Writing Data” on page 16-30
“Reading Data” on page 16-35
“Example — Writing and Reading Text Data” on page 16-41
“Example — Parsing Input Data Using textscan” on page 16-42
“Example — Reading Binary Data” on page 16-43

Before You Begin

For many serial port applications, there are three important questions that you should
consider when writing or reading data:

• Will the read or write function block access to the MATLAB command line?
• Is the data to be transferred binary (numerical) or text?
• Under what conditions will the read or write operation complete?

For write operations, these questions are answered in “Writing Data” on page 16-30.
For read operations, these questions are answered in “Reading Data” on page 16-35.

Note: All the examples shown below are based on a Windows 32-bit platform. Refer to
“Overview of a Serial Port Object” on page 16-22 section for information about other
platforms.

Example — Introduction to Writing and Reading Data

Suppose you want to return identification information for a Tektronix TDS 210 two-
channel oscilloscope connected to the serial port COM1 on a Windows platform. This
requires writing the *IDN? command to the instrument using the fprintf function, and
reading back the result of that command using the fscanf function.

 Write and Read Data

16-29

s = serial('COM1');

fopen(s)

fprintf(s,'*IDN?')

out = fscanf(s)

The resulting identification information is:

out =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

End the serial port session.

fclose(s)

delete(s)

clear s

Controlling Access to the MATLAB Command Line

You control access to the MATLAB command line by specifying whether a read or write
operation is synchronous or asynchronous.

A synchronous operation blocks access to the command line until the read or write
function completes execution. An asynchronous operation does not block access to the
command line, and you can issue additional commands while the read or write function
executes in the background.

The terms synchronous and asynchronous are often used to describe how the serial
port operates at the hardware level. The RS-232 standard supports an asynchronous
communication protocol. Using this protocol, each device uses its own internal clock. The
data transmission is synchronized using the start bit of the bytes, while one or more stop
bits indicate the end of the byte. For more information on start bits and stop bits, see
“Serial Data Format” on page 16-10. The RS-232 standard also supports a synchronous
mode where all transmitted bits are synchronized to a common clock signal.

At the hardware level, most serial ports operate asynchronously. However, using the
default behavior for many of the read and write functions, you can mimic the operation of
a synchronous serial port.

Note: When used in this guide, the terms synchronous and asynchronous refer to
whether read or write operations block access to the MATLAB command-line. In other

16 Serial Port I/O

16-30

words, these terms describe how the software behaves, and not how the hardware
behaves.

The two main advantages of writing or reading data asynchronously are:

• You can issue another command while the write or read function is executing.
• You can use all supported callback properties (see “Events and Callbacks” on page

16-46).

For example, because serial ports have separate read and write pins, you can
simultaneously read and write data. This is illustrated in the following diagram.

Writing Data

This section describes writing data to your serial port device in three parts:

• “The Output Buffer and Data Flow” on page 16-31 describes the flow of data from
MATLAB software to the device.

• “Writing Text Data” on page 16-32 describes how to write text data (string
commands) to the device.

• “Writing Binary Data” on page 16-34 describes how to write binary (numerical)
data to the device.

The following table shows the functions associated with writing data.

Functions Associated with Writing Data

Function Name Description

fprintf Write text to the device
fwrite Write binary data to the device

 Write and Read Data

16-31

Function Name Description

stopasync Stop asynchronous read and write operations

The following table shows the properties associated with writing data.

Properties Associated with Writing Data

Property Name Description

BytesToOutput Number of bytes currently in the output buffer
OutputBufferSize Size of the output buffer in bytes
Timeout Waiting time to complete a read or write operation
TransferStatus Indicate if an asynchronous read or write operation is in

progress
ValuesSent Total number of values written to the device

The Output Buffer and Data Flow

The output buffer is computer memory allocated by the serial port object to store data
that is to be written to the device. When writing data to your device, the data flow follows
these two steps:

1 The data specified by the write function is sent to the output buffer.
2 The data in the output buffer is sent to the device.

The OutputBufferSize property specifies the maximum number of bytes that you can
store in the output buffer. The BytesToOutput property indicates the number of bytes
currently in the output buffer. The default values for these properties are:

s = serial('COM1');

get(s,{'OutputBufferSize','BytesToOutput'})

ans =

 [512] [0]

If you attempt to write more data than can fit in the output buffer, an error is returned
and no data is written.

For example, suppose you write the string command *IDN? to the TDS 210 oscilloscope
using the fprintf function. As shown in the following diagram, the string is first
written to the output buffer as six values.

16 Serial Port I/O

16-32

The *IDN? command consists of six values because the terminator is automatically
written. Moreover, the default data format for the fprintf function specifies that one
value corresponds to one byte. For more information about bytes and values, see “Bytes
Versus Values” on page 16-10. fprintf and the terminator are discussed in “Writing
Text Data” on page 16-32.

As shown in the following diagram, after the string is written to the output buffer, it is
then written to the device via the serial port.

Writing Text Data

You use the fprintf function to write text data to the device. For many devices, writing
text data means writing string commands that change device settings, prepare the device
to return data or status information, and so on.

For example, the Display:Contrast command changes the display contrast of the
oscilloscope.

 Write and Read Data

16-33

s = serial('COM1');

fopen(s)

fprintf(s,'Display:Contrast 45')

By default, fprintf writes data using the %s\n format because many serial port devices
accept only text-based commands. However, you can specify many other formats, as
described in the fprintf reference pages.

To verify the number of values sent to the device, use the ValuesSent property.

s.ValuesSent

ans =

 20

Note that the ValuesSent property value includes the terminator because each
occurrence of \n in the command sent to the device is replaced with the Terminator
property value.

s.Terminator

ans =

LF

The default value of Terminator is the linefeed character. The terminator required by
your device will be described in its documentation.

Synchronous Versus Asynchronous Write Operations

By default, fprintf operates synchronously and blocks the MATLAB command line
until execution completes. To write text data asynchronously to the device, you must
specify async as the last input argument to fprintf.

fprintf(s,'Display:Contrast 45','async')

Asynchronous operations do not block access to the MATLAB command line.
Additionally, while an asynchronous write operation is in progress, you can:

• Execute an asynchronous read operation because serial ports have separate pins for
reading and writing

• Make use of all supported callback properties

To determine which asynchronous operations are in progress, use the TransferStatus
property. If no asynchronous operations are in progress, TransferStatus is idle.

s.TransferStatus

16 Serial Port I/O

16-34

ans =

idle

Completing a Write Operation with fprintf

A synchronous or asynchronous write operation using fprintf completes when:

• The specified data is written.
• The time specified by the Timeout property passes.

Stop an asynchronous write operation with the stopasync function.

Rules for Writing the Terminator

The Terminator property value replaces all occurrences of \n in cmd. Therefore, when
you use the default format %s\n, all commands written to the device end with this
property value. Refer to your device documentation for the terminator required by your
device.

Writing Binary Data

You use the fwrite function to write binary data to the device. Writing binary data
means writing numerical values. A typical application for writing binary data involves
writing calibration data to an instrument such as an arbitrary waveform generator.

Note: Some serial port devices accept only text-based commands. These commands might
use the SCPI language or some other vendor-specific language. Therefore, you might
need to use the fprintf function for all write operations.

By default, fwrite translates values using the uchar precision. However, you can
specify many other precisions as described in the reference pages for this function.

By default, fwrite operates synchronously. To write binary data asynchronously to
the device, you must specify async as the last input argument to fwrite. For more
information about synchronous and asynchronous write operations, see “Writing Text
Data” on page 16-32. For a description of the rules used by fwrite to complete a
write operation, refer to its reference pages.

Troubleshooting Common Errors

Use this table to identify common fprintf errors.

 Write and Read Data

16-35

Error Occurs when Troubleshooting

??? Error using
==> serial.fwrite
at 199 OBJ must
be connected to
the hardware with
FOPEN.

You perform a write operation
and the serial port object is not
connected to the device.

Use fopen to establish a
connection to the device.

??? Error using ==>
serial.fwrite at 199
The number of bytes
written must be
less than or equal to
OutputBufferSize-
BytesToOutput.

The output buffer is not able to
hold all the data to be written.

Specify the size of the
output buffer with the
OutputBufferSize property.

??? Error using
==> serial.fwrite
at 192 FWRITE
cannot be called.
The FlowControl
property is set to
'hardware' and the
Clear To Send (CTS)
pin is high. This could
indicate that the
serial device may not
be turned on, may not
be connected, or does
not use hardware
handshaking

• You set the flowcontrol
property on a serial object
to hardware.

• The device is either not
connected or a connected
device is not asserting that
is ready to receive data.

Check your remote device status
and flow control settings to see if
hardware flow control is causing
MATLAB errors.

Reading Data

This section describes reading data from your serial port device in three parts:

• “The Input Buffer and Data Flow” on page 16-36 describes the flow of data from
the device to MATLAB software.

• “Reading Text Data” on page 16-38 describes how to read from the device, and
format the data as text.

16 Serial Port I/O

16-36

• “Reading Binary Data” on page 16-40 describes how to read binary (numerical)
data from the device.

The following table shows the functions associated with reading data.

Functions Associated with Reading Data

Function Name Description

fgetl Read one line of text from the device and discard the terminator
fgets Read one line of text from the device and include the terminator
fread Read binary data from the device
fscanf Read data from the device and format as text
readasync Read data asynchronously from the device
stopasync Stop asynchronous read and write operations

The following table shows the properties associated with reading data.

Properties Associated with Reading Data

Property Name Description

BytesAvailable Number of bytes available in the input buffer
InputBufferSize Size of the input buffer in bytes
ReadAsyncMode Specify whether an asynchronous read operation is continuous or

manual
Timeout Waiting time to complete a read or write operation
TransferStatus Indicate if an asynchronous read or write operation is in progress
ValuesReceived Total number of values read from the device

The Input Buffer and Data Flow

The input buffer is computer memory allocated by the serial port object to store data that
is to be read from the device. When reading data from your device, the data flow follows
these two steps:

1 The data read from the device is stored in the input buffer.
2 The data in the input buffer is returned to the MATLAB variable specified by the

read function.

 Write and Read Data

16-37

The InputBufferSize property specifies the maximum number of bytes you can
store in the input buffer. The BytesAvailable property indicates the number of
bytes currently available to be read from the input buffer. The default values for these
properties are:

s = serial('COM1');

get(s,{'InputBufferSize','BytesAvailable'})

ans =

 [512] [0]

If you attempt to read more data than can fit in the input buffer, an error is returned and
no data is read.

For example, suppose you use the fscanf function to read the text-based response of
the *IDN? command previously written to the TDS 210 oscilloscope. As shown in the
following diagram, the text data is first read into the input buffer via the serial port.

Note that for a given read operation, you might not know the number of bytes returned
by the device. Therefore, you might need to preset the InputBufferSize property to a
sufficiently large value before connecting the serial port object.

As shown in the following diagram, after the data is stored in the input buffer, it is then
transferred to the output variable specified by fscanf.

16 Serial Port I/O

16-38

Reading Text Data

You use the fgetl, fgets, and fscanf functions to read data from the device, and
format the data as text.

For example, suppose you want to return identification information for the oscilloscope.
This requires writing the *IDN? command to the instrument, and then reading back the
result of that command.

s = serial('COM1');

fopen(s)

fprintf(s,'*IDN?')

out = fscanf(s)

out =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

By default, fscanf reads data using the %c format because the data returned by many
serial port devices is text based. However, you can specify many other formats as
described in the fscanf reference pages.

To verify the number of values read from the device—including the terminator, use the
ValuesReceived property.

s.ValuesReceived

ans =

 56

Synchronous Versus Asynchronous Read Operations

You specify whether read operations are synchronous or asynchronous with the
ReadAsyncMode property. You can configure ReadAsyncMode to continuous or
manual.

 Write and Read Data

16-39

If ReadAsyncMode is continuous (the default value), the serial port object continuously
queries the device to determine if data is available to be read. If data is available, it is
asynchronously stored in the input buffer. To transfer the data from the input buffer
to MATLAB, use one of the synchronous (blocking) read functions such as fgetl or
fscanf. If data is available in the input buffer, these functions return quickly.

s.ReadAsyncMode = 'continuous';

fprintf(s,'*IDN?')

s.BytesAvailable

ans =

 56

out = fscanf(s);

If ReadAsyncMode is manual, the serial port object does not continuously query the
device to determine if data is available to be read. To read data asynchronously, use the
readasync function. Then use one of the synchronous read functions to transfer data
from the input buffer to MATLAB.

s.ReadAsyncMode = 'manual';

fprintf(s,'*IDN?')

s.BytesAvailable

ans =

 0

readasync(s)

s.BytesAvailable

ans =

 56

out = fscanf(s);

Asynchronous operations do not block access to the MATLAB command line.
Additionally, while an asynchronous read operation is in progress, you can:

• Execute an asynchronous write operation because serial ports have separate pins for
reading and writing

• Make use of all supported callback properties

To determine which asynchronous operations are in progress, use the TransferStatus
property. If no asynchronous operations are in progress, then TransferStatus is idle.

s.TransferStatus

ans =

idle

16 Serial Port I/O

16-40

Rules for Completing a Read Operation with fscanf

A read operation with fscanf blocks access to the MATLAB command line until:

• The terminator specified by the Terminator property is read.
• The time specified by the Timeout property passes.
• The specified number of values specified is read.
• The input buffer is filled.

Reading Binary Data

You use the fread function to read binary data from the device. Reading binary data
means that you return numerical values to MATLAB.

For example, suppose you want to return the cursor and display settings for the
oscilloscope. This requires writing the CURSOR? and DISPLAY? commands to the
instrument, and then reading back the results of those commands.

s = serial('COM1');

fopen(s)

fprintf(s,'CURSOR?')

fprintf(s,'DISPLAY?')

Because the default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffer as soon as it is available from the device. To
verify the number of values read, use the BytesAvailable property.

s.BytesAvailable

ans =

 69

To return the data to MATLAB, use any of the synchronous read functions. However,
if you use fgetl, fgets, or fscanf, you must issue the function twice because there
are two terminators stored in the input buffer. To return all the data to MATLAB in one
function call, use fread.

out = fread(s,69);

By default, fread returns numerical values in double precision arrays. However, you can
specify many other precisions as described in the fread reference pages. To convert the
numerical data to text, use the MATLAB char function.

 Write and Read Data

16-41

val = char(out)'

val =

HBARS;CH1;SECONDS;-1.0E-3;1.0E-3;VOLTS;-6.56E-1;6.24E-1

YT;DOTS;0;45

For more information about synchronous and asynchronous read operations, see
“Reading Text Data” on page 16-38. For a description of the rules used by fread to
complete a read operation, refer to its reference pages.

Example — Writing and Reading Text Data

This example illustrates how to communicate with a serial port instrument by writing
and reading text data.

The instrument is a Tektronix TDS 210 two-channel oscilloscope connected to the COM1
port. Therefore, many of the following commands are specific to this instrument. A sine
wave is input into channel 2 of the oscilloscope, and your job is to measure the peak-to-
peak voltage of the input signal.

1 Create a serial port object — Create the serial port object s associated with serial
port COM1.

s = serial('COM1');

2 Connect to the device — Connect s to the oscilloscope. Because the default value for
the ReadAsyncMode property is continuous, data is asynchronously returned to
the input buffer as soon as it is available from the instrument.

fopen(s)

3 Write and read data — Write the *IDN? command to the instrument using fprintf,
and then read back the result of the command using fscanf.

fprintf(s,'*IDN?')

idn = fscanf(s)

idn =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

You need to determine the measurement source. Possible measurement sources
include channel 1 and channel 2 of the oscilloscope.

fprintf(s,'MEASUREMENT:IMMED:SOURCE?')

source = fscanf(s)

source =

16 Serial Port I/O

16-42

CH1

The scope is configured to return a measurement from channel 1. Because the input
signal is connected to channel 2, you must configure the instrument to return a
measurement from this channel.

fprintf(s,'MEASUREMENT:IMMED:SOURCE CH2')

fprintf(s,'MEASUREMENT:IMMED:SOURCE?')

source = fscanf(s)

source =

CH2

Configure the scope to return the peak-to-peak voltage, and then request the value of
this measurement.

fprintf(s,'MEASUREMENT:MEAS1:TYPE PK2PK')

fprintf(s,'MEASUREMENT:MEAS1:VALUE?')

Transfer data from the input buffer to MATLAB using fscanf.

ptop = fscanf(s,'%g')

ptop =

2.0199999809E0

4 Disconnect and clean up — When you no longer need s disconnect it from the
instrument and remove it from memory and from the MATLAB workspace.

fclose(s)

delete(s)

clear s

Example — Parsing Input Data Using textscan

This example illustrates how to use the textscan function to parse and format data that
you read from a device. textscan is particularly useful when you want to parse a string
into one or more variables, where each variable has its own specified format.

The instrument is a Tektronix TDS 210 two-channel oscilloscope connected to the serial
port COM1.

1 Create a serial port object — Create the serial port object s associated with serial
port COM1.

s = serial('COM1');

 Write and Read Data

16-43

2 Connect to the device — Connect s to the oscilloscope. Because the default value for
the ReadAsyncMode property is continuous, data is asynchronously returned to
the input buffer as soon as it is available from the instrument.

fopen(s)

3 Write and read data — Write the RS232? command to the instrument using
fprintf, and then read back the result of the command using fscanf. RS232?
queries the RS-232 settings and returns the baud rate, the software flow control
setting, the hardware flow control setting, the parity type, and the terminator.

fprintf(s,'RS232?')

data = fscanf(s)

data =

9600;0;0;NONE;LF

Use the textscan function to parse and format the data variable into five new
variables.
C = textscan(a, '%d%d%d%s%s','delimiter',';');

[br, sfc, hfc, par, tm] = deal(C{:});

br =

 9600

sfc =

 0

hfc =

 0

par =

 'NONE'

tm =

 'LF'

4 Disconnect and clean up — When you no longer need s, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(s)

delete(s)

clear s

Example — Reading Binary Data

This example shows how you to download the TDS 210 oscilloscope screen display to
MATLAB. The screen display data is transferred and saved to disk using the Windows
bitmap format. This data provides a permanent record of your work, and is an easy way
to document important signal and scope parameters.

16 Serial Port I/O

16-44

Because the amount of data transferred is expected to be fairly large, it is
asynchronously returned to the input buffer as soon as it is available from the
instrument. This allows you to perform other tasks as the transfer progresses.
Additionally, the scope is configured to its highest baud rate of 19,200.

1 Create a serial port object — Create the serial port object s associated with serial
port COM1.

s = serial('COM1');

2 Configure property values — Configure the input buffer to accept a reasonably large
number of bytes, and configure the baud rate to the highest value supported by the
scope.

s.InputBufferSize = 50000;

s.BaudRate = 19200;

3 Connect to the device — Connect s to the oscilloscope. Because the default value for
the ReadAsyncMode property is continuous, data is asynchronously returned to
the input buffer as soon as it is available from the instrument.

fopen(s)

4 Write and read data — Configure the scope to transfer the screen display as a
bitmap.

fprintf(s,'HARDCOPY:PORT RS232')

fprintf(s,'HARDCOPY:FORMAT BMP')

fprintf(s,'HARDCOPY START')

Wait until all the data is sent to the input buffer, and then transfer the data to the
MATLAB workspace as unsigned 8-bit integers.

out = fread(s,s.BytesAvailable,'uint8');

5 Disconnect and clean up — When you no longer need s, disconnect it from the
instrument and remove it from memory and from the MATLAB workspace.

fclose(s)

delete(s)

clear s

Viewing the Bitmap Data

To view the bitmap data, follow these steps:

1 Open a disk file.

 Write and Read Data

16-45

2 Write the data to the disk file.
3 Close the disk file.
4 Read the data into MATLAB using the imread function.
5 Scale and display the data using the imagesc function.

Note that the file I/O versions of the fopen, fwrite, and fclose functions are used.

fid = fopen('test1.bmp','w');

fwrite(fid,out,'uint8');

fclose(fid)

a = imread('test1.bmp','bmp');

imagesc(a)

Because the scope returns the screen display data using only two colors, an appropriate
colormap is selected.

mymap = [0 0 0; 1 1 1];

colormap(mymap)

The following diagram shows the resulting bitmap image.

16 Serial Port I/O

16-46

Events and Callbacks

In this section...

“Introduction” on page 16-46
“Example — Introduction to Events and Callbacks” on page 16-46
“Event Types and Callback Properties” on page 16-47
“Respond To Event Information” on page 16-49
“Create and Execute Callback Functions” on page 16-51
“Enable Callback Functions After They Error” on page 16-52
“Example — Using Events and Callbacks” on page 16-52

Introduction

You can enhance the power and flexibility of your serial port application by using events.
An event occurs after a condition is met and might result in one or more callbacks.

While the serial port object is connected to the device, use events to display a message,
display data, analyze data, and so on. Callbacks are controlled through callback
properties and callback functions. All event types have an associated callback property.
Callback functions are MATLAB functions that you construct to suit your specific
application needs.

You execute a callback when a particular event occurs by specifying the name of the
callback function as the value for the associated callback property.

Note: All examples in this section on based on a Windows 32-bit platform. For
information about other platforms refer to “Overview of a Serial Port Object” on page
16-22.

Example — Introduction to Events and Callbacks

This example uses the callback function instrcallback to display a message to the
command line when a bytes-available event occurs. The event is generated when the
terminator is read.

s = serial('COM1');

 Events and Callbacks

16-47

s.BytesAvailableFcnMode = 'terminator';

s.BytesAvailableFcn = @instrcallback;

fopen(s)

fprintf(s,'*IDN?')

out = fscanf(s);

MATLAB displays:

BytesAvailable event occurred at 17:01:29 for the object:

Serial-COM1.

End the serial port session.

fclose(s)

delete(s)

clear s

To see the code for the built-in instrcallback function, use the type command.

Event Types and Callback Properties

The following table describes serial port event types and callback properties. This table
has two columns and nine rows. In the first column (event type), the second item (bytes
available) applies to rows 2 through 4. Also, in the first column the last item (timer)
applies to rows 8 and 9.

Event Types and Callback Properties

Event Type Associated Properties

Break interrupt BreakInterruptFcn

BytesAvailableFcn

BytesAvailableFcnCount

Bytes available

BytesAvailableFcnMode

Error ErrorFcn

Output empty OutputEmptyFcn

Pin status PinStatusFcn

TimerFcnTimer
TimerPeriod

16 Serial Port I/O

16-48

Break-Interrupt Event

A break-interrupt event is generated immediately after a break interrupt is generated by
the serial port. The serial port generates a break interrupt when the received data has
been in an inactive state longer than the transmission time for one character.

This event executes the callback function specified for the BreakInterruptFcn
property. It can be generated for both synchronous and asynchronous read and write
operations.

Bytes-Available Event

A bytes-available event is generated immediately after a predetermined number of
bytes are available in the input buffer or a terminator is read, as determined by the
BytesAvailableFcnMode property.

If BytesAvailableFcnMode is byte, the bytes-available event executes the callback
function specified for the BytesAvailableFcn property every time the number
of bytes specified by BytesAvailableFcnCount is stored in the input buffer. If
BytesAvailableFcnMode is terminator, the callback function executes every time the
character specified by the Terminator property is read.

This event can be generated only during an asynchronous read operation.

Error Event

An error event is generated immediately after an error occurs.

This event executes the callback function specified for the ErrorFcn property. It can be
generated only during an asynchronous read or write operation.

An error event is generated when a time-out occurs. A time-out occurs if a read or write
operation does not successfully complete within the time specified by the Timeout
property. An error event is not generated for configuration errors such as setting an
invalid property value.

Output-Empty Event

An output-empty event is generated immediately after the output buffer is empty.

This event executes the callback function specified for the OutputEmptyFcn property. It
can be generated only during an asynchronous write operation.

 Events and Callbacks

16-49

Pin Status Event

A pin status event is generated immediately after the state (pin value) changes for the
CD, CTS, DSR, or RI pins. For a description of these pins, see “Serial Port Signals and
Pin Assignments” on page 16-6.

This event executes the callback function specified for the PinStatusFcn property. It
can be generated for both synchronous and asynchronous read and write operations.

Timer Event

A timer event is generated when the time specified by the TimerPeriod property passes.
Time is measured relative to when the serial port object is connected to the device.

This event executes the callback function specified for the TimerFcn property. Note that
some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value is too small.

Respond To Event Information

You can respond to event information in a callback function or in a record file. Event
information is stored in a callback function using two fields: Type and Data. The Type
field contains the event type, while the Data field contains event-specific information. As
described in “Create and Execute Callback Functions” on page 16-51, these two fields
are associated with a structure that you define in the callback function header. To learn
about recording data and event information to a record file, see “Debugging: Recording
Information to Disk” on page 16-60.

The following table shows event types and the values for the Type and Data fields. The
table has three columns and 15 rows. Items in the first column (event type) span several
rows, as follows:

Break interrupt: rows 1 and 2

Bytes available: rows 3 and 4

Error: rows 5 through 7

Output empty: rows 8 and 9

Pin status: rows 10 through 13

16 Serial Port I/O

16-50

Timer: rows 14 and 15

Event Information

Event Type Field Field Value

Type BreakInterruptBreak interrupt
Data.AbsTime day-month-year

hour:minute:second
Type BytesAvailableBytes available
Data.AbsTime day-month-year

hour:minute:second
Type Error

Data.AbsTime day-month-year
hour:minute:second

Error

Data.Message An error string
Type OutputEmptyOutput empty
Data.AbsTime day-month-year

hour:minute:second
Type PinStatus

Data.AbsTime day-month-year
hour:minute:second

Data.Pin CarrierDetect, ClearToSend,
DataSetReady, or
RingIndicator

Pin status

Data.PinValue on or off
Type TimerTimer
Data.AbsTime day-month-year

hour:minute:second

The following topics describe the Data field values.

AbsTime Field

The AbsTime field, defined for all events, is the absolute time the event occurred. The
absolute time is returned using the clock format: day-month-year hour:minute:second.

 Events and Callbacks

16-51

Pin Field

The pin status event uses the Pin field to indicate if the CD, CTS, DSR, or RI pins
changed state. For a description of these pins, see “Serial Port Signals and Pin
Assignments” on page 16-6.

PinValue Field

The pin status event uses the PinValue field to indicate the state of the CD, CTS, DSR,
or RI pins. Possible values are on or off.

Message Field

The error event uses the Message field to store the descriptive message that is generated
when an error occurs.

Create and Execute Callback Functions

To specify the callback function to be executed when a specific event type occurs, include
the name of the file as the value for the associated callback property. You can specify the
callback function as a function handle or as a string cell array element. For information
about function handles, see “Create Function Handle”.

For example, to execute the callback function mycallback every time the terminator is
read from your device:

s.BytesAvailableFcnMode = 'terminator';

s.BytesAvailableFcn = @mycallback;

Alternatively, you can specify the callback function as a cell array.

s.BytesAvailableFcn = {'mycallback'};

Callback functions require at least two input arguments. The first argument is the serial
port object. The second argument is a variable that captures the event information shown
in the table, Event Information. This event information pertains only to the event that
caused the callback function to execute. The function header for mycallback is:

function mycallback(obj,event)

You pass additional parameters to the callback function by including both the callback
function and the parameters as elements of a cell array. For example, to pass the
MATLAB variable time to mycallback:

time = datestr(now,0);

16 Serial Port I/O

16-52

s.BytesAvailableFcnMode = 'terminator';

s.BytesAvailableFcn = {@mycallback,time};

Alternatively, you can specify the callback function as a string in the cell array.

s.BytesAvailableFcn = {'mycallback',time};

The corresponding function header is:

function mycallback(obj,event,time)

If you pass additional parameters to the callback function, they must be included in the
function header after the two required arguments.

Note: You can also specify the callback function as a string. In this case, the callback
is evaluated in the MATLAB workspace and no requirements are made on the input
arguments of the callback function.

Enable Callback Functions After They Error

If an error occurs while a callback function is executing the following occurs:

• The callback function is automatically disabled.
• A warning is displayed at the command line, indicating that the callback function is

disabled.

If you want to enable the same callback function, set the callback property to the same
value or disconnect the object with the fclose function. If you want to use a different
callback function, the callback is enabled when you configure the callback property to the
new value.

Example — Using Events and Callbacks

This example uses the callback function instrcallback to display event-related
information to the command line when a bytes-available event or an output-empty event
occurs.

1 Create a serial port object — Create the serial port object s associated with serial
port COM1.

s = serial('COM1');

 Events and Callbacks

16-53

2 Configure properties — Configure s to execute the callback function
instrcallback when a bytes-available event or an output-empty event occurs.
Because instrcallback requires the serial port object and event information to be
passed as input arguments, the callback function is specified as a function handle.

s.BytesAvailableFcnMode = 'terminator';

s.BytesAvailableFcn = @instrcallback;

s.OutputEmptyFcn = @instrcallback;

3 Connect to the device — Connect s to the Tektronix TDS 210 oscilloscope. Because
the default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffer as soon as it is available from the
instrument.

fopen(s)

4 Write and read data — Write the RS232? command asynchronously to the
oscilloscope. This command queries the RS-232 settings and returns the baud rate,
the software flow control setting, the hardware flow control setting, the parity type,
and the terminator.

fprintf(s,'RS232?','async')

instrcallback is called after the RS232? command is sent, and when the
terminator is read. The resulting displays are:

OutputEmpty event occurred at 17:37:21 for the object:

Serial-COM1.

BytesAvailable event occurred at 17:37:21 for the object:

Serial-COM1.

Read the data from the input buffer.

out = fscanf(s)

out =

9600;0;0;NONE;LF

5 Disconnect and clean up — When you no longer need s, disconnect it from the
instrument and remove it from memory and from the MATLAB workspace.

fclose(s)

delete(s)

clear s

16 Serial Port I/O

16-54

Control Pins

In this section...

“Properties of Serial Port Control Pins” on page 16-54
“Signaling the Presence of Connected Devices” on page 16-54
“Controlling the Flow of Data: Handshaking” on page 16-57

Properties of Serial Port Control Pins

As described in “Serial Port Signals and Pin Assignments” on page 16-6, 9-pin serial
ports include six control pins. The following table shows properties associated with the
serial port control pins.

Control Pin Properties

Property Name Description

DataTerminalReady State of the DTR pin
FlowControl Data flow control method to use
PinStatus State of the CD, CTS, DSR, and RI pins
RequestToSend State of the RTS pin

Signaling the Presence of Connected Devices

DTEs and DCEs often use the CD, DSR, RI, and DTR pins to indicate whether a
connection is established between serial port devices. Once the connection is established,
you can begin to write or read data.

To monitor the state of the CD, DSR, and RI pins, use the PinStatus property. To
specify or monitor the state of the DTR pin, use the DataTerminalReady property.

The following example illustrates how these pins are used when two modems are
connected to each other.

Note: All examples in this section are based on a Windows 32-bit platform. For more
information about other supported platforms, refer to “Overview of a Serial Port Object”
on page 16-22.

 Control Pins

16-55

Example — Connecting Two Modems

This example connects two modems to each other via the same computer, and illustrates
how to monitor the communication status for the computer-modem connections, and for
the modem-modem connection. The first modem is connected to COM1, while the second
modem is connected to COM2.

1 Create the serial port objects — After the modems are powered on, the serial port
object s1 is created for the first modem, and the serial port object s2 is created for
the second modem.

s1 = serial('COM1');

s2 = serial('COM2');

2 Connect to the devices — s1 and s2 are connected to the modems. Because
the default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffers as soon as it is available from the
modems.

fopen(s1)

fopen(s2)

Because the default DataTerminalReady property value is on, the computer
(data terminal) is now ready to exchange data with the modems. To verify that the
modems (data sets) can communicate with the computer, examine the value of the
Data Set Ready pin using the PinStatus property.

s1.Pinstatus

ans =

 CarrierDetect: 'off'

 ClearToSend: 'on'

 DataSetReady: 'on'

 RingIndicator: 'off'

The value of the DataSetReady field is on because both modems were powered on
before they were connected to the objects.

3 Configure properties — Both modems are configured for a baud rate of 2400 bits per
second and a carriage return (CR) terminator.

s1.BaudRate = 2400;

s1.Terminator = 'CR';

s2.BaudRate = 2400;

s2.Terminator = 'CR';

16 Serial Port I/O

16-56

4 Write and read data — Write the atd command to the first modem. This command
puts the modem “off the hook,” which is equivalent to manually lifting a phone
receiver.

fprintf(s1,'atd')

Write the ata command to the second modem. This command puts the modem in
“answer mode,” which forces it to connect to the first modem.

fprintf(s2,'ata')

After the two modems negotiate their connection, verify the connection status by
examining the value of the Carrier Detect pin using the PinStatus property.

s1.PinStatus

ans =

 CarrierDetect: 'on'

 ClearToSend: 'on'

 DataSetReady: 'on'

 RingIndicator: 'off'

Verify the modem-modem connection by reading the descriptive message returned by
the second modem.

s2.BytesAvailable

ans =

 25

out = fread(s2,25);

char(out)'

ans =

ata

CONNECT 2400/NONE

Now break the connection between the two modems by configuring the
DataTerminalReady property to off. To verify the modems are disconnected,
examine the Carrier Detect pin value.

s1.DataTerminalReady = 'off';

s1.PinStatus

ans =

 CarrierDetect: 'off'

 ClearToSend: 'on'

 DataSetReady: 'on'

 RingIndicator: 'off'

 Control Pins

16-57

5 Disconnect and clean up — Disconnect the objects from the modems and remove the
objects from memory and from the MATLAB workspace.

fclose([s1 s2])

delete([s1 s2])

clear s1 s2

Controlling the Flow of Data: Handshaking

Data flow control or handshaking is a method used for communicating between a
DCE and a DTE to prevent data loss during transmission. For example, suppose your
computer can receive only a limited amount of data before it must be processed. As this
limit is reached, a handshaking signal is transmitted to the DCE to stop sending data.
When the computer can accept more data, another handshaking signal is transmitted to
the DCE to resume sending data.

If supported by your device, you can control data flow using one of these methods:

• Hardware handshaking
• Software handshaking

Note: Although you might be able to configure your device for both hardware
handshaking and software handshaking at the same time, MATLAB does not support
this behavior.

To specify the data flow control method, use the FlowControl property. If FlowControl
is hardware, hardware handshaking is used to control data flow. If FlowControl is
software, software handshaking is used to control data flow. If FlowControl is none,
no handshaking is used.

Hardware Handshaking

Hardware handshaking uses specific serial port pins to control data flow. In most cases,
these are the RTS and CTS pins. Hardware handshaking using these pins is described in
“The RTS and CTS Pins” on page 16-8.

If FlowControl is hardware, the RTS and CTS pins are automatically managed by the
DTE and DCE. To return the CTS pin value, use the PinStatus property. Configure or
return the RTS pin value with the RequestToSend property.

16 Serial Port I/O

16-58

Note: Some devices also use the DTR and DSR pins for handshaking. However, these
pins are typically used to indicate that the system is ready for communication, and are
not used to control data transmission. In MATLAB, hardware handshaking always uses
the RTS and CTS pins.

If your device does not use hardware handshaking in the standard way, then you
might need to manually configure the RequestToSend property. In this case, you
should configure FlowControl to none. If FlowControl is hardware, then the
RequestToSend value that you specify might not be honored. Refer to the device
documentation to determine its specific pin behavior.

Software Handshaking

Software handshaking uses specific ASCII characters to control data flow. These
characters, known as Xon and Xoff (or XON and XOFF), are described in the following
table.

Software Handshaking Characters

Character Integer Value Description

Xon 17 Resume data transmission
Xoff 19 Pause data transmission

When using software handshaking, the control characters are sent over the transmission
line the same way as regular data. Therefore, only the TD, RD, and GND pins are
needed.

The main disadvantage of software handshaking is that Xon or Xoff characters are not
writable while numerical data is being written to the device. This is because numerical
data might contain a 17 or 19, which makes it impossible to distinguish between the
control characters and the data. However, you can write Xon or Xoff while data is being
asynchronously read from the device because you are using both the TD and RD pins.

Example: Using Software Handshaking

Suppose you want to use software flow control with the example described in “Example
— Reading Binary Data” on page 16-43. To do this, you must configure the oscilloscope
and serial port object for software flow control.

fprintf(s,'RS232:SOFTF ON')

 Control Pins

16-59

s.FlowControl = 'software';

To pause data transfer, write the numerical value 19 to the device.

fwrite(s,19)

To resume data transfer, write the numerical value 17 to the device.

fwrite(s,17)

16 Serial Port I/O

16-60

Debugging: Recording Information to Disk

In this section...

“Introduction” on page 16-60
“Recording Properties” on page 16-60
“Example: Introduction to Recording Information” on page 16-61
“Creating Multiple Record Files” on page 16-61
“Specifying a Filename” on page 16-61
“The Record File Format” on page 16-62
“Example: Recording Information to Disk” on page 16-63

Introduction

Recording information to disk provides a permanent record of your serial port session,
and is an easy way to debug your application. While the serial port object is connected to
the device, you can record the following information to a disk file:

• The number of values written to the device, the number of values read from the
device, and the data type of the values

• Data written to the device, and data read from the device
• Event information

Recording Properties

You record information to a disk file with the record function. The following table shows
the properties associated with recording information to disk.

Recording Properties

Property Name Description

RecordDetail Amount of information saved to a record file
RecordMode Specify whether data and event information is saved to one record

file or to multiple record files
RecordName Name of the record file
RecordStatus Indicate if data and event information are saved to a record file

 Debugging: Recording Information to Disk

16-61

Note: All examples in this section are based on a Windows 32-bit platform. For more
information about other supported platforms, refer to “Overview of a Serial Port Object”
on page 16-22.

Example: Introduction to Recording Information

This example records the number of values written to and read from the device, and
stores the information to the file myfile.txt.

s = serial('COM1');

fopen(s)

s.RecordName = 'myfile.txt';

record(s)

fprintf(s,'*IDN?')

idn = fscanf(s);

fprintf(s,'RS232?')

rs232 = fscanf(s);

End the serial port session.

fclose(s)

delete(s)

clear s

To display myfile.txt at the command line, use the type command.

Creating Multiple Record Files

When you initiate recording with the record function, the RecordMode property
determines if a new record file is created or if new information is appended to an existing
record file.

You can configure RecordMode to overwrite, append, or index. If RecordMode is
overwrite, the record file is overwritten each time recording is initiated. If RecordMode
is append, the new information is appended to the file specified by RecordName. If
RecordMode is index, a different disk file is created each time recording is initiated.
The rules for specifying a record filename are discussed in the next section.

Specifying a Filename

You specify the name of the record file with the RecordName property. You can specify
any value for RecordName — including a directory path — provided the filename is

16 Serial Port I/O

16-62

supported by your operating system. Additionally, if RecordMode is index, the filename
follows these rules:

• Indexed filenames are identified by a number. This number precedes the filename
extension and is increased by 1 for successive record files.

• If no number is specified as part of the initial filename, the first record file does not
have a number associated with it. For example, if RecordName is myfile.txt,
myfile.txt is the name of the first record file, myfile01.txt is the name of the
second record file, and so on.

• RecordName is updated after the record file is closed.
• If the specified filename already exists, the existing file is overwritten.

The Record File Format

The record file is an ASCII file that contains a record of one or more serial port sessions.
You specify the amount of information saved to a record file with the RecordDetail
property.

RecordDetail can be compact or verbose. A compact record file contains the number
of values written to the device, the number of values read from the device, the data
type of the values, and event information. A verbose record file contains the preceding
information as well as the data transferred to and from the device.

Binary data with precision given by uchar, schar, (u)int8, (u)int16, or (u)int32 is
recorded using hexadecimal format. For example, if the integer value 255 is read from
the instrument as a 16-bit integer, the hexadecimal value 00FF is saved in the record
file. Single- and double-precision floating-point numbers are recorded as decimal values
using the %g format, and as hexadecimal values using the format specified by the IEEE®

Standard 754-1985 for Binary Floating-Point Arithmetic.

The IEEE floating-point format includes three components: the sign bit, the exponent
field, and the significant field. Single-precision floating-point values consist of 32 bits.
The value is given by

Double-precision floating-point values consist of 64 bits. The value is given by

 Debugging: Recording Information to Disk

16-63

The floating-point format component, and the associated single-precision and double-
precision bits are shown in the following table.

Component Single-Precision Bits Double-Precision Bits

sign 1 1
exp 2–9 2–12
significand 10–32 13–64

Bit 1 is the left-most bit as stored in the record file.

Example: Recording Information to Disk

This example illustrates how to record information transferred between a serial port
object and a Tektronix TDS 210 oscilloscope. Additionally, the structure of the resulting
record file is presented.

1 Create the serial port object — Create the serial port object s associated with the
serial port COM1.

s = serial('COM1');

2 Connect to the device — Connect s to the oscilloscope. Because the default value for
the ReadAsyncMode property is continuous, data is asynchronously returned the
input buffer as soon as it is available from the instrument.

fopen(s)

3 Configure property values — Configure s to record information to multiple disk files
using the verbose format. Recording is then initiated with the first disk file defined
as WaveForm1.txt.

s.RecordMode = 'index';

s.RecordDetail = 'verbose';

s.RecordName = 'WaveForm1.txt';

record(s)

4 Write and read data — The commands written to the instrument, and the data
read from the instrument are recorded in the record file. For an explanation of the
oscilloscope commands, see “Example — Writing and Reading Text Data” on page
16-41.

fprintf(s,'*IDN?')

16 Serial Port I/O

16-64

idn = fscanf(s);

fprintf(s,'MEASUREMENT:IMMED:SOURCE CH2')

fprintf(s,'MEASUREMENT:IMMED:SOURCE?')

source = fscanf(s);

Read the peak-to-peak voltage with the fread function. Note that the data returned
by fread is recorded using hex format.

fprintf(s,'MEASUREMENT:MEAS1:TYPE PK2PK')

fprintf(s,'MEASUREMENT:MEAS1:VALUE?')

ptop = fread(s,s.BytesAvailable);

Convert the peak-to-peak voltage to a character array.

char(ptop)'

ans =

2.0199999809E0

The recording state is toggled from on to off. Because the RecordMode value is
index, the record filename is automatically updated.

record(s)

s.RecordStatus

ans =

off

s.RecordName

ans =

WaveForm2.txt

5 Disconnect and clean up — When you no longer need s, disconnect it from the
instrument, and remove it from memory and from the MATLAB workspace.

fclose(s)

delete(s)

clear s

The Record File Contents

The contents of the WaveForm1.txt record file are shown below. Because the
RecordDetail property was verbose, the number of values, commands, and data were
recorded. Note that data returned by the fread function is in hex format.
type WaveForm1.txt

Legend:

 * - An event occurred.

 Debugging: Recording Information to Disk

16-65

 > - A write operation occurred.

 < - A read operation occurred.

1 Recording on 22-Jan-2000 at 11:21:21.575. Binary data in...

2 > 6 ascii values.

 *IDN?

3 < 56 ascii values.

 TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

4 > 29 ascii values.

 MEASUREMENT:IMMED:SOURCE CH2

5 > 26 ascii values.

 MEASUREMENT:IMMED:SOURCE?

6 < 4 ascii values.

 CH2

7 > 27 ascii values.

 MEASUREMENT:MEAS1:TYPE PK2PK

8 > 25 ascii values.

 MEASUREMENT:MEAS1:VALUE?

9 < 15 uchar values.

 32 2e 30 31 39 39 39 39 39 38 30 39 45 30 0a

10 Recording off.

16 Serial Port I/O

16-66

Save and Load
In this section...

“Using save and load” on page 16-66
“Using Serial Port Objects on Different Platforms” on page 16-66

Using save and load

Save serial port objects to a file, just as you would any workspace variable, using the
save command. For example, suppose you create the serial port object s associated with
the serial port COM1, configure several property values, and perform a write and read
operation.

s = serial('COM1');

s.BaudRate = 19200;

s.Tag = 'My serial object';

fopen(s)

fprintf(s, '*IDN?')

out = fscanf(s);

To save the serial port object and the data read from the device to the file
myserial.mat:

save myserial s out

Note: To save data and event information as text to a disk file, use the record function.

You can recreate s and out in the workspace using the load command.

load myserial

Values for read only properties are restored to their default values upon loading. For
example, the Status property is restored to closed. Therefore, to use s, you must
connect it to the device with the fopen function. To determine if a property is read only,
examine its reference pages.

Using Serial Port Objects on Different Platforms

If you save a serial port object from one platform, and then load that object on a different
platform having different serial port names, you need to modify the Port property value.

 Save and Load

16-67

For example, suppose you create the serial port object s associated with the serial port
COM1 on a Microsoft Windows platform. If you want to save s for eventual use on a
Linux platform, configure Port to an appropriate value such as ttyS0 after the object is
loaded.

16 Serial Port I/O

16-68

Disconnect and Clean Up

In this section...

“Disconnect a Serial Port Object” on page 16-68
“Clean Up the MATLAB Environment” on page 16-68

Disconnect a Serial Port Object

When you no longer need to communicate with the device, disconnect it from the serial
port object with the fclose function.

fclose(s)

Examine the Status property to verify that the serial port object and the device are
disconnected.

s.Status

ans =

closed

After fclose is issued, the serial port associated with s is available. Now connect
another serial port object to it using fopen.

Clean Up the MATLAB Environment

When the serial port object is no longer needed, remove it from memory with the delete
function.

delete(s)

Before using delete, disconnect the serial port object from the device with the fclose
function.

A deleted serial port object is invalid, which means that you cannot connect it to the
device. In this case, remove the object from the MATLAB workspace. To remove serial
port objects and other variables from the MATLAB workspace, use the clear command.

clear s

 Disconnect and Clean Up

16-69

Use clear on a serial port object that is still connected to a device to remove the object
from the workspace but leave it connected to the device. Restore cleared objects to
MATLAB with the instrfind function.

16 Serial Port I/O

16-70

Property Reference

In this section...

“The Property Reference Page Format” on page 16-70
“Serial Port Object Properties” on page 16-70

The Property Reference Page Format

Each serial port property description contains some or all of this information:

• The property name
• A description of the property
• The property characteristics, including:

• Read only — The condition under which the property is read only

A property can be read-only always, never, while the serial port object is open, or
while the serial port object is recording. You can configure a property value using
the set function or dot notation. You can return the current property value using
the get function or dot notation.

• Data type — the property data type

This is the data type you use when specifying a property value.
• Valid property values including the default value

When property values are given by a predefined list, the default value is usually
indicated by {}.

• An example using the property
• Related properties and functions

Serial Port Object Properties

The serial port object properties are briefly described below, and organized into
categories based on how they are used. Following this section the properties are listed
alphabetically and described in detail.

 Property Reference

16-71

Communications
Properties

BaudRate Rate at which bits are transmitted
DataBits Number of data bits to transmit
Parity Type of parity checking
StopBits Number of bits used to indicate the end of a byte
Terminator Terminator character

Write Properties

BytesToOutput Number of bytes currently in the output buffer
OutputBufferSize Size of the output buffer in bytes
Timeout Waiting time to complete a read or write operation
TransferStatus Indicate if an asynchronous read or write operation is in

progress
ValuesSent Total number of values written to the device

Read Properties

BytesAvailable Number of bytes available in the input buffer
InputBufferSize Size of the input buffer in bytes
ReadAsyncMode Specify whether an asynchronous read operation is continuous

or manual
Timeout Waiting time to complete a read or write operation
TransferStatus Indicate if an asynchronous read or write operation is in

progress
ValuesReceived Total number of values read from the device

Callback Properties

BreakInterruptFcn Callback function to execute when a break-interrupt
event occurs

BytesAvailableFcn Callback function to execute when a specified number of
bytes is available in the input buffer, or a terminator is
read

16 Serial Port I/O

16-72

Callback Properties

BytesAvailableFcnCount Number of bytes that must be available in the input
buffer to generate a bytes-available event

BytesAvailableFcnMode Specify if the bytes-available event is generated after
a specified number of bytes is available in the input
buffer, or after a terminator is read

ErrorFcn Callback function to execute when an error event occurs
OutputEmptyFcn Callback function to execute when the output buffer is

empty
PinStatusFcn Callback function to execute when the CD, CTS, DSR,

or RI pins change state
TimerFcn Callback function to execute when a predefined period

of time passes
TimerPeriod Period of time between timer events

Control Pin Properties

DataTerminalReady State of the DTR pin
FlowControl Data flow control method to use
PinStatus State of the CD, CTS, DSR, and RI pins
RequestToSend State of the RTS pin

Recording Properties

RecordDetail Amount of information saved to a record file
RecordMode Specify whether data and event information are saved to one

record file or to multiple record files
RecordName Name of the record file
RecordStatus Indicate if data and event information are saved to a record file

General Purpose
Properties

ByteOrder Order in which the device stores bytes
Name Descriptive name for the serial port object

 Property Reference

16-73

General Purpose
Properties

Port Platform-specific serial port name
Status Indicate if the serial port object is connected to the device
Tag Label to associate with a serial port object
Type Object type
UserData Data you want to associate with a serial port object

16 Serial Port I/O

16-74

Properties — Alphabetical List

 BaudRate

16-75

BaudRate
Specify the rate at which bits are transmitted

Description

You configure BaudRate as bits per second. The transferred bits include the start bit,
the data bits, the parity bit (if used), and the stop bits. However, only the data bits are
stored.

The baud rate is the rate at which information is transferred in a communication
channel. In the serial port context, “9600 baud” means that the serial port is capable
of transferring a maximum of 9600 bits per second. If the information unit is one baud
(one bit), the bit rate and the baud rate are identical. If one baud is given as 10 bits, (for
example, eight data bits plus two framing bits), the bit rate is still 9600 but the baud rate
is 9600/10, or 960. You always configure BaudRate as bits per second. Therefore, in the
previous example, set BaudRate to 9600.

Note: Both the computer and the peripheral device must be configured to the same baud
rate before you can successfully read or write data.

Standard baud rates include 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 38400,
57600, 115200, 128000 and 256000 bits per second. To display the supported baud rates
for the serial ports on your platform, see “Finding Serial Port Information for Your
Platform” on page 16-13.

Characteristics

Read only Never
Data type Double

Values

The default value is 9600.

16 Serial Port I/O

16-76

See Also

Properties

DataBits, Parity, StopBits

 BreakInterruptFcn

16-77

BreakInterruptFcn

Specify the callback function to execute when a break-interrupt event occurs

Description

You configure BreakInterruptFcn to execute a callback function when a break-
interrupt event occurs. A break-interrupt event is generated by the serial port when the
received data is in an off (space) state longer than the transmission time for one byte.

Note: A break-interrupt event can be generated at any time during the serial port
session.

If the RecordStatus property value is on, and a break-interrupt event occurs, the
record file records this information:

• The event type as BreakInterrupt
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

To learn how to create a callback function, see “Create and Execute Callback Functions”
on page 16-51.

Characteristics

Read only Never
Data type Callback function

Values

The default value is an empty string.

16 Serial Port I/O

16-78

See Also

Functions

record

Properties

RecordStatus

 ByteOrder

16-79

ByteOrder
Specify the byte order of the device

Description
You configure ByteOrder to be littleEndian or bigEndian. If ByteOrder is
littleEndian, the device stores the first byte in the first memory address. If
ByteOrder is bigEndian, the device stores the last byte in the first memory address.

For example, suppose the hexadecimal value 4F52 is to be stored in device memory.
Because this value consists of two bytes, 4F and 52, two memory locations are used.
Using big-endian format, 4F is stored first in the lower storage address. Using little-
endian format, 52 is stored first in the lower storage address.

Note: Configure ByteOrder to the appropriate value for your device before performing
a read or write operation. Refer to your device documentation for information about the
order in which it stores bytes.

Characteristics
Read only Never
Data type String

Values
{littleEndian} The byte order of the device is little-endian.
bigEndian The byte order of the device is big-endian.

See Also

Properties

Status

16 Serial Port I/O

16-80

BytesAvailable
Number of bytes available in the input buffer

Description

BytesAvailable indicates the number of bytes currently available to be read from the
input buffer. The property value is continuously updated as the input buffer is filled, and
is set to 0 after the fopen function is issued.

You can make use of BytesAvailable only when reading data asynchronously. This is
because when reading data synchronously, control is returned to the MATLAB command
line only after the input buffer is empty. Therefore, the BytesAvailable value is
always 0. To learn how to read data asynchronously, see “Reading Text Data” on page
16-38.

The BytesAvailable value can range from zero to the size of the input buffer.
Use the InputBufferSize property to specify the size of the input buffer. Use the
ValuesReceived property to return the total number of values read.

Characteristics

Read only Always
Data type Double

Values

The default value is 0.

See Also

Functions

fopen

 BytesAvailable

16-81

Properties

InputBufferSize, TransferStatus, ValuesReceived

16 Serial Port I/O

16-82

BytesAvailableFcn

Specify the callback function to execute when a specified number of bytes is available in
the input buffer, or a terminator is read

Description

You configure BytesAvailableFcn to execute a callback function when a bytes-
available event occurs. A bytes-available event occurs when the number of bytes specified
by the BytesAvailableFcnCount property is available in the input buffer, or after a
terminator is read, as determined by the BytesAvailableFcnMode property.

Note: A bytes-available event can be generated only for asynchronous read operations.

If the RecordStatus property value is on, and a bytes-available event occurs, the record
file records this information:

• The event type as BytesAvailable
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

To learn how to create a callback function, see “Create and Execute Callback Functions”
on page 16-51.

Characteristics

Read only Never
Data type Callback function

Values

The default value is an empty string.

 BytesAvailableFcn

16-83

Example

Create the serial port object s for a Tektronix TDS 210 two-channel oscilloscope
connected to the serial port COM1.

s = serial('COM1');

Configure s to execute the callback function instrcallback when 40 bytes are
available in the input buffer.

s.BytesAvailableFcnCount = 40;

s.BytesAvailableFcnMode = 'byte';

s.BytesAvailableFcn = @instrcallback;

Connect s to the oscilloscope.

fopen(s)

Write the *IDN? command, which instructs the scope to return identification
information. Because the default value for the ReadAsyncMode property is continuous,
data is read as soon as it is available from the instrument.

fprintf(s,'*IDN?')

MATLAB displays:

BytesAvailable event occurred at 18:33:35 for the object:

Serial-COM1.

56 bytes are read and instrcallback is called once. The resulting display is shown
above.

s.BytesAvailable

ans =

 56

Suppose you remove 25 bytes from the input buffer and then issue the MEASUREMENT?
command, which instructs the scope to return its measurement settings.

out = fscanf(s,'%c',25);

fprintf(s,'MEASUREMENT?')

MATLAB displays:

BytesAvailable event occurred at 18:33:48 for the object:

16 Serial Port I/O

16-84

Serial-COM1.

BytesAvailable event occurred at 18:33:48 for the object:

Serial-COM1.

There are now 102 bytes in the input buffer, 31 of which are left over from the *IDN?
command. instrcallback is called twice—once when 40 bytes are available and once
when 80 bytes are available.

s.BytesAvailable

ans =

 102

See Also

Functions

record

Properties

BytesAvailableFcnCount, BytesAvailableFcnMode, RecordStatus, Terminator,
TransferStatus

 BytesAvailableFcnCount

16-85

BytesAvailableFcnCount
Specify the number of bytes that must be available in the input buffer to generate a
bytes-available event

Description

You configure BytesAvailableFcnCount to the number of bytes that must be available
in the input buffer before a bytes-available event is generated.

Use the BytesAvailableFcnMode property to specify whether the bytes-available event
occurs after a certain number of bytes are available or after a terminator is read.

The bytes-available event executes the callback function specified for the
BytesAvailableFcn property.

You can configure BytesAvailableFcnCount only when the object is disconnected from
the device. You disconnect an object with the fclose function. A disconnected object has
a Status property value of closed.

Characteristics

Read only While open
Data type Double

Values

The default value is 48.

See Also

Functions

fclose

16 Serial Port I/O

16-86

Properties

BytesAvailableFcn, BytesAvailableFcnMode, Status

 BytesAvailableFcnMode

16-87

BytesAvailableFcnMode

Specify if the bytes-available event is generated after a specified number of bytes is
available in the input buffer, or after a terminator is read

Description

You can configure BytesAvailableFcnMode to be terminator or byte. If
BytesAvailableFcnMode is terminator, a bytes-available event occurs
when the terminator specified by the Terminator property is reached. If
BytesAvailableFcnMode is byte, a bytes-available event occurs when the number of
bytes specified by the BytesAvailableFcnCount property is available.

The bytes-available event executes the callback function specified for the
BytesAvailableFcn property.

You can configure BytesAvailableFcnMode only when the object is disconnected from
the device. You disconnect an object with the fclose function. A disconnected object has
a Status property value of closed.

Characteristics

Read only While open
Data type String

Values

{terminator} A bytes-available event is generated when the terminator is read.
byte A bytes-available event is generated when the specified number of

bytes are available.

16 Serial Port I/O

16-88

See Also

Functions

fclose

Properties

BytesAvailableFcn, BytesAvailableFcnCount, Status, Terminator

 BytesToOutput

16-89

BytesToOutput

Number of bytes currently in the output buffer

Description

BytesToOutput indicates the number of bytes currently in the output buffer waiting to
be written to the device. The property value is continuously updated as the output buffer
is filled and emptied, and is set to 0 after the fopen function is issued.

You can make use of BytesToOutput only when writing data asynchronously. This is
because when writing data synchronously, control is returned to the MATLAB command
line only after the output buffer is empty. Therefore, the BytesToOutput value is
always 0. To learn how to write data asynchronously, see “Writing Text Data” on page
16-32.

Use the ValuesSent property to return the total number of values written to the device.

Note: If you attempt to write out more data than can fit in the output buffer, an error
is returned and BytesToOutput is 0. Specify the size of the output buffer with the
OutputBufferSize property.

Characteristics

Read only Always
Data type Double

Values

The default value is 0.

16 Serial Port I/O

16-90

See Also

Functions

fopen

Properties

OutputBufferSize, TransferStatus, ValuesSent

 DataBits

16-91

DataBits

Number of data bits to transmit

Description

You can configure DataBits to be 5, 6, 7, or 8. Data is transmitted as a series of five,
six, seven, or eight bits with the least significant bit sent first. At least seven data bits
are required to transmit ASCII characters. Eight bits are required to transmit binary
data. Five and six bit data formats are used for specialized communications equipment.

Note: Both the computer and the peripheral device must be configured to transmit the
same number of data bits.

In addition to the data bits, the serial data format consists of a start bit, one or two stop
bits, and possibly a parity bit. You specify the number of stop bits with the StopBits
property, and the type of parity checking with the Parity property.

To display the supported number of data bits for the serial ports on your platform, see
“Finding Serial Port Information for Your Platform” on page 16-13.

Characteristics

Read only Never
Data type Double

Values

DataBits can be 5, 6, 7, or 8. The default value is 8.

16 Serial Port I/O

16-92

See Also

Properties

Parity, StopBits

 DataTerminalReady

16-93

DataTerminalReady
State of the DTR pin

Description

You can configure DataTerminalReady to be on or off. If DataTerminalReady is on,
the Data Terminal Ready (DTR) pin is asserted. If DataTerminalReady is off, the DTR
pin is unasserted.

In normal usage, the DTR and Data Set Ready (DSR) pins work together, and are used
to signal if devices are connected and powered. However, there is nothing in the RS-232
standard that states the DTR pin must be used in any specific way. For example, DTR
and DSR might be used for handshaking. You should refer to your device documentation
to determine its specific pin behavior.

You can return the value of the DSR pin with the PinStatus property. Handshaking is
described in “Controlling the Flow of Data: Handshaking” on page 16-57.

Characteristics

Read only Never
Data type String

Values

{on} The DTR pin is asserted.
off The DTR pin is unasserted.

See Also

Properties

FlowControl, PinStatus

16 Serial Port I/O

16-94

ErrorFcn
Specify the callback function to execute when an error event occurs

Description

You configure ErrorFcn to execute a callback function when an error event occurs.

Note: An error event is generated only for asynchronous read and write operations.

An error event is generated when a time-out occurs. A time-out occurs if a read or write
operation does not successfully complete within the time specified by the Timeout
property. An error event is not generated for configuration errors such as setting an
invalid property value.

If the RecordStatus property value is on, and an error event occurs, the record file
records this information:

• The event type as Error
• The error message
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

To learn how to create a callback function, see “Create and Execute Callback Functions”
on page 16-51.

Characteristics

Read only Never
Data type Callback function

Values

The default value is an empty string.

 ErrorFcn

16-95

See Also

Functions

record

Properties

RecordStatus, Timeout

16 Serial Port I/O

16-96

FlowControl
Data flow control method to use

Description

You can configure FlowControl to be none, hardware, or software. If FlowControl
is none, data flow control (handshaking) is not used. If FlowControl is hardware,
hardware handshaking is used to control data flow. If FlowControl is software,
software handshaking is used to control data flow.

Hardware handshaking typically utilizes the Request to Send (RTS) and Clear to Send
(CTS) pins to control data flow. Software handshaking uses control characters (Xon and
Xoff) to control data flow. For more information about handshaking, see “Controlling the
Flow of Data: Handshaking” on page 16-57.

You can return the value of the CTS pin with the PinStatus property. You can specify
the value of the RTS pin with the RequestToSend property. However, if FlowControl
is hardware, and you specify a value for RequestToSend, that value might not be
honored.

Note: Although you might be able to configure your device for both hardware
handshaking and software handshaking at the same time, MATLAB does not support
this behavior.

Characteristics

Read only Never
Data type String

Values

{none} No flow control is used.
hardware Hardware flow control is used.

 FlowControl

16-97

software Software flow control is used.

See Also

Properties

PinStatus, RequestToSend

16 Serial Port I/O

16-98

InputBufferSize
Size of the input buffer in bytes

Description

You configure InputBufferSize as the total number of bytes that can be stored in the
input buffer during a read operation.

A read operation is terminated if the amount of data stored in the input buffer equals
the InputBufferSize value. You can read text data with the fgetl, fget, or fscanf
functions. You can read binary data with the fread function.

You can configure InputBufferSize only when the serial port object is disconnected
from the device. You disconnect an object with the fclose function. A disconnected
object has a Status property value of closed.

If you configure InputBufferSize while there is data in the input buffer, that data is
flushed.

Characteristics

Read only While open
Data type Double

Values

The default value is 512.

See Also

Functions

fclose, fgetl, fgets, fopen, fread, fscanf

 InputBufferSize

16-99

Properties

Status

16 Serial Port I/O

16-100

Name
Descriptive name for the serial port object

Description

You configure Name to be a descriptive name for the serial port object.

When you create a serial port object, a descriptive name is automatically generated and
stored in Name. This name is given by concatenating the word “Serial” with the serial
port specified in the serial function. However, you can change the value of Name at any
time.

The serial port is given by the Port property. If you modify this property value, then
Name is automatically updated to reflect that change.

Characteristics

Read only Never
Data type String

Values

Name is automatically defined when the serial port object is created.

Example

Suppose you create a serial port object associated with the serial port COM1.

s = serial('COM1');

s is automatically assigned a descriptive name.

s.Name

ans =

 Name

16-101

Serial-COM1

See Also

Functions

serial

16 Serial Port I/O

16-102

ObjectVisibility
Control access to serial port object

Description

The ObjectVisibility property provides a way for application developers to prevent
end-user access to the serial port objects created by their applications. When an object's
ObjectVisibility property is set to off, instrfind does not return or delete that
object.

Objects that are not visible are still valid. If you have access to the object (for example,
from within the file that creates it), you can set and get its properties and pass it to any
function that operates on serial port objects.

Characteristics

Usage Any serial port object
Read only Never
Data type String

Values

{on} Object is visible to instrfind.
off Object is not visible from the command line (except by

instrfindall).

Examples

The following statement creates a serial port object with its ObjectVisibility
property set to off:

s = serial('COM1','ObjectVisibility','off');

 ObjectVisibility

16-103

instrfind

ans =

 []

However, because the hidden object is in the workspace (s), you can access it.

get(s,'ObjectVisibility')

ans =

 off

See Also

Functions

instrfind, instrfindall

16 Serial Port I/O

16-104

OutputBufferSize
Size of the output buffer in bytes

Description

You configure OutputBufferSize as the total number of bytes that can be stored in the
output buffer during a write operation.

An error occurs if the output buffer cannot hold all the data to be written. You write text
data with the fprintf function. You write binary data with the fwrite function.

You can configure OutputBufferSize only when the serial port object is disconnected
from the device. You disconnect an object with the fclose function. A disconnected
object has a Status property value of closed.

Characteristics

Read only While open
Data type Double

Values

The default value is 512.

See Also

Functions

fprintf, fwrite

Properties

Status

 OutputEmptyFcn

16-105

OutputEmptyFcn

Specify the callback function to execute when the output buffer is empty

Description

You configure OutputEmptyFcn to execute a callback function when an output-empty
event occurs. An output-empty event is generated when the last byte is sent from the
output buffer to the device.

Note: An output-empty event can be generated only for asynchronous write operations.

If the RecordStatus property value is on, and an output-empty event occurs, the record
file records this information:

• The event type as OutputEmpty
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

To learn how to create a callback function, see “Create and Execute Callback Functions”
on page 16-51.

Characteristics

Read only Never
Data type Callback function

Values

The default value is an empty string.

16 Serial Port I/O

16-106

See Also

Functions

record

Properties

RecordStatus

 Parity

16-107

Parity
Specify the type of parity checking

Description

You can configure Parity to be none, odd, even, mark, or space. If Parity is none,
parity checking is not performed and the parity bit is not transmitted. If Parity is odd,
the number of mark bits (1s) in the data is counted, and the parity bit is asserted or
unasserted to obtain an odd number of mark bits. If Parity is even, the number of mark
bits in the data is counted, and the parity bit is asserted or unasserted to obtain an even
number of mark bits. If Parity is mark, the parity bit is asserted. If Parity is space,
the parity bit is unasserted.

Parity checking can detect errors of one bit only. An error in two bits might cause the
data to have a seemingly valid parity, when in fact it is incorrect. For more information
about parity checking, see “The Parity Bit” on page 16-12.

In addition to the parity bit, the serial data format consists of a start bit, between five
and eight data bits, and one or two stop bits. You specify the number of data bits with the
DataBits property, and the number of stop bits with the StopBits property.

Characteristics

Read only Never
Data type String

Values

{none} No parity checking
odd Odd parity checking
even Even parity checking
mark Mark parity checking

16 Serial Port I/O

16-108

space Space parity checking

See Also

Properties

DataBits, StopBits

 PinStatus

16-109

PinStatus
State of the CD, CTS, DSR, and RI pins

Description

PinStatus is a structure array that contains the fields CarrierDetect, ClearToSend,
DataSetReady and RingIndicator. These fields indicate the state of the Carrier
Detect (CD), Clear to Send (CTS), Data Set Ready (DSR) and Ring Indicator (RI) pins,
respectively. For more information about these pins, see “Serial Port Signals and Pin
Assignments” on page 16-6.

PinStatus can be on or off for any of these fields. A value of on indicates the
associated pin is asserted. A value of off indicates the associated pin is unasserted.
A pin status event occurs when any of these pins changes its state. A pin status event
executes the call back function specified by PinStatusFcn.

In normal usage, the Data Terminal Ready (DTR) and DSR pins work together, while
the Request to Send (RTS) and CTS pins work together. You can specify the state of the
DTR pin with the DataTerminalReady property. You can specify the state of the RTS
pin with the RequestToSend property.

For an example that uses PinStatus, see “Example — Connecting Two Modems” on
page 16-55.

Characteristics

Read only Always
Data type Structure

Values

off The associated pin is unasserted.
on The associated pin is asserted.

16 Serial Port I/O

16-110

The default value is device dependent.

See Also

Properties

DataTerminalReady, PinStatusFcn, RequestToSend

 PinStatusFcn

16-111

PinStatusFcn
Specify the callback function to execute when the CD, CTS, DSR, or RI pins change state

Description

You configure PinStatusFcn to execute a callback function when a pin status event
occurs. A pin status event occurs when the Carrier Detect (CD), Clear to Send (CTS),
Data Set Ready (DSR) or Ring Indicator (RI) pin changes state. A serial port pin changes
state when it is asserted or unasserted. Information about the state of these pins is
recorded in the PinStatus property.

Note: A pin status event can be generated at any time during the serial port session.

If the RecordStatus property value is on, and a pin status event occurs, the record file
records this information:

• The event type as PinStatus
• The pin that changed its state, and the pin state as either on or off
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

To learn how to create a callback function, see “Create and Execute Callback Functions”
on page 16-51.

Characteristics

Read only Never
Data type Callback function

Values

The default value is an empty string.

16 Serial Port I/O

16-112

See Also

Functions

record

Properties

PinStatus, RecordStatus

 Port

16-113

Port
Specify the platform-specific serial port name

Description

You configure Port to be the name of a serial port on your platform. Port specifies the
physical port associated with the object and the device.

When you create a serial port object, Port is automatically assigned the port name
specified for the serial function.

You can configure Port only when the object is disconnected from the device. You
disconnect an object with the fclose function. A disconnected object has a Status
property value of closed.

Characteristics

Read only While open
Data type String

Values

The Port value is determined when the serial port object is created.

Example

Suppose you create a serial port object associated with serial port COM1.

s = serial('COM1');

The value of the Port property is COM1.

s.Port

ans =

16 Serial Port I/O

16-114

COM1

See Also

Functions

fclose, serial

Properties

Name, Status

 ReadAsyncMode

16-115

ReadAsyncMode
Specify whether an asynchronous read operation is continuous or manual

Description
You can configure ReadAsyncMode to be continuous or manual. If ReadAsyncMode is
continuous, the serial port object continuously queries the device to determine if data is
available to be read. If data is available, it is automatically read and stored in the input
buffer. If issued, the readasync function is ignored.

If ReadAsyncMode is manual, the object does not query the device to determine if data
is available to be read. Instead, you must manually issue the readasync function to
perform an asynchronous read operation. Because readasync checks for the terminator,
this function can be slow. To increase speed, configure ReadAsyncMode to continuous.

Note: If the device is ready to transmit data, it will do so regardless of the
ReadAsyncMode value. Therefore, if ReadAsyncMode is manual and a read operation
is not in progress, data might be lost. To guarantee that all transmitted data is stored in
the input buffer, you should configure ReadAsyncMode to continuous.

To determine the amount of data available in the input buffer, use the BytesAvailable
property. For either ReadAsyncMode value, you can bring data into the MATLAB
workspace with one of the synchronous read functions such as fscanf, fgetl, fgets, or
fread.

Characteristics
Read only Never
Data type String

Values
{continuous} Continuously query the device to determine if data is available to

be read.

16 Serial Port I/O

16-116

manual Manually read data from the device using the readasync
function.

See Also

Functions

fgetl, fgets, fread, fscanf, readasync

Properties

BytesAvailable, InputBufferSize

 RecordDetail

16-117

RecordDetail
Specify the amount of information saved to a record file

Description

You can configure RecordDetail to be compact or verbose. If RecordDetail is
compact, the number of values written to the device, the number of values read from the
device, the data type of the values, and event information are saved to the record file. If
RecordDetail is verbose, the data written to the device, and the data read from the
device are also saved to the record file.

The event information saved to a record file is shown in the table, Event Information.
The verbose record file structure is shown in “Example: Recording Information to Disk”
on page 16-63.

Characteristics

Read only Never
Data type String

Values

{compact} The number of values written to the device, the number of values
read from the device, the data type of the values, and event
information are saved to the record file.

verbose The data written to the device, and the data read from the device
are also saved to the record file.

See Also

Functions

record

16 Serial Port I/O

16-118

Properties

RecordMode, RecordName, RecordStatus

 RecordMode

16-119

RecordMode
Specify whether data and event information are saved to one record file or to multiple
record files

Description
You can configure RecordMode to be overwrite, append, or index. If RecordMode is
overwrite, the record file is overwritten each time recording is initiated. If RecordMode
is append, data is appended to the record file each time recording is initiated. If
RecordMode is index, a different record file is created each time recording is initiated,
each with an indexed filename.

You can configure RecordMode only when the object is not recording. You terminate
recording with the record function. A object that is not recording has a RecordStatus
property value of off.

You specify the record filename with the RecordName property. The indexed filename
follows a prescribed set of rules. For a description of these rules, see “Specifying a
Filename” on page 16-61.

Characteristics
Read only While recording
Data type String

Values
{overwrite} The record file is overwritten.
append Data is appended to an existing record file.
index A different record file is created, each with an indexed filename.

Example
Suppose you create the serial port object s associated with the serial port COM1.

16 Serial Port I/O

16-120

s = serial('COM1');

fopen(s)

Specify the record filename with the RecordName property, configure RecordMode to
index, and initiate recording.

s.RecordName = 'MyRecord.txt';

s.RecordMode = 'index';

record(s)

The record filename is automatically updated with an indexed filename after recording is
turned off.

record(s,'off')

s.RecordName

ans =

MyRecord01.txt

Disconnect s from the peripheral device, remove s from memory, and remove s from the
MATLAB workspace.

fclose(s)

delete(s)

clear s

See Also

Functions

record

Properties

RecordDetail, RecordName, RecordStatus

 RecordName

16-121

RecordName

Name of the record file

Description

You configure RecordName to be the name of the record file. You can specify any value
for RecordName - including a directory path - provided the file name is supported by your
operating system.

MATLAB software supports any file name supported by your operating system. However,
if you access the file with a MATLAB command, you might need to specify the file name
using single quotes. For example, suppose you name the record file My Record.txt. To
type this file at the MATLAB command line, you must include the name in quotes.

type('My Record.txt')

You can specify whether data and event information are saved to one disk file or to
multiple disk files with the RecordMode property. If RecordMode is index, the filename
follows a prescribed set of rules. For a description of these rules, see “Specifying a
Filename” on page 16-61.

You can configure RecordName only when the object is not recording. You terminate
recording with the record function. An object that is not recording has a RecordStatus
property value of off.

Characteristics

Read only While recording
Data type String

Values

The default record filename is record.txt.

16 Serial Port I/O

16-122

See Also

Functions

record

Properties

RecordDetail, RecordMode, RecordStatus

 RecordStatus

16-123

RecordStatus
Indicate if data and event information are saved to a record file

Description

You can configure RecordStatus to be off or on with the record function. If
RecordStatus is off, then data and event information are not saved to a record file.
If RecordStatus is on, then data and event information are saved to the record file
specified by RecordName.

Use the record function to initiate or complete recording. RecordStatus is
automatically configured to reflect the recording state.

For more information about recording to a disk file, see “Debugging: Recording
Information to Disk” on page 16-60.

Characteristics

Read only Always
Data type String

Values

{off} Data and event information are not written to a record file.
on Data and event information are written to a record file.

See Also

Functions

record

16 Serial Port I/O

16-124

Properties

RecordDetail, RecordMode, RecordName

 RequestToSend

16-125

RequestToSend

State of the RTS pin

Description

You can configure RequestToSend to be on or off. If RequestToSend is on, the
Request to Send (RTS) pin is asserted. If RequestToSend is off, the RTS pin is
unasserted.

In normal usage, the RTS and Clear to Send (CTS) pins work together, and are
used as standard handshaking pins for data transfer. In this case, RTS and CTS are
automatically managed by the DTE and DCE. However, there is nothing in the RS-232
standard that requires the RTS pin must be used in any specific way. Therefore, if you
manually configure the RequestToSend value, it is probably for nonstandard operations.

If your device does not use hardware handshaking in the standard way, and you need
to manually configure RequestToSend, configure the FlowControl property to none.
Otherwise, the RequestToSend value that you specify might not be honored. Refer to
your device documentation to determine its specific pin behavior.

You can return the value of the CTS pin with the PinStatus property. Handshaking is
described in “Controlling the Flow of Data: Handshaking” on page 16-57.

Characteristics

Read only Never
Data type String

Values

{on} The RTS pin is asserted.
off The RTS pin is unasserted.

16 Serial Port I/O

16-126

See Also

Properties

FlowControl, PinStatus

 Status

16-127

Status
Indicate if the serial port object is connected to the device

Description

Status can be open or closed. If Status is closed, the serial port object is not
connected to the device. If Status is open, the serial port object is connected to the
device.

Before you can write or read data, you must connect the serial port object to the device
with the fopen function. Use the fclose function to disconnect a serial port object from
the device.

Characteristics

Read only Always
Data type String

Values

{closed} The serial port object is not connected to the device.
open The serial port object is connected to the device.

See Also

Functions

fclose, fopen

16 Serial Port I/O

16-128

StopBits

Number of bits used to indicate the end of a byte

Description

You can configure StopBits to be 1, 1.5, or 2. If StopBits is 1, one stop bit is used to
indicate the end of data transmission. If StopBits is 2, two stop bits are used to indicate
the end of data transmission. If StopBits is 1.5, the stop bit is transferred for 150% of
the normal time used to transfer one bit.

Note: Both the computer and the peripheral device must be configured to transmit the
same number of stop bits.

In addition to the stop bits, the serial data format consists of a start bit, between five and
eight data bits, and possibly a parity bit. You specify the number of data bits with the
DataBits property, and the type of parity checking with the Parity property.

Characteristics

Read only Never
Data type Double

Values

{1} One stop bit is transmitted to indicate the end of a byte.
1.5 The stop bit is transferred for 150% of the normal time used to

transfer one bit.
2 Two stop bits are transmitted to indicate the end of a byte.

 StopBits

16-129

See Also

Properties

DataBits, Parity

16 Serial Port I/O

16-130

Tag
Label to associate with a serial port object

Description

You configure Tag to be a string value that uniquely identifies a serial port object.

Tag is particularly useful when constructing programs that would otherwise need to
define the serial port object as a global variable, or pass the object as an argument
between callback routines.

You can return the serial port object with the instrfind function by specifying the Tag
property value.

Characteristics

Read only Never
Data type String

Values

The default value is an empty string.

Example

Suppose you create a serial port object associated with the serial port COM1.

s = serial('COM1');

fopen(s)

You can assign s a unique label using Tag.

set(s,'Tag','MySerialObj')

 Tag

16-131

You can access s in the MATLAB workspace or in a file using the instrfind function
and the Tag property value.

s1 = instrfind('Tag','MySerialObj');

See Also

Functions

instrfind

16 Serial Port I/O

16-132

Terminator
Terminator character

Description

You can configure Terminator to an integer value ranging from 0 to 127, which
represents the ASCII code for the character, or you can configure Terminator to the
ASCII character. For example, to configure Terminator to a carriage return, specify
the value to be CR or 13. To configure Terminator to a linefeed, specify the value to be
LF or 10. You can also set Terminator to CR/LF or LF/CR. If Terminator is CR/LF,
the terminator is a carriage return followed by a line feed. If Terminator is LF/CR, the
terminator is a linefeed followed by a carriage return. Note that there are no integer
equivalents for these two values. Additionally, you can set Terminator to a 1-by-2 cell
array. The first element of the cell is the read terminator and the second element of the
cell array is the write terminator.

When performing a write operation using the fprintf function, all occurrences of \n
are replaced with the Terminator property value. Note that %s\n is the default format
for fprintf. A read operation with fgetl, fgets, or fscanf completes when the
Terminator value is read. The terminator is ignored for binary operations.

You can also use the terminator to generate a bytes-available event when the
BytesAvailableFcnMode is set to terminator.

Characteristics

Read only Never
Data type String

Values

An integer value ranging from 0 to 127, or the equivalent ASCII character. CR/LF and
LF/CR are also accepted values. You specify different read and write terminators as a 1-
by-2 cell array.

 Terminator

16-133

See Also

Functions

fgetl, fgets, fprintf, fscanf

Properties

BytesAvailableFcnMode

16 Serial Port I/O

16-134

Timeout
Waiting time to complete a read or write operation

Description

You configure Timeout to be the maximum time (in seconds) to wait to complete a read
or write operation.

If a time-out occurs, the read or write operation aborts. Additionally, if a time-out occurs
during an asynchronous read or write operation, then:

• An error event is generated.
• The callback function specified for ErrorFcn is executed.

Characteristics

Read only Never
Data type Double

Values

The default value is 10 seconds.

See Also

Properties

ErrorFcn

 TimerFcn

16-135

TimerFcn
Specify the callback function to execute when a predefined period of time passes.

Description

You configure TimerFcn to execute a callback function when a timer event occurs. A
timer event occurs when the time specified by the TimerPeriod property passes. Time is
measured relative to when the serial port object is connected to the device with fopen.

Note: A timer event can be generated at any time during the serial port session.

If the RecordStatus property value is on, and a timer event occurs, the record file
records this information:

• The event type as Timer
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

Some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value is too small.

To learn how to create a callback function, see “Create and Execute Callback Functions”
on page 16-51.

Characteristics

Read only Never
Data type Callback function

Values

The default value is an empty string.

16 Serial Port I/O

16-136

See Also

Functions

fopen, record

Properties

RecordStatus, TimerPeriod

 TimerPeriod

16-137

TimerPeriod
Period of time between timer events

Description

TimerPeriod specifies the time, in seconds, that must pass before the callback function
specified for TimerFcn is called. Time is measured relative to when the serial port object
is connected to the device with fopen.

Some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value is too small.

Characteristics

Read only Never
Data type Callback function

Values

The default value is 1 second. The minimum value is 0.01 second.

See Also

Functions

fopen

Properties

TimerFcn

16 Serial Port I/O

16-138

TransferStatus
Indicate if an asynchronous read or write operation is in progress

Description

TransferStatus can be idle, read, write, or read&write. If TransferStatus is
idle, no asynchronous read or write operations are in progress. If TransferStatus is
read, an asynchronous read operation is in progress. If TransferStatus is write, an
asynchronous write operation is in progress. If TransferStatus is read&write, both
an asynchronous read and an asynchronous write operation are in progress.

You can write data asynchronously using the fprintf or fwrite functions. You
can read data asynchronously using the readasync function, or by configuring
the ReadAsyncMode property to continuous. While readasync is executing,
TransferStatus might indicate that data is being read even though data is not filling
the input buffer. If ReadAsyncMode is continuous, TransferStatus indicates that
data is being read only when data is actually filling the input buffer.

You can execute an asynchronous read and an asynchronous write operation
simultaneously because serial ports have separate read and write pins. For more
information about synchronous and asynchronous read and write operations, see “Write
and Read Data” on page 16-28.

Characteristics

Read only Always
Data type String

Values

{idle} No asynchronous operations are in
progress.

read An asynchronous read operation is in
progress.

 TransferStatus

16-139

write An asynchronous write operation is in
progress.

read&write Asynchronous read and write operations
are in progress.

See Also

Functions

fprintf, fwrite, readasync

Properties

ReadAsyncMode

16 Serial Port I/O

16-140

Type
Object type

Description

Type indicates the type of the object. Type is automatically defined after the serial port
object is created with the serial function. The Type value is always serial.

Characteristics

Read only Always
Data type String

Values

Type is always serial. This value is automatically defined when the serial port object is
created.

Example

Suppose you create a serial port object associated with the serial port COM1.

s = serial('COM1');

The value of the Type property is serial, which is the object class.

s.Type

ans =

serial

You can also display the object class with the whos command.

Name Size Bytes Class

 Type

16-141

 s 1x1 644 serial object

Grand total is 18 elements using 644 bytes

See Also

Functions

serial

16 Serial Port I/O

16-142

UserData
Data you want to associate with a serial port object

Description

You configure UserData to store data that you want to associate with a serial port
object. The object does not use this data directly, but you can access it using the get
function or the dot notation.

Characteristics

Read only Never
Data type Any type

Values

The default value is an empty vector.

Example

Suppose you create the serial port object associated with the serial port COM1.

s = serial('COM1');

You can associate data with s by storing it in UserData.

coeff.a = 1.0;

coeff.b = -1.25;

s.UserData = coeff;

 ValuesReceived

16-143

ValuesReceived
Total number of values read from the device

Description

ValuesReceived indicates the total number of values read from the device. The
value is updated after each successful read operation, and is set to 0 after the fopen
function is issued. If the terminator is read from the device, then this value is reflected
by ValuesReceived.

If you are reading data asynchronously, use the BytesAvailable property to return the
number of bytes currently available in the input buffer.

When performing a read operation, the received data is represented by values rather
than bytes. A value consists of one or more bytes. For example, one uint32 value
consists of four bytes. For more information about bytes and values, see “Bytes Versus
Values” on page 16-10.

Characteristics

Read only Always
Data type Double

Values

The default value is 0.

Example

Suppose you create a serial port object associated with the serial port COM1.

s = serial('COM1');

fopen(s)

16 Serial Port I/O

16-144

If you write the RS232? command, and read back the response using fscanf,
ValuesReceived is 17 because the instrument is configured to send the LF terminator.

fprintf(s,'RS232?')

out = fscanf(s)

out =

9600;0;0;NONE;LF

s.ValuesReceived

ans =

 17

See Also

Functions

fopen

Properties

BytesAvailable

 ValuesSent

16-145

ValuesSent
Total number of values written to the device

Description

ValuesSent indicates the total number of values written to the device. The value is
updated after each successful write operation, and is set to 0 after the fopen function is
issued. If you are writing the terminator, ValuesSent reflects this value.

If you are writing data asynchronously, use the BytesToOutput property to return the
number of bytes currently in the output buffer.

When performing a write operation, the transmitted data is represented by values
rather than bytes. A value consists of one or more bytes. For example, one uint32 value
consists of four bytes. For more information about bytes and values, see “Bytes Versus
Values” on page 16-10.

Characteristics

Read only Always
Data type Double

Values

The default value is 0.

Example

Suppose you create a serial port object associated with the serial port COM1.

s = serial('COM1');

fopen(s)

16 Serial Port I/O

16-146

If you write the *IDN? command using the fprintf function, ValuesSent is 6 because
the default data format is %s\n, and the terminator was written.

fprintf(s,'*IDN?')

s.ValuesSent

ans =

 6

See Also

Functions

fopen

Properties

BytesToOutput

17

Hardware Support

• “Support Package Installation” on page 17-2
• “Support Package Installer Help” on page 17-5
• “MATLAB Supported Hardware” on page 17-19

17 Hardware Support

17-2

Support Package Installation

In this section...

“What Is a Support Package?” on page 17-2
“Install Support Packages” on page 17-2
“Install Downloaded Support Package on Multiple Computers” on page 17-3
“Troubleshoot Timed Out Connections” on page 17-4

What Is a Support Package?

A support package is an add-on that enables you to use a MathWorks product with
specific third-party hardware and software.

For example, support packages available for use with MATLAB include:

• Arduino® Hardware
• LEGO® MINDSTORMS® EV3 Hardware
• Raspberry Pi™ Hardware
• USB Webcam

For a complete list of available support packages, see Hardware Support.

Install Support Packages

You install support packages using Support Package Installer, a wizard that guides you
through the installation process. You can also use Support Package Installer to update
installed support package software or update the firmware on third-party hardware.

To start Support Package Installer:

• On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

http://www.mathworks.com/hardware

 Support Package Installation

17-3

Install Downloaded Support Package on Multiple Computers

You can download a support package to one computer, and then install it on other
computers. This allows you to:

• Install support packages on computers that are not connected to the Internet.
• Reduce the number of downloads you need to perform.

The computer you use for downloading must have the same base product license
and platform as the computers upon which you are installing the support package.
For example, suppose you want to install a Simulink support package on a group of
computers that are running 64-bit Windows. To do so, you must first download the
support package using a computer that has a Simulink license and is running 64-bit
Windows.

To install a downloaded support package on multiple computers:

1 Download the support package, and place the folder in a shared network location.
2 Run Support Package Installer on the other computers.
3 On the Install or update support package screen, select the Folder option.

17 Hardware Support

17-4

4 Follow the instructions provided by Support Package Installer to complete the
installation process.

Note: Some support packages require you to install third-party software. If so, ensure
that the third-party software is available for installation on each computer.

Troubleshoot Timed Out Connections

While you are installing a support package, Support Package Installer downloads
software from the Internet. If downloading the software takes too long, Support Package
Installer displays:

“Unable to download http:<url>. Connection timed out. Verify your network connection
and proxy settings. If they are properly configured, retry the support package installation
after 15 minutes. If the problem persists, contact MathWorks Technical Support.”

In some cases, antivirus software on the host computer causes this error by delaying
or blocking the software download process. Consider pausing the antivirus software, or
changing the antivirus software settings. Then, try installing the support package again.

See Also
supportPackageInstaller | targetupdater

External Websites
• Hardware Support Catalog

http://www.mathworks.com/hardware

 Support Package Installer Help

17-5

Support Package Installer Help

In this section...

“About Support Package Installer” on page 17-5
“Select an Action” on page 17-6
“Select Support Package to Install or Select Support Package to Download” on page
17-7
“Log In to MathWorks Account” on page 17-10
“The MathWorks, Inc. Software License Agreement” on page 17-12
“Third-Party Software Licenses” on page 17-13
“Confirm Installation, Confirm Download, Confirm Uninstall” on page 17-14
“Install or Update Complete, Download Complete, Uninstall Complete” on page
17-15
“Set Up Support Package” on page 17-16
“Support Package Setup Complete” on page 17-18
“Special Instructions” on page 17-18

About Support Package Installer

Use Support Package Installer to add support for third-party products to your
MathWorks software. When you complete the installation process, you can use the
MathWorks software with those third-party products.

To start Support Package Installer, enter supportPackageInstaller in a MATLAB
Command Window.

The following topics provide help for each screen in the Support Package Installer.

17 Hardware Support

17-6

Select an Action

You can use Select an action to choose the action Support Package Installer performs:

• Install from Internet: Download a support package from the Internet and install it
on the host computer.

• Download from Internet: Download a support package from the Internet without
installing it.

• Install from folder: Install a previously downloaded support package.
• Uninstall: Uninstall a specific support package.

 Support Package Installer Help

17-7

For instructions on using Download from Internet and Install from Folder, see
“Install Downloaded Support Package on Multiple Computers” on page 17-3.

Select Support Package to Install or Select Support Package to Download

Support Package Installer installs those support package or packages that are currently
visible in the right pane. In other words, it only installs support for one type of hardware
at a time.

Use Support for to choose a specific group of support packages. Support Package
Installer can only install or act upon one particular group of support packages at a time.

17 Hardware Support

17-8

You can use Show to filter the support packages Support Package Installer displays:

• All displays support packages for all base products and host computer platforms.
• Installable displays support packages that you can install with the product

licenses and platform on your host computer.
• Installed displays support packages that are installed on your host computer.
• Updatable displays installed support packages for which updates are available.

To install support packages in multiple groups, rerun Support Package Installer for each
group.

Use Support packages to choose and review the status of specific support packages.
Support Package Installer organizes the following support package information in
columns:

• Action displays the action Support Package Installer can perform upon a support
package. Select or clear the check box in to enable or disable Support Package
Installer from performing that action: Install, Reinstall, Update, None.

• Installed Version displays the version of the installed support package. This entry is
blank if the support package is not installed. If Latest Version and Installed Version
are different, you can update the support package.

• Latest Version displays the version of the support package that is available for
download. If Latest Version and Installed Version are different, you can update the
support package. If your computer does not have access to the Internet, this value is
empty.

• Description links to a web page where you can look or search for more information
about the support package.

• Required Base Product displays the base product that is required in order to
install the support package. If the base product is not licensed and installed, the
support package is not downloadable or installable.

• Supported Host Platforms displays the host computer platforms required to install
the support package. If the host computer is not one of the supported platforms, you
cannot download or install the support package. Win32 and Win64 represent the 32-
and 64-bit versions of Microsoft Windows. Linux64 represents the 64-bit version of
Linux. Mac64 represents the 64-bit version of the Apple Mac platform.

The Installation folder parameter displays the path where Support Package Installer
installs the support package. You must have write privileges for this folder. You can

 Support Package Installer Help

17-9

enter a new path directly, or use the Browse button to select one. The installation
process creates a downloads folder in this location.

If you choose the Download from Internet option, Support Package Installer displays
the Download folder parameter instead of the Installation folder parameter.
Download folder displays the path where Support Package Installer creates support
package folders. You must have write privileges for this path. You can enter a new path
directly, or use the Browse button to select one. By default, the Download folder is
named downloads. After installing support packages, the Download folder contains
subfolders for each support package.

The Find more supported hardware link opens a browser and displays the Hardware
Support topic on the MathWorks website.

Note: Opening a support package installation file opens the Select a Support Package
to Install or Download screen with a support package preselected. These files are
available from MATLAB Central File Exchange, and have the file name extension:
*.mlpkginstall

17 Hardware Support

17-10

Log In to MathWorks Account

Click Log In. In the MathWorks Account Log In dialog box, enter your
MathWorks.com account email address and password. For more information, see http://
www.mathworks.com/support/solutions/en/data/1-172ME/index.html?solution=1-172ME.

If you do not have an account, click here to create one.

http://www.mathworks.com/support/solutions/en/data/1-172ME/index.html?solution=1-172ME
http://www.mathworks.com/support/solutions/en/data/1-172ME/index.html?solution=1-172ME
http://www.mathworks.com/accesslogin/createProfile.do

 Support Package Installer Help

17-11

17 Hardware Support

17-12

The MathWorks, Inc. Software License Agreement

Review the text of the license agreement. If you agree, select the I accept check box, and
then click Next.

 Support Package Installer Help

17-13

Third-Party Software Licenses

Support packages that download third-party software as part of the installation process
display this screen. Review the information and any license agreements.

To proceed, click Install. Otherwise, click Back or Cancel.

17 Hardware Support

17-14

Confirm Installation, Confirm Download, Confirm Uninstall

This screen confirms the name of the support package you have chosen. To continue, click
Install, Download, or Uninstall.

Support Package Installer displays a progress bar while it performs the specified action.

Note: If Support Package Installer instructs you to delete files, close the MATLAB
software before removing the files. Then, restart MATLAB software and run Support
Package Installer to complete the process.

 Support Package Installer Help

17-15

Install or Update Complete, Download Complete, Uninstall Complete

Support Package Installer has finished installing or uninstalling the support package.

Some support packages require additional actions before you can use the support
package:

• Replace or update the firmware on the target hardware.
• Install and validate required third-party software.

To perform these actions, click Continue. Otherwise, click Finish.

17 Hardware Support

17-16

This screen displays the path of the support package folder within the Download
folder. If you use the Install from Folder option in the future, you will specify the
location of this support package folder.

If there are no additional actions, and the support package contains featured examples,
Support Package Installer gives you the option to open the featured examples. These
examples show you how to use the capabilities provided by the support package.

Set Up Support Package

 Support Package Installer Help

17-17

This screen is only shown for support packages that provide additional post-installation
steps. Use the Support package for parameter to identify the third-party hardware or
software to set up. Then, click Next.

The subsequent screens guide you through the process of:

• Replacing or updating the firmware on the target hardware.
• Installing and validating required third-party software.

Note: To return to this screen without repeating preceding screens, enter
targetupdater in a MATLAB Command Window.

17 Hardware Support

17-18

Support Package Setup Complete

You have completed the set up process.

If you leave the Show support package examples check box selected and click Finish,
Support Package Installer displays support package examples in a new window.

Special Instructions

This screen is unique to the support package you are installing. Carefully read and follow
the instructions provided by the screen.

 MATLAB Supported Hardware

17-19

MATLAB Supported Hardware

For a complete list of support packages, see the Hardware Support Catalog.

In addition to these packages, MATLAB includes built-in support for:

• “Audio Recording and Playback”
• “Serial Port Devices”

http://www.mathworks.com/hardware

