MATLAB®

External Interfaces

<@

MATLAB

R2015b <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB"® External Interfaces
© COPYRIGHT 1984-2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

December 1996
July 1997
January 1998
October 1998
November 2000

June 2001

July 2002
January 2003
June 2004
October 2004
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015

First printing
Online only
Second printing
Third printing
Fourth printing

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for MATLAB 5 (release 8)

Revised for MATLAB 5.1 (Release 9)
Revised for MATLAB 5.2 (Release 10)
Revised for MATLAB 5.3 (Release 11)
Revised and renamed for MATLAB 6.0
(Release 12)

Revised for MATLAB 6.1 (Release 12.1)
Revised for MATLAB 6.5 (Release 13)
Revised for MATLAB 6.5.1 (Release 13SP1)
Revised for MATLAB 7.0 (Release 14)
Revised for MATLAB 7.0.1 (Release 14SP1)
Revised for MATLAB 7.1 (Release 14SP3)
Revised for MATLAB 7.2 (Release 2006a)
Revised for MATLAB 7.3 (Release 2006b)
Revised for MATLAB 7.4 (Release 2007a)
Revised for MATLAB 7.5 (Release 2007b)
Revised for MATLAB 7.6 (Release 2008a)
Revised for MATLAB 7.7 (Release 2008b)
Revised for MATLAB 7.8 (Release 2009a)
Revised for MATLAB 7.9 (Release 2009b)
Revised for MATLAB 7.10 (Release 2010a)
Revised for MATLAB 7.11 (Release 2010b)
Revised for MATLAB 7.12 (Release 2011a)
Revised for MATLAB 7.13 (Release 2011b)
Revised for MATLAB 7.14 (Release 2012a)
Revised for MATLAB 8.0 (Release 2012b)
Revised for MATLAB 8.1 (Release 2013a)
Revised for MATLAB 8.2 (Release 2013b)
Revised for MATLAB 8.3 (Release 2014a)
Revised for MATLAB 8.4 (Release 2014b)
Revised for MATLAB 8.5 (Release 2015a)
Revised for MATLAB 8.6 (Release 2015b)

Contents

Python Interface Topics

1

Install Supported Python Implementation

Install Python Version 2.7
Install Python Version 3.3 or 3.4

Call Python from MATLAB

Call User-Defined Python Module .

Use Python Numeric Types in MATLAB

Call Python Methods with Numeric Arguments

Default Numeric Types

Use Python array Types in MATLAB

Pass MATLAB String to Python Method

Use Python str Type in MATLAB .

Pass MATLAB Backslash Control Character

Create Python list Variable

Use Python list Type in MATLAB

Use Python List of Numeric Types in MATLAB

Pass Cell Array as Python Sequence Type

Read Element of Nested list Type

1-3
1-3
1-3

1-10

1-12

1-13

1-14

1-15

1-16

1-17

1-18

1-19

1-20

1-22

1-23

1-25

vi

Contents

Use Python tuple Type in MATLAB

Create Python tuple Variable

Create Singleton Python tuple Variable

Create Python dict Variable

Pass dict Argument to Python Method

Use Python dict Type in MATLAB

Convert Python dict Type to MATLAB Structure

Pass Keyword Arguments

Pass Python Function to Python map Function

Index into Python String

Index into Python List

Index into Python Tuple

Index into Pythondict

Use Python List as Valuesinfor Loop

Display Stepped Range of Elements

Access Elements in Python Container Types

Sequence Types

Mapping Types

Size and Dimensions
Array Support

Use Zero-Based Indexing for Python Functions

View Python Numeric Values

Why Do I See Properties When I Display a Number?
What Is the L Character Attached to a Number?

Call Methods on Python Variables

1-26
1-27
1-28
1-29
1-30
1-31
1-33
1-34
1-35
1-36
1-37
1-39
1-40
1-41
1-42
1-43
1-43
1-44
1-44
1-45
1-45
1-46
1-46
1-46

1-48

Reload Modified User-Defined Python Module

System and Configuration Requirements

Python Version Support
Set Python Version on Windows Platform
Set Python Version on Mac and Linux Platforms
64-bit/32-bit Versions of Python on Windows Platforms
Requirements for Building Python Executable

Create a Python Object

Pass Data to Python

MATLAB Type to Python Type Mapping
MATLAB Vector to Python Mapping
Unsupported MATLAB Types

Handle Data Returned from Python

Automatic Python Type to MATLAB Type Mapping
Explicit Type Conversionsc.uuveuuen....

How MATLAB Represents Python Operators
Execute Callable Python Object

Python import and MATLAB import Commands

Do Not Type “import pythonmodule”
Use MATLAB import to Shorten Class or Function Names .

List, Tuple, and Dictionary Types
Limitations to Python Support
Limitations to Indexing into Python Objects

Undefined variable "py" or function "py.command"

Python Not Installed
64-bit/32-bit Versions of Python on Windows Platforms
MATLAB Cannot Find Python

Error in User-Defined Python Module
Python Module Not on Python Search Path
Module Name Conflicts
Python Tries to Execute command in Wrong Module

1-50

1-52
1-52
1-52
1-53
1-53
1-53

1-54

1-57
1-57
1-58
1-58

1-60
1-60
1-60

1-62

1-64

1-65
1-65
1-65

1-67

1-68

1-69

1-70
1-70
1-70
1-71
1-71
1-71
1-72
1-72

vii

viii

Contents

Help for Python Functions 1-73

Handle Python Exceptions 1-74
Troubleshooting Error Messages 1-75
Python Error: Python class: message 1-75
Python Module Errors 1-75
Errors Converting Python Data 1-76
Using Python Data in MATLAB 1-77
Call Python eval Function 1-78
Precedence Order of Methods and Functions 1-80
Python Function Arguments 1-81
Positional Arguments 1-81
Keyword Arguments 1-81
Optional Arguments 1-82

Read and Write MATLAB MAT-Files in C/C++ and

2|

Fortran
Custom Applications to Access MAT-Files 2-2
Why Write Custom Applications? 2-2
MAT-File Interface Library 2-3
Exchanging Data Files Between Platforms 2-4
MAT-File Library and Include Files 2-5
MAT-Function Include Files 2-5
MAT-Function Libraries 2-5
Example Files e 2-6
What You Need to Build Custom Applications 2-7
Copy External Data into MAT-File Format with Standalone
Programs 2-8
Overview of matimport.c Example 2-8
Declare Variables for External Data 2-9

Create mxArray Variables 2-9

Create MATLAB Variable Names 2-10
Read External Data into mxArray Data 2-10
Create and Open MAT-File 2-11
Write mxArray Datato File 2-11
Clean Up e 2-11
Build the Application 2-11
Create the MAT-File 2-11
Import Data into MATLAB 2-12
Create MAT-Filein Cor C++ 2-13
Create MAT-Filein C 2-13
Create MAT-File in C++ 2-13
Read MAT-File in C/C++ 2-14
Create MAT-File in Fortran 2-15
Read MAT-File in Fortran 2-16
Work with mxArrays, 2-17
Read Structures from a MAT-File 2-17
Read Cell Arrays from a MAT-File 2-18
Table of MAT-File Source Code Files 2-19
Build on Mac and Linux Operating Systems 2-21
Setting Run-Time Library Path 2-21
Building the Application 2-22
Build on Windows Operating Systems 2-23
Share MAT-File Applications 2-24

Calling C Shared Library Functions from MATLAB

3

Call Functions in Shared Libraries 3-2
What Is a Shared Library? 3-2
Load and Unload Library 3-3

ix

View Library Functions 3-4

Invoke Library Functions 3-6
Limitations to Shared Library Support 3-8
MATLAB Supports C Library Routines 3-8
Workarounds for Loading C++ Libraries 3-8
Limitations Using printf Function 3-9
Bit Fields 3-9
Enum Declarations 3-10
Unions Not Supported 3-10
Compiler Dependencies, 3-11
Limitations Using Pointers 3-11
Functions with Variable Number of Input Arguments Not
Supported 3-12
Limitations Using Structures 3-13
MATLAB Returns Pointers to Structures 3-13
Structure Cannot Contain Pointers to Other Structures . . . 3-13
Requirements for MATLAB Structure Arguments 3-13
Requirements for C struct Field Names 3-13
Module Not Found Error 3-15
No Matching Signature Error 3-16
MATLAB Terminates Unexpectedly When Calling Function in
Shared Library 3-17
Pass Arguments to Shared Library Functions 3-18
C and MATLAB Equivalent Types 3-18
How MATLAB Displays Function Signatures 3-20
NULL Pointert 3-21
Manually Convert Data Passed to Functions 3-21
Shared Library shrilibsample 3-23
Pass String Arguments 3-24
stringToUpper Function 3-24
Convert MATLAB Character Array to Uppercase 3-24
Pass Structures 3-26
addStructFields and addStructByRef Functions 3-26
Add Values of Fields in Structure 3-27

X Contents

Preconvert MATLAB Structure Before Adding Values
Autoconvert Structure Arguments

Pass Pointer to Structure . .

Pass Enumerated Types

readEnum Function

Display Enumeration Values

Pass Pointers

multDoubleRef Function . .

Pass Pointer of Type double

Create Pointer Offset from Existing lib.pointer Object

Multilevel Pointers

allocateStruct and deal locateStruct Functions

Pass Multilevel Pointer
Return Array of Strings . ..

Pass Arrays
print2darray Function . ..

Convert MATLAB Array to C-Style Dimensions

multDoubleArray Function

Preserve 3-D MATLAB Array

Iterate Through an Array

Create Cell Array from lib.pointer Object
Perform Pointer Arithmetic on Structure Array

Pointer Arguments

Pointer Arguments in C Functions

Put String into Void Pointer

Memory Allocation for External Library

Structure Arguments

Structure Argument Requirements

Find Structure Field Names

Strategies for Passing Structures

Explore libstruct Objects

MATLAB Prototype Files
When to Use Prototype Files

How to Create Prototype Files

How to Specify Thunk Files

3-28
3-29
3-30

3-32
3-32
3-32

3-34
3-34
3-34
3-35
3-36
3-36
3-37
3-37

3-39
3-39
3-39
3-40
3-41

3-43
3-43
3-44

3-46
3-46
3-46
3-47

3-49
3-49
3-49
3-49

3-51
3-52
3-52

3-52
3-53

xi

xii

Contents

4

Deploy Applications That Use loadlibrary 3-53
loadlibrary in Parallel Computing Environment 3-53
Change Function Signature 3-53
Rename Library Function 3-53
Load Subset of Functions in Library 3-53

Call Function with Variable Number of Arguments 3-54
Intro to MEX-Files

Introducing MEX Files 4-3
Using MEX Files 4-4
MEX File Placement 4-5
MEX Files on Windows Network Drives 4-5

Use Help Files with MEX Files 4-6
MATLAB Data 4-7
The MATLAB Array 4-7
Lifecycle of mxArray 4-7
Data Storage 4-8
MATLAB Typeso e 4-10
Sparse Matrices i 4-11
Using Data Types 4-12
Testing for Most-Derived Class 4-15
Testing for a Category of Types 4-15
Another Test for Built-In Types 4-16
Build MEX File 4-17
Linking Multiple Files 4-18
What You Need to Build MEX Files 4-19
Change Default Compiler 4-20
Windows Systems 4-20

Mac and Linux Systems 4-21

Do Not Use mex -f optionsfile Syntax

Custom Build with MEX Script Options
Include Files

Compiling MEX Files with the Microsoft Visual C++ IDE . .

Call LAPACK and BLAS Functions
What You Need to Know
Creating a MEX File Using LAPACK and BLAS Functions .
Preserving Input Values from Modification
Passing Arguments to Fortran Functions from C/C++

Programs
Passing Arguments to Fortran Functions from Fortran

Programs
Handling Complex Numbers in LAPACK and BLAS

Functions
Modifying the Function Name on UNIX Systems

Running MEX Files with .DLL File Extensions on Windows
32-Bit Platforms

Upgrade MEX-Files to Use 64-Bit API
MATLAB Support for 64-Bit Indexing
MEX Uses 32-Bit API by Default
What If I Do Not Upgrade?
How to Upgrade MEX-Files to Use the 64-Bit API

Upgrade MEX Files to Use Graphics Objects
Replace mexGet and mexSet Functions

mex Automatically Converts Handle Type
I Want to Rebuild MEX Source Code Files
I Do Not Have MEX Source Code File

Platform Compatibility
Verify the MEX File Is Built for Your Platform
Verify Your Architecture on Windows Platforms

Invalid MEX File Error

Run MEX File You Receive from Someone Else

MEX File Dependent Libraries

4-21

4-23
4-23

4-24

4-26
4-26
4-26
4-28

4-29
4-30
4-31
4-34
4-35
4-36
4-36
4-36
4-38
4-38
4-47
4-47
4-50
4-50
4-50
4-52
4-52
4-52
4-53
4-54

4-55

xiii

xiv

Contents

Document Build Information in the MEX File 4-56

Version Compatibility 4-58
Getting Help When MEX Fails 4-59
Errors Finding Supported Compiler 4-59
Errors Building MEX Function 4-59
Preview mex Build Commands 4-60
Understanding MEX File Problems 4-61
Problem 1 — Compiling a Source MEX File Fails 4-63
Problem 2 — Compiling Your Own Program Fails 4-63
Problem 3 — Binary MEX File Load Errors 4-64
Problem 4 — Segmentation Fault 4-65
Problem 5 — Program Generates Incorrect Results 4-65
Compiler- and Platform-Specific Issues 4-66
Linux gcc Compiler Version Exror 4-66
Linux gcc -fPIC Errors 4-66
Memory Management Issues 4-67
OVEIVIEW . o ittt e e et et e e e 4-67
Improperly Destroying an mxArray 4-68
Incorrectly Constructing a Cell or Structure mxArray 4-68
Creating a Temporary mxArray with Improper Data 4-69
Creating Potential Memory Leaks 4-70
Improperly Destroying a Structure 4-70
Destroying Memory in a C++ Class Destructor 4-71
Compiler Errors in Fortran MEX Files 4-73

C/C++ MEX-Files

S|

Components of MEX File 5-3
mexFunction Gateway Routine 5-3
Naming the MEX File 5-3
Required Parameters 5-3
Managing Input and Output Parameters 5-4
Validating Inputs 5-4

Computational Routine

MATLAB API Libraries 0.,
Matrix Library
MEX Library e
Preprocessor Macrosuiiiinnan.

User Messagesi it

Error Handling

Data Flow in MEX Files
Showing Data Input and Output
Gateway Routine Data Flow Diagram

Creating C++ MEX Files
Creating Your C++ Source File
Compiling and Linking

Memory Considerations for Class Destructors
Use mexPrintf to Print to MATLAB Command Window . . .

C++ Classin MEX Files

Handle Files with C++
C++ Example e
CExample e

Create C Source MEX File

Table of MEX File Source Code Files

Choose a C++ Compiler
Select Microsoft Visual Studio Compiler
Select MinGW-w64 Compiler

Set Up C/C++ Examples

Pass Scalar Values
Pass Scalar as Matrix
Pass Scalar by Value

Pass Strings

5-5

5-6
5-6

5-6

5-9

5-10
5-10
5-11

5-13
5-13
5-13
5-13
5-14
5-15
5-16
5-16
5-16
5-18
5-24
5-28
5-28
5-28
5-30
5-31
5-31
5-32

5-34

Xv

xvi

Contents

Handling Strings in C/C++

How MATLAB Represents Strings in MEX-Files
Character Encoding and Multibyte Encoding Schemes

Converting MATLAB String to C-Style String
Converting C-Style String to MATLAB String
Returning Modified Input String

Memory Management

Pass Multiple Inputs or Outputs

Pass Structures and Cell Arrays

Create 2-D Cell Array
Fill mxArray
Options
Copying Data Directly into an
Pointing to Data
Prompt User for Input

Handle Complex Data

Handle 8-, 16-, and 32-BitData

mxArray

Manipulate Multidimensional Numerical Arrays

Handle Sparse Arrays

Call MATLAB Functions from C/C++ MEX Files

Debugging on Microsoft Windows Platforms

Notes on Debugging
Debugging on Linux Platforms

Debugging on Mac Platforms . .

Using Xcode

Using LLDB

Handling Large mxArrays

Using the 64-Bit API

Building the Binary MEX File

5-36
5-36
5-36
5-37
5-37
5-37
5-37
5-39
5-41
5-42
5-43
5-43
5-43
5-43
5-45
5-46
5-47
5-48
5-50
5-51

5-52
5-53

5-54

5-56
5-56
5-58

5-61
5-61
5-63

Example .

Caution Using Negative Values
Building Cross-Platform Applications

Memory Management
Automatic Cleanup of Temporary Arrays

Example .

Persistent Arrays

Handling Large File I/O
Prerequisites to Using 64-Bit /O
Specifying Constant Literal Values
Opening a File
Printing Formatted Messages
Replacing fseek and ftell with 64-Bit Functions
Determining the Size of an Open File
Determining the Size of a Closed File

Install MinGW-w64 Compiler
Installing Compiler from Add-Ons Menu
Building yprime.c Example
MinGW Installation Folder Cannot Contain Space
Updating MEX Files to Use MinGW Compiler

Troubleshooting and Limitations Compiling C/C++ MEX Files

with MinGW-w64
Do Not Link to Library Files Compiled with Non-MinGW
Compilers e
MinGW Compiler Not Setup for Use with MEX
MinGW Installation Folder Cannot Contain Space
MEX Command Does not Choose MinGW
Manually Configure MinGW for MATLAB

Potential Memory Leak Inside C++ MEX Files on Using MEX

Exceptions e

Unhandled Explicit Exceptions in C++ MEX Files Unexpectedly

Terminate MATLAB

Out of Memory Error for Variables Containing Large Amounts

of Data

5-63
5-63
5-64

5-65
5-65
5-66
5-66

5-68
5-68
5-70
5-70
5-71
5-71
5-72
5-73

5-74
5-74
5-75
5-75
5-75

5-77
5-77
5-77
5-78
5-78
5-78
5-79
5-80

5-81

xvil

xviii

Contents

Fortran MEX-Files

6/

Components of Fortran MEX File
mexFunction Gateway Routine
Naming the MEX File
Difference Between .Fand .FFiles

Required P

arameters e

Managing Input and Output Parameters

Validating

Inputs

Computational Routine

MATLAB Fortran API Libraries
Matrix Library
MEX Library e
Preprocessor Macroso i
Using the Fortran %val Construct

Data Flow in Fortran MEX Files
Showing Data Input and Output
Gateway Routine Data Flow Diagram

User Messages

Error Handling

Build Fortran

MEX File

Create Fortran Source MEX File

Set Up Fortran Examples

Pass Scalar Values

Pass Strings .

Pass Arrays of Strings

Pass Matrices

Pass Integers

6-2
6-2
6-3
6-3
6-4
6-4

6-5
6-5

6-5
6-6

6-8

6-9

6-11

6-12

6-13

6-14

6-19

6-20

6-21

6-22

6-23

6-24

Pass Multiple Inputs or Outputs 6-25

Handle Complex Data 6-26
Dynamically Allocate Memory 6-27
Handle Sparse Matrices 6-28
Call MATLAB Functions from Fortran MEX Files 6-29
Debug Fortran Source MEX-Files 6-31
Notes on Debugging 6-31
Debugging on Microsoft Windows Platforms 6-31
Debugging on Linux Platforms 6-31
Handling Large mxArrays0uuuiinnurn... 6-34
Using the 64-Bit API 6-34
Building the Binary MEX File 6-36
Caution Using Negative Values 6-36
Building Cross-Platform Applications 6-36
Memory Management00uuu... 6-37
MATLAB Supports Fortran 77 6-38

Calling MATLAB Engine from C/C++ and Fortran

7]

Programs

Introducing MATLAB Engine API for C/C++ and Fortran . . 7-2
Communicating with MATLAB Software 7-3
Callbacks in Applications 7-4
Call MATLAB Functions from C/C++ Applications 7-5
Call MATLAB Functions from Fortran Applications 7-7
Attach to Existing MATLAB Sessions 7-9

xix

XX

Contents

Build Windows Engine Application 7-11

Run Windows Engine Application 7-13
Set Run-Time Library Path on Windows Systems 7-14
Change Path Each Time You Run the Application 7-14
Permanently Change Path 7-14
Troubleshooting 7-15
Register MATLAB as a COM Server 7-16
Build Linux Engine Application 7-17
Run Linux Engine Application 7-18
Set Run-Time Library Path on Mac and Linux Systems . . . 7-19
CShell e 7-19
Bourne Shell 7-20
Build Engine Applications with IDE 7-21
Configuring the IDE 7-21
Engine Include Files 7-21
Engine Libraries 7-21
Library Files Required by libeng 7-22
Can't Start MATLAB Engine 7-24
Debug MATLAB Functions Used in Engine Applications . . 7-25
Multithreaded Applications 7-26
User Input Not Supported 7-27
Getting Started 7-28

MATLAB Engine for Python Topics

8

Get Started with MATLAB Engine for Python 8-2

Install MATLAB Engine for Python 8-5

Verify Python and MATLAB Installations 8-5
Install Engine 8-5
Build Engine in Nondefault Folder 8-6
Install Engine in Nondefault Folder 8-6
Install Engine in Your Home Folder 8-6
Set Run-Time Paths To Python Code 8-7
Start and Stop MATLAB Engine for Python 8-8
Start MATLAB Engine for Python 8-8
Run Multiple Engines 8-8
Stop MATLAB Engine iiiiiin... 8-8
Start Engine with Startup Options 8-9
Connect Python to Running MATLAB Session 8-10
Connect to Shared MATLAB Session 8-10
Connect to Multiple Shared MATLAB Sessions 8-11
Start Shared MATLAB Sessions with Startup Options 8-11
Call MATLAB Functions from Python 8-13
Return Output Argument from MATLAB Function 8-13
Return Multiple Output Arguments from MATLAB Function 8-13
Return No Output Arguments from MATLAB Function 8-13
Stop Execution of Function 8-14
Call MATLAB Functions Asynchronously from Python . .. 8-15
Call User Script and Function from Python 8-16
Redirect Standard Output and Error to Python 8-18
Use MATLAB Handle Objects in Python 8-19
Use MATLAB Engine Workspace in Python 8-21
Pass Data to MATLAB from Python 8-22
Python Type to MATLAB Scalar Type Mapping 8-22
Python Container to MATLAB Array Type Mapping 8-22
Unsupported Python Types 8-23
Handle Data Returned from MATLAB to Python 8-24
MATLAB Scalar Type to Python Type Mapping 8-24
MATLAB Array Type to Python Type Mapping 8-25

xx1

Unsupported MATLAB Types 8-25

MATLAB Arrays as Python Variables 8-27
Create MATLAB Arrays in Python 8-27
MATLAB Array Attributes and Methods in Python 8-29
Multidimensional MATLAB Arrays in Python 8-29
Index Into MATLAB Arrays in Python 8-29
Slice MATLAB Arrays in Python 8-30
Reshape MATLAB Arrays in Python 8-31

Use MATLAB Arrays in Python 8-32

Sort and Plot MATLAB Data from Python 8-34

Get Help for MATLAB Functions from Python 8-38
How to Find MATLAB Help 8-38
Open MATLAB Help Browser from Python 8-38
Display MATLAB Help at Python Prompt 8-39

Default Numeric Types in MATLAB and Python 8-40

System Requirements for MATLAB Engine for Python . .. 8-42
Python Version Support 8-42
64-bit or 32-bit Versions of Python and MATLAB 8-43
Requirements for Building Python from Source 8-43

Limitations to MATLAB Engine for Python 8-44

Troubleshoot MATLAB Errors in Python 8-45
MATLAB Errors in Python 8-45
MatlabExecutionError: Undefined Function 8-45
SyntaxError: Expression Not Valid Target 8-46
SyntaxError: Invalid Syntax 8-46

Using Java Libraries from MATLAB

4

Call Method on Java Object 9-2

xxii Contents

Java Libraries 9-3

Java Software Is Integral to MATLAB 9-3
When to Use Java Libraries in MATLAB 9-3
To Learn More About Java Programming Language 9-4
Platform Support for JVM Software 9-4
Bring Java Classes into MATLAB Workspace 9-5
Introduction 9-5
Defining New Java Classes 9-5
Java Class Path 9-5
Making Java Classes Available in MATLAB Workspace 9-7
Loading Java Class Definitions 9-9
Simplifying Java Class Names Using import Function 9-9
Locating Native Method Libraries 9-10
Convert Java String to Uppercase 9-12
Use Class in Java JAR File on Static Class Path 9-13
Call User-Defined Java Class on Dynamic Class Path 9-14
Java Objects e 9-15
OVEIVIEW . ot ittt e e e e e e 9-15
Constructing Java Objects 9-15
Concatenating Java Objects 9-17
Saving and Loading Java Objects to MAT-Files 9-18
Finding the Public Data Fields of an Object 9-19
Accessing Private and Public Data 9-20
Determining the Class of an Object 9-21
Java Object Methods 9-23
Calling Syntax 9-23
Obtaining Method Information 9-25
Java Methods That Affect MATLAB Commands 9-28
How MATLAB Handles Undefined Methods 9-29
Handling Java Exceptions 9-30
Method Execution in MATLAB 9-30
dJava Arrays 9-31
Introduction 9-31
How MATLAB Represents the Java Array 9-31
Creating an Array of Objects in MATLAB 9-35
Accessing Elements of a Java Array 9-38

xx1iii

xxiv

Contents

Assigning to a Java Array

Concatenating Java Arrays

Creating a New Array Reference .

Creating a Copy of a Java Array .

Pass Data to Java Methods

Introduction

Conversion of MATLAB Argument Data

Passing Built-In Types

Converting Numbers to Integer Arguments
Passing String Arguments

Passing Java Objects
Other Data Conversion Topics

Passing Data to Overloaded Methods

Handle Data Returned from Java Methods

Introduction

Conversion of Java Return Types
Conversion of Java Object Return
Built-In Types

Types

Converting Objects to MATLAB Types

Read URL
Overview
Description of URLdemo
Running the Example

Find Internet Protocol Address ...
Overviewco....
Description of resolveip
Running the Example

Create and Use Phone Book

Overviewo....

Description of Function phonebook

Description of Function pb_lookup
Description of Function pb_add . .

Description of Function pb_remove
Description of Function pb_change

Description of Function pb_listall

Description of Function pb_display
Description of Function pb_keyfilter

Running the phonebook Program

9-41
9-44
9-45
9-46

9-48
9-48
9-48
9-50
9-51
9-52
9-52
9-55
9-56

9-58
9-58
9-58
9-59
9-59
9-60

9-64
9-64
9-64
9-65

9-66
9-66
9-66
9-67

9-68
9-68
9-69
9-73
9-73
9-74
9-75
9-76
9-77
9-77
9-78

Java Heap Memory Preferences

Using .NET Libraries from MATLAB

10

Read Cell Arrays of Excel Spreadsheet Data

Access a Simple NET Class

System.DateTime Example

Create .NET Object From Constructor
View Information About .NET Object
Introduction to .NET Data Types

Load a Global .NET Assembly
Work with Microsoft Excel Spreadsheets Using .NET
Work with Microsoft Word Documents Using .NET
Assembly is Library of NET Classes
Limitations to NET Support
System Requirements for Using MATLAB Interface
to NET e
MATLAB Configuration File
Using .NET from MATLAB
Benefits of the MATLAB .NET Interface
Why Use the MATLAB .NET Interface?
NET Assembly Integration Using MATLAB Compiler SDK
To Learn More About the .NET Framework
Using a .NET Object
Creating a .NET Object
What Classes Are in a .NET Assembly?
Using the delete Function on a .NET Object

Build a .NET Application for MATLAB Examples

10-4

10-6
10-6
10-7
10-7
10-9

10-11
10-12
10-14
10-15
10-16
10-18
10-18
10-19
10-19
10-19
10-20
10-20
10-21
10-21
10-21
10-22

10-23

XXV

Troubleshooting Security Policy Settings From Network

Drives 10-24
NET Terminology 10-25
.NET Framework System Namespace 10-25
Reference Type Versus Value Type 10-25
Simplify .NET Class Names 10-26
Use import in MATLAB Functions 10-27
Nested Classesttt 10-28
Handle .NET Exceptions 10-29
Pass Numeric Arguments 10-30
Call .NET Methods with Numeric Arguments 10-30
Use .NET Numeric Types in MATLAB 10-30
Pass System.String Arguments 10-31
Call .NET Methods with System.String Arguments 10-31
Use System.String in MATLAB 10-31
Pass System.Enum Arguments 10-33
Call .NET Methods with System.Enum Arguments 10-33
Use System.Enum in MATLAB 10-34
Pass System.Nullable Arguments 10-35
Pass Cell Arrays of NET Data 10-39
Example of Cell Arrays of NET Data 10-39
Create a Cell Array for Each System.Object 10-40
Create MATLAB Variables from the NET Data 10-40
Call MATLAB Functions with MATLAB Variables 10-40
Pass Jagged Arrays 10-42
Create System.Double .NET Jagged Array 10-42
Call .NET Method with System.String Jagged Array

Arguments 10-42

Call .NET Method with Multidimensional Jagged Array
Arguments 10-43
Convert Nested System.Object Arrays 10-45

xxvi Contents

Pass Data to NET Objects
Pass Primitive .NET Types
Pass Cell Arrayscciiiun...

Pass Nonprimitive .NET Objects
Pass MATLAB Strings

Pass System.Nullable Type
Pass NULL Values
Unsupported MATLAB Types

Choosing Method Signatures
Example — Choosing a Method Signature
Pass Arrays,
Pass MATLAB Arrays as Jagged Arrays

Handle Data Returned from .NET Objects
NET Type to MATLAB Type Mapping
How MATLAB Handles System.String
How MATLAB Handles System.__ComObject . . .
How MATLAB Handles System.Nullable

How MATLAB Handles dynamic Type

How MATLAB Handles Jagged Arrays

Use Arrays with .NET Applications
Passing MATLAB Arrays to NET

Accessing .NET Array Elements in MATLAB . ..

Converting .NET Jagged Arrays to MATLAB Arrays

Convert .NET Arrays to Cell Arrays

Convert Nested System.Object Arrays
cell Function Syntax for System.Object[,] Arrays

Limitations to Support of .NET Arrays

Set Static .NET Properties

System.Environment.CurrentDirectory Example

Do Not Use ClassName.PropertyName Syntax for Static

Properties

Using .NET Properties
How MATLAB Represents .NET Properties

How MATLAB Maps C# Property and Field Access

Modifiers

MATLAB Does Not Display Protected Properties

10-46
10-46
10-47
10-48
10-48
10-48
10-49
10-49
10-49
10-50
10-51
10-52

10-53
10-53
10-54
10-55
10-56
10-57
10-57

10-58
10-58
10-58
10-59
10-60
10-60
10-61
10-63

10-64
10-64

10-64

10-66
10-66

10-66

10-68

xxvii

xxviii

Contents

Work with .NET Methods Having Multiple Signatures . . .
Display Function Signature Example

Call .NET Methods With out Keyword

Call .NET Methods With ref Keyword

Call .NET Methods With params Keyword

Call .NET Methods with Optional Arguments

Setting Up the Examples . .

Skip Optional Arguments . .

Call Overloaded Methods . .

Calling .NET Methods

Calling Object Methods . . .
Getting Method Information
C# Method Access Modifiers

VB.NET Method Access Modifiers

Reading Method Signatures

Calling .NET Methods with Optional Arguments
Skipping Optional Arguments
Determining Which Overloaded Method Is Invoked

Support for ByRef Attribute

in VBNET

Calling .NET Extension Methods

Call .NET Properties That Take an Argument

How MATLAB Represents .NET Operators

Limitations to Support of NET Methods
Overloading MATLAB Functions

Use .NET Events in MATLAB

Monitor Changes to TXT File
Monitor Changes to Windows Form ComboBox

Call .NET Delegates in MATLAB
Declare a Delegate in a C# Assembly
Load the Assembly Containing the Delegate into MATLAB

Select a MATLAB Function

10-69
10-70

10-71

10-73

10-75

10-77
10-77
10-77
10-78

10-80
10-80
10-80
10-80
10-81
10-81

10-83
10-83
10-83
10-83

10-84

10-85

10-87

10-88
10-88

10-89
10-89
10-89

10-92
10-92
10-92
10-92

Create an Instance of the Delegate in MATLAB 10-93

Invoke the Delegate Instance in MATLAB 10-93
Create Delegates from .NET Object Methods 10-94
Create Delegate Instances Bound to .NET Methods 10-95

Example — Create a Delegate Instance Associated with a .NET

Object Instance Method 10-95

Example — Create a Delegate Instance Associated with a

Static NET Method 10-96
Call Delegates With out and ref Type Arguments 10-97
Combine and Remove .NET Delegates 10-98
NET Delegates 0., 10-100
Calling .NET Methods Asynchronously 10-101
How MATLAB Handles Asynchronous Method Calls
in NET 10-101
Calling a Method Asynchronously Using a Callback When an
Asynchronous Call Finishes 10-101

Calling a Method Asynchronously Without a Callback . . . 10-103

Using EndInvoke With out and ref Type Arguments . . . 10-104

Using Polling to Detect When Asynchronous Call Finishes 10-104
Limitations to Support of NET Events 10-105

MATLAB Support of Standard Signature of an Event Handler

Delegate e 10-105
Limitations to Support of NET Delegates 10-106
Use Bit Flags with .NET Enumerations 10-107

How MATLAB Supports Bit-Wise Operations on

System.Enum 10-107

Creating .NET Enumeration Bit Flags 10-107

Removing a Flag from a Variable 10-108

Replacing a Flagin a Variable 10-108

Testing for Membership 10-109
Read Special System Folder Path 10-111
NET Enumerations in MATLAB 10-112

xxix

XXX

Contents

Default Methods for an Enumeration

NetDocEnum Example Assembly . ..

Work with Members of a .NET Enumeration

Refer to a .NET Enumeration Member

Using the Implicit Constructor . . .

Display .NET Enumeration Members
Strings

as Character

Convert .NET Enumeration Values to Type Double

Iterate Through a .NET Enumeration
Information About System.Enum Methods
Display Enumeration Member Names

Use .NET Enumerations to Test for Conditions

Using Switch Statements

Using Relational Operations

Underlying Enumeration Values . ..

Limitations to Support of NET Enumerations

Create .NET Collections

Convert .NET Collections to MATLAB Arrays

Create .NET Arrays of Generic Type

Display .NET Generic Methods Using Reflection

showGenericMethods Function

Display Generic Methods in a Class

Display Generic Methods in a Generic Class

NET Generic Classes

Accessing Items in .NET Collections

Call .NET Generic Methods

Using the NetDocGeneric Example

10-113
10-115
10-116
10-118
10-118
10-120
10-121
10-122
10-122
10-123
10-124
10-124
10-124
10-126
10-127
10-128
10-130
10-131
10-132
10-132
10-133
10-134
10-135
10-136

10-137
10-137

Invoke Generic Class Member Function .

Invoke Static Generic Functions

Invoke Static Generic Functions of a Generic Class
Invoke Generic Functions of a Generic Class

10-138
10-138
10-138
10-139

Using COM Objects from MATLAB

11

MATLAB COM Integration

Concepts and Terminology

COM Objects, Clients, and Servers

Interfaces
The MATLAB COM Client
The MATLAB COM Automation Server .

Registering Controls and Servers

Accessing COM Controls Created with NET

Verifying the Registration

Getting Started with COM

Creating an Instance of a COM Object . .

Getting Information About a Particular COM Control

Getting an Object's ProgID
Registering a Custom Control

Use Internet Explorer in MATLAB Figure

Techniques Demonstrated
Using the Figure to Access Properties . . .

Complete Code Listing
Creating the Figure

Calculating the ActiveX Object Container Size

Automatic Resize
Selecting Graphics Objects

Add Grid ActiveX Control in a Figure . ..

Techniques Demonstrated
Using the Control

Complete Code Listing
Preparing to Use the Control
Creating a Figure to Contain the Control

11-2
11-2
11-2
11-3
11-3
11-4

11-5
11-5
11-5

11-7
11-7
11-7
11-8
11-8

11-10
11-10
11-10
11-11
11-12
11-12
11-13
11-13

11-15
11-15
11-15
11-16
11-17
11-18

xxx1

xxxii

12|

Contents

Creating an Instance of the Control
Using Mouse-Click Event to Plot Data
Managing Figure Resize
Closing the Figure

Read Spreadsheet Data Using Excel as Automation

Server

Techniques Demonstrated

Using the UI .

Complete Code Listing

Excel Spreadsheet Format
Excel Automation Server
Manipulating the Data in the MATLAB Workspace

The Plotter Ul

Inserting MATLAB Graphs Into Excel Spreadsheets

Supported Client/Server Configurations

Introduction . .

MATLAB Client and In-Process Server
MATLAB Client and Out-of-Process Server
COM Implementations Supported by MATLAB Software . .
Client Application and MATLAB Automation Server
Client Application and MATLAB Engine Server

11-19
11-20
11-21
11-22

11-23
11-23
11-23
11-24
11-24
11-25
11-26
11-26
11-28

11-30
11-30
11-30
11-31
11-32
11-32
11-33

MATLAB COM Client Support

Create COM Objects,
Creating the Server Process — An Overview
Creating an ActiveX Control
Creating a COM Serveruiiuinenn..

Handle COM Data in MATLAB
Passing Data to COM Objects
Handling Data from COM Objects
Unsupported Types
Passing MATLAB Data to ActiveX Objects
Passing MATLAB SAFEARRAY to COM Object
Reading SAFEARRAY from COM Objects in MATLAB

Applications

Displaying MATLAB Syntax for COM Objects 12-18

COM Object Propertieso.... 12-21
MATLAB Functions for Object Properties 12-21
Work with Multiple Objects 12-21
Enumerated Values for Properties 12-22
Property Inspector 12-22
Custom Properties, 12-23
Properties That Take Arguments 12-23

COM Methods 12-24
Getting Method Information 12-24
Calling Object Methods 12-24
Specifying Enumerated Parameters 12-25
Skipping Optional Input Arguments 12-25
Returning Multiple Output Arguments 12-26

COM Events0i .. 12-27

COM Event Handlers 12-29
Overview of Event Handling 12-29
Arguments Passed to Event Handlers 12-29
Event Structure 12-30

COM Object Interfaces 12-32
IUnknown and IDispatch Interfaces 12-32
Custom Interfaces 12-33

Save and Delete COM Objects 12-35
Functions for Saving and Restoring COM Objects 12-35
Releasing COM Interfaces and Objects 12-35

MATLAB Application as DCOM Client 12-37

Explore COM Objects, 12-38
Exploring Properties 12-38
Exploring Methods 12-39
Exploring Events 12-39
Exploring Interfaces 12-40
Identifying Objects and Interfaces 12-40

Change Row Height in Range of Spreadsheet Cells 12-42

xxxiii

XxXxiv

Contents

Write Data to Excel Spreadsheet Using ActiveX
Change Cursor in Spreadsheet
Insert Spreadsheet After First Sheet
Redraw Circle in mwsamp Control
Connect to Existing Excel Application
Display Message for Workbook OnClose Event
Run Macro in Excel Server Application
Combine Event Handlers as MATLAB Local Functions . .
MATLAB Sample ActiveX Control mwsamp

Display Event Messages from mwsamp Control

Add Position Property to mwsamp Control

Save mwsamp2 COM Control

Deploy ActiveX Controls Requiring Run-Time Licenses . .

Create a Function to Build the Control
Build the Control and the License File

Build the Executable

Deploythe Files

Microsoft Forms 2.0 Controls
Affected Controls i

Replacement Controls

COM Collections

MATLAB COM Support Limitations

Interpreting Argument Callouts in COM Error Messages .

12-44
12-46
12-47
12-48
12-50
12-51
12-52
12-53
12-54
12-55
12-58
12-59
12-60
12-60
12-60
12-61
12-61
12-62
12-62
12-62
12-64

12-65

12-66

MATLAB COM Automation Server Support

13|

Register MATLAB as Automation Server

When to Register MATLAB

Register from System Prompt

Register from MATLAB Command Prompt

MATLAB COM Automation Server Interface

COM Server Types
Shared and Dedicated Servers
Programmatic Identifiers

In-Process and Out-of-Process Servers

Create MATLAB Server

Getting Started

Get or Set the Status of a MATLAB Automation Server . . .

Connect to Existing MATLAB Server . .
Using Visual Basic .NET Code

MATLAB Application as DCOM Server

VT_DATE Data Type

Data Types For Visual Basic .NET Clients

Visible Property

Shared or Dedicated Server

Starting a Shared Server
Starting a Dedicated Server

Manually Create Automation Server . .

Launch MATLAB as Automation Server in Desktop Mode

Call MATLAB Function from Visual Basic .NET Client . . .

Pass Complex Data to MATLAB from C# Client

Call MATLAB Function from C# Client

13-2
13-2
13-2
13-3
13-4
13-4
13-4
13-4
13-5
13-7
13-7
13-8

13-9
13-9

13-10

13-11

13-12

13-13

13-14

13-14

13-14

13-15

13-16

13-17

13-18

13-20

XXXV

XxXxVvi

View MATLAB Functions from Visual Basic .NET Object

Browser 13-22
Waiting for MATLAB Application to Complete 13-23
Conversion of MATLAB Types to COM Types 13-24

Variant Data 13-25
SAFEARRAY Data, 13-25
Conversion of COM Types to MATLAB Types 13-26

Using Web Services with MATLAB

14

Contents

Set Up WSDL Tools0 .. 14-2
Display a World Map 14-3
Using WSDL Web Service with MATLAB 14-8
What Are Web Services in MATLAB? 14-8
What are WSDL Documents? 14-8
What You Need to Use WSDL with MATLAB 14-9
Access Services That Use WSDL Documents 14-10
Error Handling 14-12
Considerations Using Web Services 14-12
Error Handling with try/catch Statements 14-12
Use a Local Copy of the WSDL Document 14-12
Java Errors Accessing Service 14-13
Anonymous Types Not Supported 14-13
XML-MATLAB Data Type Conversion 14-14
Limitations to WSDL Document Support 14-16

System Commands

15

Shell Escape Functions 15-2
Run External Commands, Scripts, and Programs 15-3

Run UNIX Programs off System Path 15-4
Change Environment Variable for Shell Command 15-6

Serial Port I/0

16

Capabilities and Supported Interfaces and Platforms 16-2
What Is the MATLAB Serial Port Interface? 16-2
Supported Serial Port Interface Standards 16-3
Supported Platforms 16-3
Using the Examples with Your Device 16-3

Overview of the Serial Port 16-4
Introduction 16-4
What Is Serial Communication? 16-4
The Serial Port Interface Standard 16-4
Connecting Two Devices with a Serial Cable 16-5
Serial Port Signals and Pin Assignments 16-6
Serial Data Format 16-10
Finding Serial Port Information for Your Platform 16-13
Using Virtual USB Serial Ports 16-15
Selected Bibliography 16-15

Getting Started with Serial /O 16-16
Example: Getting Started 16-16
The Serial Port Session 16-16
Configuring and Returning Properties 16-17

Create a Serial Port Object 16-22
Overview of a Serial Port Object 16-22
Configuring Properties During Object Creation 16-23
The Serial Port Object Display 16-24

xxxvii

xxxviii

Contents

Creating an Array of Serial Port Objects
Connect to the Device
Configure Communication Settings

Write and Read Data
Before You Begin

Example — Introduction to Writing and Reading Data . . .
Controlling Access to the MATLAB Command Line

Writing Data
Reading Data
Example — Writing and Reading Text Data

Example — Parsing Input Data Using textscan

Example — Reading Binary Data

Events and Callbacks
Introduction
Example — Introduction to Events and Callbacks
Event Types and Callback Properties
Respond To Event Information
Create and Execute Callback Functions
Enable Callback Functions After They Error . . .
Example — Using Events and Callbacks

Control Pins

Properties of Serial Port Control Pins

Signaling the Presence of Connected Devices . . .
Controlling the Flow of Data: Handshaking

Debugging: Recording Information to Disk
Introduction

Recording Properties

Example: Introduction to Recording Information
Creating Multiple Record Files

Specifying a Filename

The Record File Format
Example: Recording Information to Disk

Saveand Load
Using save and load
Using Serial Port Objects on Different Platforms

16-24

16-26

16-27

16-28
16-28
16-28
16-29
16-30
16-35
16-41
16-42
16-43

16-46
16-46
16-46
16-47
16-49
16-51
16-52
16-52

16-54
16-54
16-54
16-57

16-60
16-60
16-60
16-61
16-61
16-61
16-62
16-63

16-66
16-66
16-66

Disconnect and Clean Up 16-68

Disconnect a Serial Port Object 16-68
Clean Up the MATLAB Environment 16-68
Property Reference 16-70
The Property Reference Page Format 16-70
Serial Port Object Properties 16-70
Properties — Alphabetical List 16-74

Hardware Support

17

Support Package Installation 17-2
What Is a Support Package? 17-2
Install Support Packages 17-2
Install Downloaded Support Package on Multiple

Computers it e 17-3
Troubleshoot Timed Out Connections 174

Support Package Installer Help 17-5
About Support Package Installer 17-5
Select an Action 17-6
Select Support Package to Install or Select Support Package to

Download e 17-7
Log In to MathWorks Account 17-10
The MathWorks, Inc. Software License Agreement 17-12
Third-Party Software Licenses 17-13
Confirm Installation, Confirm Download, Confirm

Uninstall 17-14
Install or Update Complete, Download Complete, Uninstall

Complete 17-15
Set Up Support Package 17-16
Support Package Setup Complete 17-18
Special Instructions 17-18

MATLAB Supported Hardware 17-19

XxXXix

Python Interface Topics

* “Install Supported Python Implementation” on page 1-3

+ “Call Python from MATLAB” on page 1-4

+ “Call User-Defined Python Module” on page 1-10

+ “Use Python Numeric Types in MATLAB” on page 1-12

+ “Call Python Methods with Numeric Arguments” on page 1-13
+ “Default Numeric Types” on page 1-14

+ “Use Python array Types in MATLAB” on page 1-15

+ “Pass MATLAB String to Python Method” on page 1-16

+ “Use Python str Type in MATLAB” on page 1-17

+ “Pass MATLAB Backslash Control Character” on page 1-18

+ “Create Python list Variable” on page 1-19

* “Use Python list Type in MATLAB” on page 1-20

+ “Use Python List of Numeric Types in MATLAB” on page 1-22
+ “Pass Cell Array as Python Sequence Type” on page 1-23

+ “Read Element of Nested list Type” on page 1-25

+ “Use Python tuple Type in MATLAB” on page 1-26

* “Create Python tuple Variable” on page 1-27

* “Create Singleton Python tuple Variable” on page 1-28

+ “Create Python dict Variable” on page 1-29

+ “Pass dict Argument to Python Method” on page 1-30

+ “Use Python dict Type in MATLAB” on page 1-31

+ “Convert Python dict Type to MATLAB Structure” on page 1-33
+ “Pass Keyword Arguments” on page 1-34

* “Pass Python Function to Python map Function” on page 1-35
* “Index into Python String” on page 1-36

1

Python Interface Topics

1-2

“Index into Python List” on page 1-37

“Index into Python Tuple” on page 1-39

“Index into Python dict” on page 1-40

“Use Python List as Values in for Loop” on page 1-41
“Display Stepped Range of Elements” on page 1-42

“Access Elements in Python Container Types” on page 1-43
“View Python Numeric Values” on page 1-46

“Call Methods on Python Variables” on page 1-48

“Reload Modified User-Defined Python Module” on page 1-50
“System and Configuration Requirements” on page 1-52
“Create a Python Object” on page 1-54

“Pass Data to Python” on page 1-57

“Handle Data Returned from Python” on page 1-60

“How MATLAB Represents Python Operators” on page 1-62
“Execute Callable Python Object” on page 1-64

“Python import and MATLAB import Commands” on page 1-65
“List, Tuple, and Dictionary Types” on page 1-67
“Limitations to Python Support” on page 1-68

“Limitations to Indexing into Python Objects” on page 1-69
“Undefined variable "py" or function "py.command" on page 1-70
“Help for Python Functions” on page 1-73

“Handle Python Exceptions” on page 1-74

“Troubleshooting Error Messages” on page 1-75

“Using Python Data in MATLAB” on page 1-77

“Call Python eval Function” on page 1-78

“Precedence Order of Methods and Functions” on page 1-80
“Python Function Arguments” on page 1-81

Install Supported Python Implementation

Install Supported Python Implementation

In this section...

“Install Python Version 2.7” on page 1-3
“Install Python Version 3.3 or 3.4” on page 1-3

Install Python Version 2.7

Access https://www.python.org/downloads and scroll down to the Looking for a
specific release section.

Find the 2.7 version you want and click Download.

Click the format you want, and follow the online instructions.

Note: For 64-bit MATLAB® on Microsoft® Windows® systems, select the 64-bit

Python® version, called <fo:inline keep-together.within-line="always">Windows
x86-64 MSI</fo:inline> installer.

Install Python Version 3.3 or 3.4

Access https://www.python.org/downloads and scroll down to the Looking for a
specific release section.

Find the 3.3/3.4 version you want and click Download.

Click the format you want, and follow the online instructions.

Note: For 64-bit MATLAB on Windows systems, select the 64-bit Python version,
called Windows <fo:inline keep-together.within-line="always">x86-64</fo:inline> MSI
installer.

See Also

pyversion

More About

“MATLAB Cannot Find Python” on page 1-71

1-3

https://www.python.org/downloads
https://www.python.org/downloads

1 Python Interface Topics

Call Python from MATLAB

These examples show how to use Python® language functions and modules within
MATLAB®. The first example calls a text-formatting module from the Python standard
library. The second example shows how to use a third-party module, Beautiful Soup. If
you want to run that example, follow the guidelines in the step for installing the module.

MATLAB supports the reference implementation of Python, often called CPython,
versions 2.7, 3.3, and 3.4. If you are on a Mac or Linux platform, you already have Python
installed. If you are on Windows, you need to install a distribution, such as those found at
https://www.python.org/download, if you have not already done so. For more information,
see “Install Supported Python Implementation”.

Call a Python Function to Wrap Text in a Paragraph

MATLAB has equivalencies for much of the Python standard library, but not everything.
For example, textwrap is a module for formatting blocks of text with carriage returns
and other conveniences. MATLAB also provides a textwrap function, but it only wraps
text to fit inside a Ul control.

Create a paragraph of text to play with.
T = "MATLAB(R) is a high-level language and interactive environment for numerical compt

Convert a Python String to a MATLAB String

Call the textwrap.wrap function by typing the characters py. in front of the function
name. Do not type import textwrap.

wrapped = py.textwrap.wrap(T);
whos wrapped

Name Size Bytes Class Attributes

wrapped 1x7 112 py.list
wrapped is a Python list, which is a list of Python strings. MATLAB shows this type as
py-list.

Convert py. list to a cell array of Python strings.

wrapped = cell(wrapped);
whos wrapped

1-4

http://www.crummy.com/software/BeautifulSoup/
https://www.python.org/download
http://docs.python.org/2/library/

Call Python from MATLAB

Name Size Bytes Class Attributes

wrapped 1x7 1568 cell

Although wrapped is a MATLAB cell array, each cell element is a Python string.
wrapped{1}

ans =
Python str with no properties.

MATLAB(R) is a high-level language and interactive environment for

Convert the Python strings to MATLAB strings using the char function.
wrapped = cellfun(@char, wrapped, "UniformOutput®, false);
wrapped{1}

ans =

MATLAB(R) is a high-level language and interactive environment for

Now each cell element is a MATLAB string.
Customize the Paragraph
Customize the output of the paragraph using keyword arguments.

The previous code uses the wrap convenience function, but the module provides

many more options using the py . textwap. TextWrapper functionality. To use the
options, call py. textwap.TextWrapper with keyword arguments described at https://
docs.python.org/2/library/textwrap.html#textwrap.TextWrapper.

Create keyword arguments using the MATLAB pyargs function with a comma-
separated list of name/value pairs. width formats the text to be 30 characters wide.
The initial_indent and subsequent_indent keywords begin each line with the
comment character, %, used by MATLAB.

tw = py.textwrap.TextWrapper(pyargs(.- - -

1-5

https://docs.python.org/2/library/textwrap.html#textwrap.TextWrapper
https://docs.python.org/2/library/textwrap.html#textwrap.TextWrapper

1

Python Interface Topics

"initial_indent®, "% -,

"subsequent_indent®, "% *,

"width®, int32(30)));
wrapped = wrap(tw,T);

Convert to a MATLAB argument and display the results.

wrapped = cellfun(@char, cell(wrapped), “UniformOutput®, false);
fprintf("%s\n", wrapped{:})

% MATLAB(R) is a high-level

% Blanguage and interactive

% environment for numerical

% computation, visualization,
% and programming. Using

% MATLAB, you can analyze

% data, develop algorithms,

% and create models and

% applications. The language,
% tools, and built-in math

% functions enable you to

% explore multiple approaches
% and reach a solution faster
% than with spreadsheets or

% traditional programming

% languages, such as C/C++ or
% Java(TMm) .

Use Beautiful Soup, a Third-Party Python Module

This example shows how to use a third-party module, Beautiful Soup, a tool for parsing
HTML. If you want to run the example, you need to install this module using apt-get,
pip, easy_install, or other tool you use to install Python modules.

First, find a Web page that includes a table of data. This example uses a table of the
population of the world from the following English-language Wikipedia site. This
example assumes the first table contains the population data, and assumes the country
name is in the second column and the third column contains the population.

html
soup

webread("http://en_wikipedia.org/wiki/List_of _countries_by population®);
py -bs4 _BeautifulSoup(html);

Next, extract all of the table data from the HTML, creating a cell array. If you want a
deeper understanding of what is happening, refer to the documentation for Beautiful
Soup.

http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/

Call Python from MATLAB

tables = soup.find_all("table®);
t = cell(tables);

The first table is the one of interest; extract its rows.

C
C

cell(t{1}.find_ all("tr"));
cell(c)";

Now loop over the cell array, extracting the country name and population from each row,
found in the second and third columns respectively.

countries = cell(size(c));
populations = nan(size(c));

for i = 1:numel(c)
row = c{i};
row = cell(row.find_all("td"));
it ~isempty(row)
countries{i} = char(row{2}.get_text());
populations(i) = str2double(char(row{3}.get_text()));
end
end

Finally, create a MATLAB table from the data, and eliminate any lingering nan values;
these NaNs represented invalid rows when importing the HTML.

data = table(countries, populations,
"VariableNames®, {"Country®, “Population®});
data = data(~isnan(data.Population), :);

Trim the tail end of the table and make a pie chart

restofWorldPopulation = sum(data.Population(1l:end));

data = data(1:10, :);

data = [data;table({" Rest of World"}, restofWorldPopulation,
"VariableNames®, {"Country®, “Population®})]

pie(data.Population)

legend(data.Country, "Location®, "EastOutside®);

title("Distribution of World Population®)

data =

Country Population

1 Python Interface Topics

18%

China[8]"
India®

United States”
Indonesia”
Brazil*®
Pakistan®
Nigeria“
Bangladesh*
Russia[9]*
Japan*®

Rest of World*

NRRRPRPREPNONNWRR

19%

4%

4%
3% 3% 2% 2%

.3679e+09
.2624e+09
.1908e+08
.5216e+08
.0344e+08
.8813e+08
.7852e+08
.5731e+08
.4615e+08
.2709e+08
.9697e+09

Distribution of World Population

0
20 {,nz Yo

41%

I China[s)
I ndia
I United States
I indonesia
- Brazil
- Pakistan
[Nigeria
[Bangladesh
[1 Russia[9]
[Japan
[:::::] Rest of World

Call Python from MATLAB

Learn More

It is sufficient to remember that Python is yet another potential source of libraries for the
MATLAB user. If you want to learn about moving data between MATLAB and Python,
including Python data types such as tuples and dictionaries, see “Call Python Libraries”.

1-9

1 Python Interface Topics

Call User-Defined Python Module

1-10

This example shows how to call methods from the following Python module. This module
contains functions used by examples in this documentation.

Change your current folder to a writable folder.
Open a new file in MATLAB Editor.

Copy these commands and save the file as mymod. py.

mymod.py

"""""Python module demonstrates passing MATLAB types to Python functions

def search(words):
"""Return list of words containing "son
newlist = [w for w in words if "son”™ in w]
return newlist

def theend(words):
"""*Append "The End® to list of words'™"
words.append(*"The End")
return words

From the MATLAB command prompt, add the current folder to the Python search path.
it count(py.sys.path,"") ==

insert(py-sys.path,int32(0),"");
end

In the mymod. py source file, read the function signature for the search function. The
function takes one input argument, words.

def search(words):

Read the function help in the mymod. py source file. According to the Python website
documentation, help is in “a string literal that occurs as the first statement in a module,
function, class, or method definition.” The help for search is:

""" Return list of words containing "son®"""*
The function returns a list.

Create an input argument, a list of names, in MATLAB.

Call User-Defined Python Module

=
1l

py-list({"Jones”, "Johnson”,"James"})

Python list with no properties.
["Jones®, "Johnson®, “James”]

Call the search function. Type py . in front of the module name and function name.
names = py.mymod.search(N)

names =
Python list with no properties.
[“Johnson~]
The function returns a py. list value.

The original input, N is unchanged.
N
N =
Python list with no properties.

["Jones®, "Johnson®, "James®]

Related Examples
. “Reload Modified User-Defined Python Module” on page 1-50

External Websites
. PEP 257 -- Docstring Conventions

1-11

http://legacy.python.org/dev/peps/pep-0257/

1 Python Interface Topics

Use Python Numeric Types in MATLAB

This example shows how to use Python numbers in MATLAB. The trigonometry
functions in the math module return Python float types. MATLAB automatically
converts this type to double.

pynum = py.math.radians(90)
class(pynum)

pynum =
1.5708

ans =
double

More About
. “Pass Data to Python” on page 1-57

1-12

Call Python Methods with Numeric Arguments

Call Python Methods with Numeric Arguments

This example shows how to call the Python math.fsum function, which sums the
floating-point values in an interable input argument.

Open the MATLAB patients.mat sample data file and read the numeric array,
Height.

load patients.mat
class(Height)

ans =
double

MATLAB automatically converts the numeric values to Python numeric values. However,
Height is a 100-by-1 array, and MATLAB must pass a 1-by-N array to a Python
iterable argument.

size(Height)
ans =
100 1
Transform Height to a 1-by-N matrix before calling fsum.
py.math.fsum(Height™)

ans =
6707

More About
. “Pass Data to Python” on page 1-57

1-13

1 Python Interface Topics

Default Numeric Types

1-14

By default, a number in MATLAB is a double type. By default, a number (without a
fractional part) in Python is an integer type. This difference can cause confusion when
passing numbers to Python functions.

For example, when you pass the following MATLAB numbers to the Python datetime
function, Python reads them as float types.

d = py.datetime.date(2014,12,31)

Python Error: TypeError: integer argument expected, got float
Explicitly convert each number to an integer type:

d = py.datetime.date(int32(2014),int32(12), int32(31))

d

Python date with properties:

day: 31
month: 12
year: 2014
2014-12-31

Use Python array Types in MATLAB

Use Python array Types in MATLAB

This example shows how to sum the elements of a Python array.array of type double.
Suppose that you have a Python function that returns the following array, P.
P =

Python array with properties:

itemsize: 8
typecode: [1x1 py.str]

array(*d®, [1.0, 2.0, 3.0, 4.0, 5.0])
Convert P to a MATLAB array of type double.
A = double(P);
Sum the elements of A.
sum(A)
ans =

15

1-15

1 Python Interface Topics

Pass MATLAB String to Python Method

1-16

This example shows how to display the contents of a folder using the Python
os. listdir method. The listdir method returns a list containing the names of the
entries in the folder given by the path input argument.

Create a MATLAB string representing a valid folder.
folder = fullfile(matlabroot, "help”, "examples”);

Pass the string to the os. listdir function. MATLAB automatically converts folder to
the Python str type.

F py-os.listdir(folder)

F =
Python list with no properties.
["graphics®, "graphics2®, "matlab®]

MATLAB displays a list of folders, based on your product.

More About
. “Pass Data to Python” on page 1-57

Use Python str Type in MATLAB

Use Python str Type in MATLAB

This example shows how to use the Python path separator character (;).

p py -os.path.pathsep
p =

Python str with no properties.

In MATLAB, a Python character is a py . str variable.

MATLAB uses the same path separator character, ;.

c pathsep

CcC =

Compare the MATLAB variable type to the Python type.
isequal(class(p),class(c))
ans =
0
A py.str type is not equivalent to a MATLAB char type.

Convert p to a MATLAB type and append the character to a file name.

L ["myfile® char(p)]
f =
myfile;

More About

. “Explicit Type Conversions” on page 1-60

1-17

1 Python Interface Topics

Pass MATLAB Backslash Control Character

1-18

This example shows how to pass the backslash control character (\) to a Python str
type.

Insert the new line control character, \n, by calling the MATLAB sprintf function.
py.str(sprintf("The rain\nin Spain."))
ans =

Python str with no properties.

The rain
in Spain.

Python replaces \n with a new line.

Without the sprintf function, both MATLAB and Python interpret \ as a literal
backslash.

py-str("The rain\nin Spain.")
ans =
Python str with no properties.
The rain\nin Spain.
Pass this string to a Python string method, split.
split(py.-str("The rain\nin Spain.~"))
ans =
Python list with no properties.
["The®", "rain\\nin", "Spain."]

Python treats the MATLAB string as a raw string and adds a \ character to preserve the
original backslash.

Create Python list Variable

Create Python list Variable

This example shows how to create a 1ist variable to pass to a Python function.
students = py.list({"Robert”, "Mary®, "Joseph®})

students =

Python list with no properties.
["Robert®, "Mary®, "Joseph™]
Display number of students in the list.
n = py.len(students)

n =

More About

. “List, Tuple, and Dictionary Types” on page 1-67

1-19

1 Python Interface Topics

Use Python list Type in MATLAB

1-20

This example shows how to display folders on your system using the MATLAB disp
function on the Python sys.path variable. sys.path is a list type.

Create a Python list, P, of folders on the Python search path.

P = py.sys.path;
class(P)

ans =
py.-list

Convert list P to a MATLAB type. The first step is to convert the list to a cell array of
folder names, cP.

cP = cell(P);
class(cP)

ans =
cell

Each folder name is a Python string.
class(cP{1})

ans =
py.str

Convert the Python strings in cP to MATLAB strings using the char function. Put the
values into a new cell array, cel IP. Display the folder names.

cellP = cell(1, numel(cP));

for n=1:numel(cP)
strP = char(cP{n});
cellP(n) = {strP};
disp(strP)

end

C:\Python27\lib\site-packages\protobuf-2.5.0-py2.7.egg
C:\windows\system32\python27._zip
C:\Python27\DLLs

Use Python list Type in MATLAB

C:\Python27\lib
C:\Python27\lib\plat-win
C:\Python27\lib\lib-tk
C:\Python27
C:\Python27\lib\site-packages

MATLAB displays information specific to your Python installation.

Alternatively, create cel IP using the cel 1fun function to combine the conversion
functions.

cellP = cellfun(@char,cell(P), "UniformOutput”,false);
Display the folder names.
for n=1:py.len(P)

disp(cellP{n})
end

See Also

cell | cellfun

More About
. “Handle Data Returned from Python” on page 1-60

1-21

1 Python Interface Topics

Use Python List of Numeric Types in MATLAB

1-22

This example shows how to convert a Python list of numeric values into a MATLAB
array of double.

A Python list contains elements of any type and can contain elements of mixed types. The
MATLAB double function used in this example assumes all elements of the Python list
are numeric.

Suppose that you have a Python function that returns the following list of integers, P.
p =

Python list with no properties.

[1, 2, 3, 4]

Display the numeric type of the values.
class(P{1})
ans =
int64
Convert P to a MATLAB cell array.
cP = cell(P);

Convert the cell array to a MATLAB array of double.

A = cellfun(@double,cP)
A =

1 2 3 4
See Also

cell | cellfun

Related Examples
. “Use Python array Types in MATLAB” on page 1-15

Pass Cell Array as Python Sequence Type

Pass Cell Array as Python Sequence Type

This example shows how to pass a MATLAB cell array to a Python function.

The following Python module contains the function theend, which appends a string
to the end of a list. Create a text file, copy this Python module, and save the file as
mymod . py in a writable folder, for example, your prefdir folder.

mymod.py
""" Python module demonstrates passing MATLAB types to Python functions"'"
def search(words):

""" Return list of words containing "son®"""

newlist = [w for w in words if "son”™ in w]

return newlist

def theend(words):
""" Append "The End" to list of words™""
words.append("The End")
return words

Add the folder containing mymod . py to the Python search path using the append method
of the list type.

P = py.sys.path;
append(P,prefdir);

Open the MATLAB sample data file, creating the cell array, LastName.
load patients.mat

Convert the cell array to a 1-by-N py. list array.

L = py.list(LastName");
class(L)

ans =
py-list

Call mymod. theend on the list.
py -mymod . theend(L) ;

The Python function does not return variable L as an output argument. Instead, the
function updates the value by reference.

1-23

1 Python Interface Topics

View the last item in the list.
L{end}

ans =

Python str with no properties.
The End

You can pass variable L to other Python functions.

Related Examples
. “Use Python list Type in MATLAB” on page 1-20

1-24

Read Element of Nested Tist Type

Read Element of Nested 1ist Type

This example shows how to access an element of a Python list containing list
elements.

matrix = py.list({{1, 2, 3, 4},{ " hello”,*world"},{9, 10}});
Display element "world®, at index (2,2).
disp(char(matrix{2}{2}))

world

More About

“Multilevel Indexing to Access Parts of Cells”

1-25

1 Python Interface Topics

Use Python tuple Type in MATLAB

This example shows how to use a Python tuple, returned by the os.path.split
function, in MATLAB.

pn py-os.path_split("C:\Program Files\MATLAB\R2014a\help\examples®)
pn =
Python tuple with no properties.
("C:\\Program Files\\MATLAB\\R2014a\\help®, "examples®)

Convert the parts of the folder to MATLAB strings and display the results.

head = char(pn{1})
tail = char(pn{end})
head =

C:\Program Files\MATLAB\R2014a\help

tail =

examples

1-26

Create Python tuple Variable

Create Python tuple Variable

This example shows how to create a tuple variable to pass to a Python function.
student = py.tuple({"Robert®,19,"Biology~})

student =

Python tuple with no properties.

("Robert®, 19.0, "Biology")

More About

. “List, Tuple, and Dictionary Types” on page 1-67

1-27

1 Python Interface Topics

Create Singleton Python tuple Variable

1-28

This example shows how to create a tuple variable with a single element.
subject = py.tuple({"Biology"})
subject =
Python tuple with no properties.
("*Biology~.,)

A tuple with one element has a trailing comma.

Create Python dict Variable

Create Python dict Variable

This example shows how to create a dict variable to pass to a Python function.
studentlID = py.dict(pyargs(“Robert”,357, "Mary*,229, "Jack",391))

studentlID =
Python dict with no properties.

{"Robert": 357.0, "Jack": 391.0, "Mary®": 229.0}

More About

. “List, Tuple, and Dictionary Types” on page 1-67

1-29

1 Python Interface Topics

Pass dict Argument to Python Method

1-30

This example shows how to change a value in a dict variable using the Python update
method.

Create a menu of items and prices.
menu = py.dict(pyargs(“soup”,3.57, "bread”,2.29, "bacon”,3.91, "salad”,5.00));
Update the price for bread using the Python dict type update method.

update(menu,py.dict(pyargs(“bread”,2.50)))
menu

menu =
Python dict with no properties.

{"soup”: 3.57, "bacon®: 3.91, "bread": 2.5, "salad": 5.0}

Use Python dict Type in MATLAB

Use Python dict Type in MATLAB

This example shows how to convert numerical values of a Python dict variable into a
MATLAB array.

Suppose that you have a Python function, myfunc, that returns menu items and prices in
a dictionary, dict, type.

order = myfunc;
order =
Python dict with no properties.
{"soup”: 3.57, "bacon®": 3.91, "salad": 5.0, "bread": 2.29}

A dictionary has pairs of keys and values. Use the Python keys function to display the
menu items.

keys(order)
ans =
Python list with no properties.
["soup®, "bacon®, "salad®”, "bread”]
Use the Python values function to display the prices.
values(order)
ans =
Python list with no properties.
[3.57, 3.91, 5.0, 2.29]
Use the cell function to convert the Python list to a MATLAB variable.

cell(values(order))

©
1

[3.5700] [3.9100] [5] [2.2900]

1-31

1 Python Interface Topics

1-32

Convert the prices to a MATLAB array.
prices = cellfun(@double,p)
prices =
3.57 3.91 5.00
Calculate the total.
total = sum(prices)
total =

14.77

2.

29

Convert Python dict Type to MATLAB Structure

Convert Python dict Type to MATLAB Structure

This example shows how to plot numeric data from a Python dictionary.
Suppose a Python function returns a variable, patient, with the following values.
patient
patient =
Python dict with no properties.
{"testl": array("d", [79.0, 75.0, 73.0]),
"test3": array("d", [220.0, 210.0, 205.0]),

"test2": array("d®, [180.0, 178.0, 177.5]),
"name” : “"John Doe"}

Convert patient to a MATLAB structure.

P

struct(patient)
P =

testl: [1x1 py.array.array]

test3: [1x1 py.array.array]

test2: [1x1 py.array.array]

name: [1x8 py.str]

The values of the fields remain as Python types.
Plot the test results after converting the numeric data to type double.

bar([double(P.testl) ;double(P.test2);double(P.test3)])

MATLAB displays a bar graph.

1-33

1 Python Interface Topics

Pass Keyword Arguments
The Python built-in print function has keyword arguments, sep, end, and file.
print(*objects, sep=" ", end="\n", file=sys._stdout)
The following examples use the default value for File.

Create some string variables.

x1 = py.str(“c:");
X2 = py.os.curdir;
X3 = py.os.getenv("foo");

py-print(xl,x2,x3)

c: . None

To display the values on separate lines, use newline, \n, as a separator.
py.print(xl,x2,x3,pyargs(“sep”,sprintf("\n")))

c:

None

Use the following statement to change sep to an empty string and change the end value
to display THE END.

py.print(xl,x2,x3,pyargs(“end”, sprintf(® THE END\n"), "sep”,py-str))

c:.None THE END

See Also
pyargs

External Websites

. python.org print function

1-34

https://docs.python.org/2/library/functions.html#print

Pass Python Function to Python map Function

Pass Python Function to Python map Function

This example shows how to display the length of each word in a list.
Create a list of days of the work week.
days = py.list({"Monday~, "Tuesday”, "Wednesday"®, "Thursday®, "Friday"});

Apply the Python len function to the py.map function to display the length of each word.
Use the MATLAB function handle notation, @, to indicate py. len is a function.

py -map(@py - len,days)

ans =
Python list with no properties.
[6., 7, 9, 8, 6]
Python version 2.7 returns a list.
Python versions 3.x return a map object. To display the contents, type:

py - list(py.map(@py - len,days))

ans =
Python list with no properties.

[6. 7, 9, 8, 6]

External Websites

. python.org map function

1-35

https://docs.python.org/2/library/functions.html#map

1 Python Interface Topics

Index into Python String

This example shows how to display the first character of a Python str variable. The
example compares indexing into a MATLAB string with indexing into the Python
variable.

Create a MATLAB string and display the first character.

str = "myfile~;
str(l)

ans =
m
Convert the string to a Python str type and display the first character.

pstr = py.str(str);
pstr(1)

ans =
Python str with no properties.

m

1-36

Index into Python List

Index into Python List

This example shows how to display the last element in a Python list variable. The
example compares indexing into a MATLAB cell array with indexing into a Python list.

Create a MATLAB cell array and display the last element.

C = {1,2,3,4};
n = C(end)
n =

[4]

MATLAB returns a cell array.

Display the contents of the last element.

n C{end}
n =
4
Convert the cell array to a Python list.
i = py.list(0)
i =
Python list with no properties.

[1.0, 2.0, 3.0, 4.0]

Display the last element.

n li(end)
n =
Python list with no properties.
[4.0]

MATLAB returns a list.

1-37

1 Python Interface Topics

Display the contents of the last element.
n = li{end}

n =

1-38

Index into Python Tuple

Index into Python Tuple

This example shows how to display elements in a tuple.

Create a tuple and display the first two elements.

t = py.tuple({"a","bc",1,2,"def"});
t(1:2)

ans =
Python tuple with no properties.
(fa®, "bc")

MATLAB returns a tuple.

1-39

1 Python Interface Topics

Index into Python dict

1-40

This example shows how to display an element in a dictionary.

Create a dictionary variable.

customers = py.dict

customers

Python dict with no properties.

{3

Populate the dict with customer names and account numbers.

customers{"Smith"} = Int32(2112);
customers{“Anderson”} = int32(3010);
customers{“Audrey"} = int32(4444);
customers{“Megan"} = Int32(5000);

customers =

Python dict with no properties.

{"Audrey®: 4444, *Anderson®: 3010, *"Smith": 2112, “Megan-®:

The output depends on your Python version.

Read the account number for customer Anderson.

acct = customers{"Anderson”}

acct
3010

The result is a double.
class(acct)

ans =

double

5000}

Use Python List as Values in for Loop

Use Python List as Values in for Loop

This example shows how to display elements of a Python list.

1i = py.list({1,2,3,4});
for n = li

disp(n{1})

end

1
2
3
4

Variable n is a py. list with one element.

More About

“Access Elements in Python Container Types” on page 1-43

141

1 Python Interface Topics

Display Stepped Range of Elements

This example shows how to use an incremental step in indexing.

If you use slicing to access elements of a Python object, the format in Python is
start:stop:step. In MATLAB, the syntax is of the form start:step:stop

li = py.list({"a","bc",1,2,"def"});
li(1:2:end)

ans =

Python list with no properties.

[Fa®, 1.0, "def"]

1-42

Access Elements in Python Container Types

Access Elements in Python Container Types

In this section...

“Sequence Types” on page 1-43

“Mapping Types” on page 1-44

“Size and Dimensions” on page 1-44

“Array Support” on page 1-45

“Use Zero-Based Indexing for Python Functions” on page 1-45

Typically, to work with a Python variable in MATLAB, you convert the Python object
to a MATLAB array, and then index into the array as needed. Sometimes, you want to
preserve the Python object.

A Python container is typically a sequence type (list or tuple) or a mapping type
(dict). In Python, use square brackets [] or the operator.getitem function to access
an element in the container.

Sequence Types
Python sequence types behave like MATLAB cell arrays.

Get a subsequence using smooth-parenthesis () indexing.

Ii = py.list({1,2,3.4});
res = 1i1(2:3)

res =
Python list with no properties.
[2.0, 3.0]
Use curly braces {} to get the contents of the element.
res = li{l1}

res

1-43

1 Python Interface Topics

1-44

Mapping Types
For mapping types, use curly braces with the Python key argument.

patient = py.dict(pyargs(“name”,"John Doe","billing",127));
patient{"billing"}

ans =

127

Size and Dimensions
MATLAB displays information for your system.

P = py.sys.path;
class(p)

ans =
py.-list
Index into p.

pP(L)
p{1}

ans =
Python list with no properties.

[“c:\\work™]

ans =
Python str with no properties.
c:\work

Inspect dimensions.

len = length(p)
sz = size(p)

Access Elements in Python Container Types

len =

11
Sz =

1 11
Array Support

MATLAB converts a sequence type into a 1-by-N array.

Use Zero-Based Indexing for Python Functions

Python uses zero-based indexing; MATLAB uses one-based indexing. When you
call a Python function, such as py.sys.path, the index value of the first element
of a Python container, X, is INt32(0). The index value for the last element is
int32(py.-len(x)-1).

Related Examples

. “Index into Python String” on page 1-36
. “Index into Python List” on page 1-37

. “Index into Python Tuple” on page 1-39
. “Index into Python dict” on page 1-40

More About

. “Explicit Type Conversions” on page 1-60
. “Limitations to Indexing into Python Objects” on page 1-69
. “Pass MATLAB Backslash Control Character” on page 1-18

1-45

1

Python Interface Topics

View Python Numeric Values

1-46

In this section...

“Why Do I See Properties When I Display a Number?” on page 1-46
“What Is the L Character Attached to a Number?” on page 1-46

Why Do | See Properties When | Display a Number?

MATLAB displays all Python types as objects, including a list of properties of the object.
py.int(5)
ans =
Python int with properties:
denominz_itor:
imag:

numerator:
real:

[N e

5

MATLAB displays the expected output value (5) on the last line.

What Is the L Character Attached to a Number?

Python appends an L character to the representation (display) of a long data type. For
example, using Python version 2.7, type:

py -repr(py.long(5))

ans =
Python str with no properties.

5L

MATLAB displays Python str and appends L for any Python function that uses the
repr function to display its output.

View Python Numeric Values

You treat a long data type like any numeric type. For example, add two numbers:
py-long(5) + py.long(2)
ans =
Python long with properties:
denominator: [1x1 py-long]
imag: [1x1 py-long]
numerator: [1x1 py.long]
real: [1x1 py.long]
7

The answer is the number 7.

1-47

1 Python Interface Topics

Call Methods on Python Variables

This example shows how to update a Python list of folder names using the append

method.

Create a list of folders, P, using the Python sys.path variable.

P = py.sys.path;
Display the Python functions for a 1ist type.
methods(P)

Methods for class py.list:

append count display ge insert
cell details eq gt le
char disp extend index list

Methods of py.list inherited from handle.

Read the documentation for append.
py-help("list.append™)

Help on method_descriptor in list:

list.append = append(...)

L.append(object) -- append object to end

Add the current folder to the end of the path.

append(P,pwd)

plus reverse
pop sort
remove

Display number of folders on the path. The list has py. len elements.

py-len(P)
ans =
Python int with properties:
real: [1x1 py.int]

denominator: [1x1 py-.int]
imag: [1x1 py.int]

1-48

Call Methods on Python Variables

numerator: [1x1 py.int]
11

11 is the number of folders on this path. Your value might be different. The type of this
number is py. int.

Related Examples
. “Use Python list Type in MATLAB” on page 1-20

1-49

1 Python Interface Topics

Reload Modified User-Defined Python Module

1-50

This example shows how to reload a modified Python module.

When you use this workflow, MATLAB deletes all variables, scripts, and classes in the
workspace. For more information, see the clear classes function.

The Python calling syntax to reload the module depends on your Python version. To
verify your Python version, use the MATLAB pyversion function.

Create Python Module
Change your current folder to a writable folder. Open a new file in MATLAB Editor.

Copy these statements defining a myfunc function and save the file as mymod. py.

def myfunc(Q):
"""'Display message.
return “version 1°

Call myfunc.
py -mymod . myfunc
ans =
Python str with no properties.
version 1
Modify Module
Modify the function, replacing the return statement with the following:
return “version 2*
Save the file.
Unload Module

clear classes

MATLAB deletes all variables, scripts, and classes in the workspace.

Reload Modified User-Defined Python Module

Import Modified Module
mod = py.importlib.import_module("mymod®);
Reload Module in Python Version 2.7
py -reload(mod);
Reload Module in Python Version 3.3
py.imp.reload(mod);
Reload Module in Python Version 3.4
py .- importlib.reload(mod);
Call Function in Updated Module
Call the updated myfunc function.
py -mymod . myfunc
ans =

Python str with no properties.

version 2

See Also

clear | pyversion

Related Examples
. “Call User-Defined Python Module” on page 1-10

1-51

1 Python Interface Topics

System and Configuration Requirements

1-52

In this section...

“Python Version Support” on page 1-52

“Set Python Version on Windows Platform” on page 1-52

“Set Python Version on Mac and Linux Platforms” on page 1-53
“64-bit/32-bit Versions of Python on Windows Platforms” on page 1-53
“Requirements for Building Python Executable” on page 1-53

Python Version Support

To call Python modules in MATLAB you must have a supported version of the reference
implementation (CPython) installed on your system. MATLAB supports the following
versions:

* Version 2.7
+ Version 3.3

+ Version 3.4

To determine if your system has a supported version, use the pyversion function. The
value set by pyversion is persistent across MATLAB sessions.

You cannot switch between versions of Python in a single MATLAB session. MATLAB
automatically selects and loads a Python version when you type a Python command, such
as:

py - funcname

If you want to change versions, restart MATLAB and then run pyversion with the new
version information.

Set Python Version on Windows Platform

On Windows platforms, use either:

pyversion version

or

System and Configuration Requirements

pyversion executable

Note: If you downloaded a Python interpreter, but did not register it in the Windows
registry, use:

pyversion executable

Set Python Version on Mac and Linux Platforms

To set the version, type:

pyversion executable

where executable is the full path to the Python executable file.

64-bit/32-bit Versions of Python on Windows Platforms

The architecture of Python must match the architecture of MATLAB. If you run a 64-bit
version of MATLAB, download a 64-bit version of Python. If you run a 32-bit version of
MATLAB, download a 32-bit version of Python.

Note: On the Python download website, downloads for Microsoft Windows platforms are
32-bit versions by default. To download the 64-bit version, choose options with the name
"Windows x86-64 MSI installer”.

Requirements for Building Python Executable

On Linux® and Mac systems, if you build the Python executable, configure the build with
the —-enable-shared option.

See Also

pyversion

External Websites
. https://www.python.org/downloads

1-53

https://www.python.org/downloads

1 Python Interface Topics

Create a Python Obiject

1-54

The syntax to create a Python object pyObj is:

pyObj = py.modulename.ClassName(varargin)

where varargin is the list of constructor arguments specified by the __init__ method
in ClassName.

In MATLAB, Python objects are reference types (handle objects) and do not adhere to the
MATLAB copy-on-assignment and pass-by-value rules. When you copy a handle object,
only the handle is copied and both the old and new handles refer to the same data. When
you copy a MATLAB variable (a value object), the variable data is also copied. The new
variable is independent of changes to the original variable.

The following example creates an object of the TextWrapper class in the Python
standard library textwrap module.

Read the constructor signature, _init__

py-help(" textwrap.TextWrapper.__init__ ")

Help on method __ init__ in textwrap.TextWrapper:
textwrap.TextWrapper._ _init = _ init_ (self, width=70, initial_indent="",

Create a default TextWrapper object. You do not need to pass any input arguments
because each argument has a default value, identified by the equal sign (=) character.

tw

py-textwrap.TextWrapper;
tw =
Python TextWrapper with properties:

width: 70
subsequent_indent: [1x1 py.str]
wordsep_simple_re_uni: [1x1 py._sre.SRE_Pattern]
fix_sentence_endings: 0O
break_on_hyphens: 1
break_long_words: 1
wordsep_re_uni: [1x1 py._sre.SRE_Pattern]
initial_indent: [1x1 py.str]
expand_tabs: 1

subsequent

Create a Python Object

replace_whitespace: 1
drop_whitespace: 1

<textwrap.TextWrapper instance at 0x000000006D58F808>

To change a logical value, for example, the break _long_words property, type:

tw_break_long_words = O;

To change a numeric value, for example, the width property, first determine the numeric
type.

class(tw.width)
ans =

int64

By default, when you pass a MATLAB number to a Python function, Python reads it
as a float. If the function expects an integer, Python might throw an error or produce
unexpected results. Explicitly convert the MATLAB number to an integer. For example,

type:

tw.width = int64(3);

Read the help for the wrap method.
py-help("textwrap.TextWrapper.wrap®)

Help on method wrap in textwrap.TextWrapper:

textwrap.TextWrapper.wrap = wrap(self, text) unbound textwrap.TextWrapper method
wrap(text : string) -> [string]

Reformat the single paragraph in "text® so it fits in lines of
no more than "self.width® columns, and return a list of wrapped
lines. Tabs in "text" are expanded with string.expandtabs(),
and all other whitespace characters (including newline) are
converted to space.

Create a list of wrapped lines, w, from input string, T.
T = "MATLAB® is a high-level language and interactive environment for numerical comput:

w = wrap(tw,T);
whos w

1-55

1 Python Interface Topics

Name Size Bytes Class Attributes
W 1x1 112 py.list

Convert the py. list to a cell array and display the results.

wrapped = cellfun(@char, cell(w), “UniformOutput®, false);
fprintf("%s\n", wrapped{:})

MATLAB®

is

a

high-

level
language
and
interactive
environment
for
numerical
computation,
visualization,
and
programming.

Although width is 3, setting the break long_words property to false overrides the
width value in the display.

Related Examples
. “Call Python from MATLAB” on page 1-4
. “Pass Keyword Arguments” on page 1-34

More About
- “MATLAB Objects”

1-56

Pass Data to Python

Pass Data to Python

In this section...

“MATLAB Type to Python Type Mapping” on page 1-57
“MATLAB Vector to Python Mapping” on page 1-58
“Unsupported MATLAB Types” on page 1-58

MATLAB Type to Python Type Mapping

When you pass MATLAB data as arguments to Python, MATLAB converts the data into
types that best represent the data to the Python language.

MATLAB Input Argument Type — Resulting Python Type
Scalar Values Only

double float

single

Complex single complex

Complex double

int8 int

uint8

intl6

uintl6

int32

uint32 int

int64 long (version 2.7 only)
uint64

NaN float(nan)

Inf float(inf)
logical bool

Structure dict

Python object — py.type type

function handle @py.module.function, to |\module.function
Python functions only

1-57

1 Python Interface Topics

1-58

MATLAB Vector to Python Mapping

MATLAB Input Argument Type — Resulting Python Type
1-by-N Vector

double array.array(d-")
single array.array("f")
int8 array.array("b")
uint8 array.array("B")
intl6 array.array("h")
uintlé array.array("H")
int32 array.array("i")
uint32 array.array("1%)
int64 (Not supported for Python 2.7 on array.array("q")
Windows)

uint64 (Not supported for Python 2.7 on |array.array("Q")
Windows)

char array containing values greater than |unicode
intmax("uint8") (version 2.7 only)

char array str

cell vector tuple

Unsupported MATLAB Types

The following MATLAB types are not supported in Python.

Unsupported MATLAB Types

Multidimensional arrays (numeric, char, or cell)

Structure arrays

Complex, scalar integers or arrays

Sparse arrays

Logical vectors

Pass Data to Python

Unsupported MATLAB Types

categorical,
table,
containers.Map,
datetime types

MATLAB objects
meta.class (py.class)

Related Examples
“Pass dict Argument to Python Method” on page 1-30

More About
“Handle Data Returned from Python” on page 1-60

1-59

1 Python Interface Topics

Handle Data Returned from Python

1-60

In this section...

“Automatic Python Type to MATLAB Type Mapping” on page 1-60

“Explicit Type Conversions” on page 1-60

Automatic Python Type to MATLAB Type Mapping

The following table shows how MATLAB converts data returned from Python into

MATLAB types.

Python Return Type, as Displayed in Python

Resulting MATLAB Type — Scalar

bool logical
int (version 2.7 only). For Python versions | int64
3.x Int, you must convert explicitly.

float double

complex

Complex double

All other Python types — type

Python object — py.type

Explicit Type Conversions

MATLAB provides the following functions to convert Python data types to MATLAB

types manually.

Python Return Type or Protocol, as Displayed
in MATLAB

MATLAB Conversion Function

py.-str (version 2.7) char
uint8
py -str (version 3.x) char
py-unicode char
Object with ___str___ method char
py -bytes uint8

Handle Data Returned from Python

Python Return Type or Protocol, as Displayed
in MATLAB

MATLAB Conversion Function

py-int

double
or
int64

py-long

double
or
int64

py.array.array?®

numeric
double
single
int8
uint8
intlé
uintl6
int32
uint32
int64
uint64

Sequence protocol; for example, py. list
and py.tuple

cell

Mapping protocol; for example, py.dict

struct

a. You can convert py.array.array of any format to the MATLAB type you want.

More About
. “Pass Data to Python” on page 1-57

1-61

1 Python Interface Topics

How MATLAB Represents Python Operators

MATLAB supports the following overloaded operators.

Python Operator Symbol Python Methods MATLAB Methods
+ (binary) _add__, radd__ plus, +

- (binary) _sub_, rsub_ minus, -

* (binary) _mul__, rmul__ mtimes, *

/ __truediv__, mrdivide, /

__rtruediv__

== _eq__ eq, ==

> _gt__ gt, >

< e b It, <

1= ne__ ne, ~=

>= _ge_ ge, >=

<= _le le, <=

- (unary) __neg__ uminus, -a

+ (unary) __pos___ uplus, +a
The following Python operators are not supported.

Python Operator Symbol Python Method

% __mod__, rmod_

*x __poOwW_, _ rpow___

<< __Ishift__, riIshift__
>> __rshift__, rrshift__
& _and__, rand_ _

N __XOr__, _rxor__

| __or__, ror__

// (binary) __Floordiv__, rfloordiv__
+= (unary) __iadd

1-62

How MATLAB Represents Python Operators

Python Operator Symbol Python Method
-= (unary) __isub__

*= (unary) __imul__

/= (unary) __itruediv__
//= (unary) __ifloordiv__
%= (unary) __imod___

**= (unary) __ipow__

<<= (unary) __ilshift__
>>= (unary) __irshift__
&= (unary) __iand__

A= (unary) __ixor__

1= (unary) __ior__

~ (unary) __invert__

1-63

1 Python Interface Topics

Execute Callable Python Obiject

To execute a callable Python object, use the Feval function. For example, if instance obj
of a Python class is callable, replace the Python syntax obj(x1, ..., Xn) with one of
the following MATLAB statement:

feval(obj,x1, ..., xn)

obj(x1, ..., xn)

See Also

feval

1-64

Python import and MATLAB import Commands

Python import and MATLAB import Commands

In this section...

“Do Not Type “import pythonmodule” on page 1-65
“Use MATLAB import to Shorten Class or Function Names” on page 1-65

Do Not Type “import pythonmodule”
MATLAB automatically loads Python when you type:
py - command

Do not type “import pythonmodule” in MATLAB.

The import statement does not have the same functionality in MATLAB as in Python.
Python uses the import statement to load and make code accessible. MATLAB uses the
import function to refer to a class or function without using the package name.

Use MATLAB import to Shorten Class or Function Names

The Python from. . . import statement lets you reference a module without using the
fully qualified name. Replace the following Python statement:

from x import y

with the MATLAB command

import x.y

where y is a class name or function name you want to use.

For example, the Python textwrap module formats blocks of text.
S = py-textwrap.wrap("This is a string”);

Since wrap is not a MATLAB function, you can shorten the calling syntax using the
import function. After calling this command, you do not need to type the package (py)
and module (textwrap) names.

import py.textwrap.wrap

1-65

1 Python Interface Topics

S = wrap("This is a string”);

Note: Do not call:
import py.*

If you do, MATLAB calls the Python function instead of the MATLAB function of the
same name.

If you call this command, you must call the MATLAB command:

clear import

See Also

import

1-66

List, Tuple, and Dictionary Types

List, Tuple, and Dictionary Types

The following table shows the commands for creating list, tuple, and dict types. The
commands on the left are run from the Python interpreter. The commands on the right

are MATLAB commands.

Python list — [] MATLAB py . list

[FRobert®, "Mary®, "Joseph"] |py-list({"Robert", "Mary","Joseph®"})
[[1.2].[3.4]1] py-list({py.-list([1,2]),py-list([3,4D})
Python tuple — MATLAB py . tuple

("Robert®, 19, "Biology") py-tuple({"Robert”,19, "Biology"})
Python dict — {3} MATLAB py .dict

{"Robert": 357, "Joe": 391, py-dict(pyargs(..-.

"Mary®: 229} "Robert*,357, "Mary*,229, "Joe",391))
See Also
pyargs

Related Examples
“Use Python list Type in MATLAB” on page 1-20
“Use Python tuple Type in MATLAB” on page 1-26
“Use Python dict Type in MATLAB” on page 1-31

1-67

1 Python Interface Topics

Limitations to Python Support

1-68

Features Not Supported in MATLAB

Closing the Python interpreter while running MATLAB.

Saving (serializing) Python objects into a MAT-file.

Interactive Python help (calling py . help without input arguments).

py - input and py.raw_input (version 2.7).

Accessing static properties of a Python class.

MATLAB isa function does not recognize virtual inheritance.

MATLAB class inheritance from a Python class.

Overloaded attribute access.

Nested Python classes.

Modules that start MATLAB in a separate process, for example, the multiprocessing
module.

Modules that read sys.argv, the command-line arguments passed to a Python script,
for example, Tkinter.

Dynamically generated Python classes, for example, col lections.namedtuple.

Dynamically attaching new object attributes. Instead, use py.setattr.

Class names or other identifiers starting with an underscore () character. Instead, use
the Python py.getattr and py.setattr functions.

Python modules generated by the MATLAB Compiler SDK™ product.

More About

. “Python import and MATLAB import Commands” on page 1-65
. “Unsupported MATLAB Types” on page 1-58

Limitations to Indexing info Python Obijects

Limitations to Indexing into Python Objects

You can access data in Python container objects, like lists and dictionaries, with index
values, similar to referencing an element in a MATLAB matrix. There are, however,
ways to index into matrices which are not supported for these Python types.

Indexing Features Not Supported in MATLAB
Use of square brackets, [].

Indexing into a container type that does not inherit from col lections.Sequence or
collections._Mapping.

Logical indexing.

Accessing data in a container with an arbitrary array of indices. An index must be of the
form start:step:stop.

Comma-separated lists.

numel function does not return number of array elements. Returns 1.

More About

. “Matrix Indexing”

1-69

1 Python Interface Topics

Undefined variable "py" or function "py.command"

1-70

MATLAB automatically loads Python when you type py.command in the Command
Window. If MATLAB displays this message, a failure has occurred.

Undefined variable *"py"” or function "py.command

Use this page to help troubleshoot the failure.

In this section...

“Python Not Installed” on page 1-70

“64-bit/32-bit Versions of Python on Windows Platforms” on page 1-70
“MATLAB Cannot Find Python” on page 1-71

“Error in User-Defined Python Module” on page 1-71

“Python Module Not on Python Search Path” on page 1-71

“Module Name Conflicts” on page 1-72

“Python Tries to Execute command in Wrong Module” on page 1-72

Python Not Installed

Python is not installed on your computer. Download and install Python from https://
www . python.org/downloads.

On Microsoft Windows, Python downloads the 32-bit version of Python by default. If you
run a 64-bit version of MATLAB, download a 64-bit version of Python, identified by the
name "Windows x86-64 MSI installer”. For more information, see “64-bit/32-bit Versions
of Python on Windows Platforms” on page 1-53.

On Linux and Mac systems, if you build Python from source files, configure the build
with the —-enable-shared option.

64-bit/32-bit Versions of Python on Windows Platforms

You installed a 32-bit version of Python for a 64-bit version of MATLAB or a 64-bit
version of Python for a 32-bit version of MATLAB.

Undefined variable "py" or function "py.commana"

MATLAB Cannot Find Python

Python is in a nonstandard location. To provide the path to the Python executable, use
the pyversion function. For example:

pyversion C:\Users\uname\WinPython-64bit-3.3.2_.1\python-3.3.2_amd64\python.exe

On Windows systems, Python is not found in the Windows registry. If you downloaded
a Python interpreter, but did not register it in the Windows registry, specify the Python
location using the command:

pyversion executable

Error in User-Defined Python Module

There is an error in the user-defined Python module. To test if your module, mymod,
contains errors, type:

py.importlib.import_module("mymod®)
If Python detects an error in the module, MATLAB displays a Python error message.

Alternatively, execute the equivalent command at the Python command prompt to get
the Python error message.

After you fix the error, to access the updated module, restart MATLAB, and add it to the
search path.

Python Module Not on Python Search Path

If command is a valid Python command, make sure the Python module is on the Python
search path. To test if module mymod is on the path, type:

py.importlib.import_module("mymod*)

If Python cannot find the module, MATLAB displays a Python error message.
To add mymod, in folder modpath, to the path, type:

P = py.sys.path;

it count(P, "modpath®) == 0
insert(P, int32(0), "modpath™);

1-71

1 Python Interface Topics

1-72

end

The Python search path is associated with the Python interpreter loaded in the current
session of MATLAB. You can modify the search path in MATLAB, but the modifications
are not present if you run other instances of the interpreter outside of MATLAB.

Module Name Conflicts

If you call a Python module that has the same name as a module in the standard library
or any 3rd-party modules installed on your system, MATLAB might load the wrong
module.

Python Tries to Execute command in Wrong Module

If command is in a user-defined module, make sure that the module name does not
conflict with modules in the Python standard library, or any 3rd-party modules on your
system.

See Also

pyversion

More About

. “System and Configuration Requirements” on page 1-52

External Websites
. https://www.python.org/downloads

https://www.python.org/downloads

Help for Python Functions

Help for Python Functions

For a complete description of Python functionality, consult outside resources, in
particular, python.org. There are different versions of the Python documentation, so be
sure to refer to the version corresponding to the version on your system. Many examples
in the MATLAB documentation refer to functions in the Python standard library.

To use functions in a third-party or user-defined Python module, refer to your vendor
product documentation for information about how to install the module and for details
about its functionality.

The py -help command displays the Python help found at www . python.org/doc. Help
for packages and classes can be extensive and might not be useful when displayed in the
MATLAB command window.

+ Package

py-help(" textwrap®)
* Class

py-help("textwrap.TextWrapper®)
* Method of a class

py-help(" textwrap.TextWrapper.wrap®)
* Function

py-help(“textwrap.fill*)

If MATLAB displays an error message beginning with Python Error:, refer to your
Python documentation for more information.

Note: You cannot use the interactive Python help, calling py . he lp without input
arguments, in MATLAB.

More About

. “Handle Python Exceptions” on page 1-74

External Websites

. www.python.org

1-73

https://www.python.org/

1 Python Interface Topics

Handle Python Exceptions

MATLAB catches exceptions thrown by Python and converts them into a
matlab.exception.PyException object, which is derived from the MException class.
For example:
try

py.-list("x","y",1)
catch e

e.message

if(isa(e, "matlab.exception.PyException®))

e_ExceptionObject

end

end

ans =

Python Error: TypeError: list() takes at most 1 argument (3 given)

ans =
Python tuple with no properties.
(<type "exceptions.TypeError®>, TypeError("list() takes at most 1 argument (3 givel

If MATLAB displays an error message of the following format, refer to your Python
documentation for more information.

Python Error: Python class: message

See Also

matlab.exception.PyException

1-74

Troubleshooting Error Messages

Troubleshooting Error Messages

Troubleshooting errors when using a MATLAB external interface is a challenge. Is the
error in the Python application or in your MATLAB code? Common errors include errors
reported by Python and errors from attempting to convert Python data to MATLAB and
conversely.

In this section...

“Python Error: Python class: message” on page 1-75
“Python Module Errors” on page 1-75

“Errors Converting Python Data” on page 1-76

Python Error: Python class: message

MATLAB displays an error message in the following format:

Python Error: Python class: message
MATLAB displays message only if there is a Python error message.

This error comes from Python and for information you must refer to your version of
Python documentation at www . python.org/doc or the product documentation from
third-party vendors. For example:

p = py-os.path._split(pwd);
py.operator._setitem(p, int32(1),py-str("temp*));

Python Error: TypeError: “tuple® object does not support item assignment

Search for the term “tuple” on the Python documentation site for your version of Python.
Tuple 1s a built-in function described here: https://docs.python.org/2/library/
functions._html#tuple.

Python Module Errors

MATLAB reports some Python errors as a MATLAB error loading a module. For more
information, see “Undefined variable "py" or function "py.command"” on page 1-70.

If you write your own Python modules or modify the source code from an existing module,
test your MATLAB commands by writing the equivalent Python command in your

1-75

https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#tuple

1

Python Interface Topics

1-76

Python interpreter. This workflow is beyond the scope of MATLAB documentation and
product support.

Errors Converting Python Data

When the data is compatible, MATLAB automatically converts Python data to
MATLAB data. For the list of data types you must explicitly convert, see “Explicit Type
Conversions” on page 1-60.

For example, although MATLAB supports multidimensional arrays, you can only pass
vectors of data to Python.

x = py-len([2 3 4; 4 5 6])

Error using py.len
Conversion of MATLAB "double® to Python is only supported for 1-N vectors.

More About

. “Data Types”
. “Limitations to Python Support” on page 1-68

External Websites

. www.python.org/doc

https://www.python.org/doc

Using Python Data in MATLAB

Using Python Data in MATLAB

MATLAB automatically converts compatible Python data to MATLAB data.

For Python types that do not have compatible MATLAB types, such as list and dict,
use the MATLAB functions shown in the Explicit Type Conversion table. This table also
describes how to convert strings and certain numeric types explicitly.

More About

“Automatic Python Type to MATLAB Type Mapping” on page 1-60
“Explicit Type Conversions” on page 1-60

1-77

1 Python Interface Topics

Call Python eval Function

This example shows how to evaluate the expression, x+y, in Python. To evaluate an
expression, pass a Python dict value for the globals namespace parameter.

Read the help for eval.

py-help(“eval ™)

Help on built-in function eval in module _ builtin__:

eval(...)
eval (source[, globals[, locals]]) -> value

Evaluate the source in the context of globals and locals.

The source may be a string representing a Python expression

or a code object as returned by compile().

The globals must be a dictionary and locals can be any mapping,
defaulting to the current globals and locals.

IT only globals is given, locals defaults to it.

Create a Python dict variable for the X and y values.

workspace = py.dict(pyargs("x",1,"y",6))

workspace
Python dict with no properties.
{"y": 6.0, "x": 1.0}

Evaluate the expression.

res py-eval ("x+y" ,workspace)
res =
7

Add two numbers without assigning variables. Pass an empty dict value for the
globals parameter.

res = py.eval("1+6",py.dict)

res

1-78

Call Python eval Function

1-79

1 Python Interface Topics

Precedence Order of Methods and Functions

1-80

If a Python class defines a method with the same name as a MATLAB converter method
for Python types, MATLAB calls the Python method. This means you cannot call the
MATLAB converter method on an object of that class.

For example, if a Python class defines a char method, the following statement calls the
Python method.

char(obj)
To use the MATLAB char function, type:

char(py.str(obj))

Python Function Arguments

Python Function Arguments

In this section...

“Positional Arguments” on page 1-81

“Keyword Arguments” on page 1-81

“Optional Arguments” on page 1-82

Your Python documentation shows you how to call a Python function. Python function
signatures look similar to MATLAB function signatures. However, Python has syntax
which might be unfamiliar to MATLAB users.

Positional Arguments

A positional argument is passed by position. These arguments appear at the beginning of
a function signature.

Python Signature MATLAB Usage
9 9
abs(X) py -abs(-99)

Argument X is required.

Some functions accept an arbitrary sequence of positional arguments, including no
arguments. In Python, these arguments are defined by prepending the name with the *

character.
Python Signature MATLAB Usage
itertools.izip(*iterables) Aggregate elements from two lists.
i . py.-itertools.izip(..-.
The 1terables argument is not py-list({1:10}),py-list({"a","b"}));
required, in which case, the function
returns a zero length iterator. Create zero length iterator.
py.itertools.izip;
Keyword Arguments

A keyword argument is preceded by an identifier. Keyword arguments, also called named
arguments, can be specified in any order.

1-81

1 Python Interface Topics

Keyword arguments are like name-value pairs in MATLAB. Use the MATLAB pyargs
function to create keyword arguments for Python functions.

Python Signature MATLAB Usage
print(*objects,sep="",end="\n" Change the value of end.
file=sys.stdout) py.-print(“string”,pyargs(“end”, " --"))

sep, end, and File are keyword
arguments.

Python defines an arbitrary number of keyword arguments by prepending the name with
** characters.

Python Signature MATLAB Usage
dict(**kwarg) D = py.dict(pyargs(~Joe*",100, "Jack",101))

Optional Arguments

An optional argument is a non-required argument.

Python Signature MATLAB Usage
random. randrange(start,stop[,step]) |py-random.randrange(1,100)

Argument step is optional.

Optional arguments can have default values. A default value is indicated by an equal
sign = with the default value.

Python Signature MATLAB Usage
print(*objects,sep="",end="\n", Print two values using default keyword
file=sys.stdout) values.

py-print(2,°2%)

The default value for File is sys.stdout.

See Also
pyargs

1-82

Python Function Arguments

Related Examples
. “Pass Keyword Arguments” on page 1-34

1-83

Read and Write MATLAB MAT-Files in
C/C++ and Fortran

* “Custom Applications to Access MAT-Files” on page 2-2
+ “MAT-File Library and Include Files” on page 2-5
+ “What You Need to Build Custom Applications” on page 2-7

+ “Copy External Data into MAT-File Format with Standalone Programs” on page
2-8

+ “Create MAT-File in C or C++” on page 2-13

* “Read MAT-File in C/C++” on page 2-14

* “Create MAT-File in Fortran” on page 2-15

+ “Read MAT-File in Fortran” on page 2-16

+ “Work with mxArrays” on page 2-17

+ “Table of MAT-File Source Code Files” on page 2-19

* “Build on Mac and Linux Operating Systems” on page 2-21
* “Build on Windows Operating Systems” on page 2-23

+ “Share MAT-File Applications” on page 2-24

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Custom Applications to Access MAT-Files

2-2

In this section...

“Why Write Custom Applications?” on page 2-2
“MAT-File Interface Library” on page 2-3
“Exchanging Data Files Between Platforms” on page 2-4

Why Write Custom Applications?

To bring data into a MATLAB application, see “Methods for Importing Data”. To save
data to a MAT-file, see “Save, Load, and Delete Workspace Variables”. Use these
procedures when you program your entire application in MATLAB, or if you share data
with other MATLAB users. There are situations, however, when you must write a custom
program to interact with data. For example:

* Your data has a custom format.

* You create applications for users who do not run MATLAB, and you want to provide
them with MATLAB data.

* You want to read data from an external application, but you do not have access to the
source code.

Before writing a custom application, determine if MATLAB meets your data exchange
needs by reviewing the following topics:

* The save and load functions.

+ “Supported File Formats for Import and Export”.

* The importdata function and “Import Images, Audio, and Video Interactively”.
+ “Methods for Importing Data”.

If these features are not sufficient, you can create custom C/C++ or Fortran programs to
read and write data files in the format required by your application. There are two types
of custom programs:

+ Standalone program — Run from a system prompt or execute in MATLAB (see “Run
External Commands, Scripts, and Programs” on page 15-3). Requires MATLAB
libraries to build the application.

+ MEX-file — Built and executed from the MATLAB command prompt. For information
about creating and building MEX-files, see “MEX File Creation APT”.

Custom Applications to Access MAT-Files

MAT-File Interface Library

The MAT-File Library contains routines for reading and writing MAT-files. Call these
routines from your own C/C++ and Fortran programs. Use these routines, rather than
attempt to write your own code, to perform these operations, since using the library
insulates your applications from future changes to the MAT-file structure.

MATLAB provides the MATFi e type for representing a MAT-file.

MAT-File Routines

MAT-Function Purpose

matOpen Open a MAT-file.

matClose Close a MAT-file.

matGetDir Get a list of MATLAB arrays from a MAT-file.

matGetVariable Read a MATLAB array from a MAT-file.

matPutVariable Write a MATLAB array to a MAT-file.

matGetNextVariable Read the next MATLAB array from a MAT-file.

matDeleteVariable Remove a MATLAB array from a MAT-file.

matPutVariableAsGlobal Put a MATLAB array into a MAT-file such that
the load command places it into the global
workspace.

matGetVariablelnfo Load a MATLAB array header from a MAT-file (no
data).

matGetNextVariablelnfo Load the next MATLAB array header from a
MAT-file (no data).

MAT-File C-Only Routines

matGetFp Get an ANSI® C file pointer to a MAT-file.

The MAT-File Interface Library does not support MATLAB objects created by user-
defined classes.

Do not create different MATLAB sessions on different threads using MAT-File Library
functions. MATLAB libraries are not multithread safe so you can use these functions
only on a single thread at a time.

2-3

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Exchanging Data Files Between Platforms

You can work with MATLAB software on different computer systems and send MATLAB
applications to users on other systems. MATLAB applications consist of MATLAB code
containing functions and scripts, and MAT-files containing binary data.

Both types of files can be transported directly between machines: MATLAB source files
because they are platform independent, and MAT-files because they contain a machine
signature in the file header. MATLAB checks the signature when it loads a file and, if a
signature indicates that a file is foreign, performs the necessary conversion.

Using MATLAB across different machine architectures requires a facility for exchanging
both binary and ASCII data between the machines. Examples of this type of facility
include FTP, NFS, and Kermit. When using these programs, be careful to transmit MAT-
files in binary file mode and MATLAB source files in ASCII file mode. Failure to set these
modes correctly corrupts the data.

2-4

MAT-File Library and Include Files

MAT-File Library and Include Files

MATLAB provides the include and library files needed to write programs to read and
write MAT-files. The following table lists the path names to these files. The term
matlabroot refers to the root folder of your MATLAB installation. The term arch is a
unique string identifying the platform.

MAT-Function Folders

Platform Contents Folder
Microsoft Include files matlabroot\extern\include
Windows 13 aries matlabroot\bin\win32 or matlabroot\bin
\win64
Examples matlabroot\extern\examples\eng mat
Mac Include files matlabroot/extern/include
Linux Libraries matlabroot/bin/arch
Examples matlabroot/extern/examples/eng mat

MAT-Function Include Files

The matlabroot\extern\include folder holds header files containing function
declarations with prototypes for the routines that you can access in the API Library.
These files are the same for Windows, Mac, and Linux systems. The folder contains:

* The matrix.h header file that contains a definition of the mxArray structure and
function prototypes for matrix access routines.

* The mat.h header file that contains function prototypes for mat routines.

MAT-Function Libraries

The name of the libraries folder, which contains the shared (dynamically linkable)
libraries, is platform-dependent.

Shared Libraries on Windows Systems
The bin folder contains the run-time version of the shared libraries:

* The libmat.dll library of MAT-file routines (C/C++ and Fortran)

2-5

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-6

* The libmx.dl1 library of array access and creation routines

Shared Libraries on Mac and Linux Systems

The bin/arch folder, where arch is your machine's architecture, contains the shared
libraries. For example, on Apple Macintosh 64-bit systems, the folder is bin/maci64:

* The libmat.dylib library of MAT-file routines (C/C++ and Fortran)

* The libmx.dylib library of array access and creation routines

Example Files

The examples/eng_mat folder contains C/C++ and Fortran source code for examples
demonstrating how to use the MAT-file routines.

What You Need to Build Custom Applications

What You Need to Build Custom Applications

To create a custom application, you need the tools and knowledge to modify and build
source code. In particular, you need a compiler supported by MATLAB.

To exchange custom data with MATLAB data, use a MAT-file, a MATLAB format binary
file. You do not need the MAT-file format specifications because the MAT-File Interface
Library provides the API to the data. You need to know the details of your data to map it
into MATLAB data. Get this information from your product documentation, then use the
mxArray type in the Matrix Library to declare the data in your program.

In your custom program, use functions in the MATLAB C/C++ and Fortran API:

* MAT-File Interface Library
* Matrix Library

To build the application, use the mex build script with the —client engine option.

See Also

mex | mxArray

More About
. “MAT-File Library and Include Files” on page 2-5
. “Build Engine Applications with IDE” on page 7-21

External Websites
. Supported and Compatible Compilers

2-7

http://www.mathworks.com/support/compilers/current_release/

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Copy External Data into MAT-File Format with Standalone
Programs

2-8

In this section...

“Overview of matimport.c Example” on page 2-8
“Declare Variables for External Data” on page 2-9
“Create mxArray Variables” on page 2-9

“Create MATLAB Variable Names” on page 2-10
“Read External Data into mxArray Data” on page 2-10
“Create and Open MAT-File” on page 2-11

“Write mxArray Data to File” on page 2-11
“Clean Up” on page 2-11

“Build the Application” on page 2-11

“Create the MAT-File” on page 2-11

“Import Data into MATLAB” on page 2-12

Overview of matimport.c Example

This topic shows how to create a standalone program, matimport, to copy data from an
external source into a MAT-file. The format of the data is custom, that is, it is not one of
the file formats supported by MATLAB.

The matimport.c example:

* Creates variables to read the external data.
* Copies the data into mxArray variables.

+ Assigns a variable name to each mxArray. This is the variable name to use in the
MATLAB workspace.

+ Writes the mxArray variables and associated variable names to the MAT-file.
To use the data in MATLAB:

* Build the standalone program matimport.
* Run matimport to create the MAT-file matimport.mat.

Copy External Data into MAT-File Format with Standalone Programs

+ Open MATLAB.
+ Use one of the techniques described in “Save, Load, and Delete Workspace Variables”.

The following topics describe these steps in detail. To see the code, open the file in the
MATLAB Editor. The C statements in these topics are code snippets shown to illustrate a
task. The statements in the topics are not necessarily sequential in the source file.

Declare Variables for External Data

There are two external data values, a string and an array of type double. The following
table shows the relationship between the variables in this example.

External Data Variable to Read mxArray Variable MATLAB Variable
External Data Name

Array of type extData pVarNum inputArray

double

String extString pVvarChar titleString

The following statements declare the type and size for variables extString and
extData:

#define BUFSIZE 256
char extString[BUFSIZE];
double extData[9];

Use these variables to read values from a file or a subroutine available from your
product. This example uses initialization to create the external data:

const char *extString = "Data from External Device";
double extData[9] = { 1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0 };

Create mxArray Variables

The MAT-File Library uses pointers of type mxArray to reference MATLAB data. The
following statements declare pVarNum and pVarChar as pointers to an array of any size
or type:

/*Pointer to the mxArray to read variable extData */
mxArray *pVarNum;
/*Pointer to the mxArray to read variable extString */

2-9

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-10

mxArray *pVarChar;

To create a variable of the proper size and type, select one of the mxCreate* functions
from the MX Matrix Library.

The size of extData is 9, which the example copies into a 3-by-3 matrix. Use the
mxCreateDoubleMatrix function to create a two-dimensional, double-precision,
floating-point mxArray initialized to O.

pVarNum = mxCreateDoubleMatrix(3,3,mxREAL);
Use the mxCreateString function to create an mxArray variable for extString:

pvarChar = mxCreateString(extString);

Create MATLAB Variable Names

matimport.c assigns variable names inputArray and titleString to the mxArray

data. Use these names in the MATLAB workspace. For more information, see “View
Contents of MAT-File”.

const char *myDouble
const char *myString

"inputArray';
“titleString™;

Read External Data into mxArray Data
Copy data from the external source into each mxArray.

The C memcpy function copies blocks of memory. This function requires pointers to the
variables extData and pVarNum. The pointer to extData is (void *)extData. To

get a pointer to pVarNum, use one of the mxGet* functions from the MX Matrix Library.
Since the data contains only real values of type double, this example uses the mxGetPr
function:

memcpy((void *)(mxGetPr(pVarNum)), (void *)extData, sizeof(extData));

The following statement initializes the pVarChar variable with the contents of
extString:

pVarChar = mxCreateString(extString);

Variables pVarNum and pVarChar now contain the external data.

Copy External Data into MAT-File Format with Standalone Programs

Create and Open MAT-File

The matOpen function creates a handle to a file of type MATFi le. The following
statements create a file pointer pmat, name the file matimport.mat, and open it for
writing:

MATFile *pmat;

const char *myFile = "matimport.mat";
pmat = matOpen(myFile, "w'™);

Write mxArray Data to File

The matPutVariable function writes the mxArray and variable name into the file:

status = matPutVariable(pmat, myDouble, pVarNum);
status = matPutVariable(pmat, myString, pVarChar);
Clean Up

To close the file:
matClose(pmat) ;
To free memory:

mxDestroyArray(pVarNum) ;
mxDestroyArray(pVarChar);

Build the Application

To build the application, use the mex function with the ~-client engine option.

copyfile(fullfile(matlabroot, "extern”, "examples®,“eng_mat” ,matimport.c®),".", ")
mex -v -client engine matimport.c

Create the MAT-File

Run matimport to create the file matimport.mat. Either invoke the program from the
system command prompt, or at the MATLAB command prompt, type:

Imatimport

2-11

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Import Data into MATLAB

Any user with a compatible version of MATLAB can read the matimport.mat file. Start
MATLAB and use the load command to import the data into the workspace:

load matimport.mat

To see the variables, type whos; MATLAB displays:

Name Size Bytes Class
inputArray 3x3 72 double
titleString 1x43 86 char

Related Examples
. “Table of MAT-File Source Code Files” on page 2-19

2-12

Create MAT-File in C or C++

Create MAT-File in C or C++

In this section...
“Create MAT-File in C” on page 2-13
“Create MAT-File in C++” on page 2-13

Create MAT-File in C

The matcreat.c example illustrates how to use the library routines to create a MAT-file
that you can load into the MATLAB workspace. The program also demonstrates how to
check the return values of MAT-function calls for read or write failures. To see the code,
open the file in MATLAB Editor.

After building the program, run the application. This program creates mattest.mat,
a MAT-file that you can load into MATLAB. To run the application, depending on your
platform, either double-click its icon or enter matcreat at the system prompt:

matcreat
Creating file mattest.mat...

To verify the MAT-file, at the command prompt, type:

whos -file mattest.mat

Name Size Bytes Class

GlobalDouble 3x3 72 double array (global)
LocalDouble 3x3 72 double array
LocalString 1x43 86 char array

Grand total is 61 elements using 230 bytes

Create MAT-File in C++

The C++ version of matcreat.c is matcreat.cpp. Open the file in MATLAB Editor.

Related Examples
. “Table of MAT-File Source Code Files” on page 2-19

2-13

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Read MAT-File in C/C++

The matdgns.c example illustrates how to use the library routines to read and diagnose
a MAT-file. To see the code, open the file in MATLAB Editor.

After building the program, run the application. This program reads the mattest.mat
MAT-file created by the “Create MAT-File in C or C++” on page 2-13 example. To run the
application, depending on your platform, either double-click its icon or enter matdgns at
the system prompt.

matdgns mattest.mat
Reading file mattest.mat...

Directory of mattest.mat:
GlobalDouble

LocalString

LocalDouble

Examining the header for each variable:

According to its header, array GlobalDouble has 2 dimensions
and was a global variable when saved

According to its header, array LocalString has 2 dimensions
and was a local variable when saved

According to its header, array LocalDouble has 2 dimensions
and was a local variable when saved

Reading in the actual array contents:

According to its contents, array GlobalDouble has 2 dimensions
and was a global variable when saved

According to its contents, array LocalString has 2 dimensions
and was a local variable when saved

According to its contents, array LocalDouble has 2 dimensions
and was a local variable when saved

Done

Related Examples
. “Create MAT-File in Fortran” on page 2-15
. “Table of MAT-File Source Code Files” on page 2-19

2-14

Create MAT-File in Fortran

Create MAT-File in Fortran

The matdemol.F example creates the MAT-file, matdemo.mat. To see the code, you can
open the file in MATLAB Editor.

After building the program, run the application. This program creates a MAT-file,
matdemo.mat, that you can load into MATLAB. To run the application, depending on
your platform, either double-click its icon or type matdemol at the system prompt:

matdemol

Creating MAT-file matdemo.mat ...
Done creating MAT-File

To verify the MAT-file, at the command prompt, type:

whos -file matdemo.mat

Name Size Bytes Class Attributes
Numeric 3x3 72 double

NumericGlobal 3x3 72 double global
String 1x33 66 char

Note: For an example of a Microsoft Windows standalone program (not MAT-file
specific), see engwindemo.c in the matlabroot\extern\examples\eng_mat folder.

Related Examples
. “Read MAT-File in C/C++” on page 2-14
. “Table of MAT-File Source Code Files” on page 2-19

2-15

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Read MAT-File in Fortran

The matdemo2.F example illustrates how to use the library routines to read the MAT-
file created by matdemol.F and describe its contents. To see the code, open the file in
MATLAB Editor.

After building the program, view the results:

matdemo?2

Directory of Mat-file:

String

Numeric

Getting full array contents:
1

Retrieved String
With size 1-by- 33
3

Retrieved Numeric
With size 3-by- 3

Related Examples
. “Table of MAT-File Source Code Files” on page 2-19

2-16

Work with mxArrays

Work with mxArrays

In this section...
“Read Structures from a MAT-File” on page 2-17
“Read Cell Arrays from a MAT-File” on page 2-18

The MAT-File Interface Library lets you access MATLAB arrays (type mxArray) in a
MAT-file. To work directly with an mxArray in a C/C++ application, use functions in the
Matrix Library.

You can find examples for working with the mxArray type in the matlabroot/extern/
examples/mex and matlabroot/extern/examples/mx folders. The following

topics show C code examples, based on these MEX examples, for working with cells

and structures. The examples show how to read cell and structure arrays and display
information based on the type of the mxArray within each array element.

If you create an application from one of the MEX examples, here are some tips for
adapting the code to a standalone application.

* The MAT-file example, matdgns.c, shows how to open and read a MAT-file. For more
information about the example, see “Read MAT-File in C/C++” on page 2-14.

+ The MEX example, explore.c, has functions to read any MATLAB type using the
mxClass 1D function. For more information about the example, see “Using Data
Types” on page 4-12.

+ Some MEX examples use functions, such as mexPrintf, from the “MEX Library
APT” Libmex. You do not need to use these functions to work with an mxArray, but
if your program calls any of them, you must link to the MEX Library. To do this, add
lLibmex. lib to the link statement.

Read Structures from a MAT-File

The matreadstructarray.c example is based on the analyze_structure function
in explore.c. For simplicity this example only processes real elements of type double;
refer to the explore.c example for error checking and processing other types.

To see the code, open the file in the MATLAB Editor.

After building the program, run the application on the MAT-file, testpatient.mat.

2-17

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-18

First, create a structure, patient, and save it:

patient(l).name = "John Doe";

patient(1).billing = 127.00;

patient(l).test = [79 75 73; 180 178 177.5; 172 170 169];
patient(2).name = "Ann Lane";

patient(2).billing = 28.50;

patient(2).test = [68 70 68; 118 118 119; 172 170 169];

save testpatient.mat
To calculate the total of the bi 1 ling field, type:

Imatreadstruct testpatient.mat patient billing

Total for billing: 155.50

Read Cell Arrays from a MAT-File

The matreadcel larray.c example is based on the analyze_cell function in
explore.c.

To see the code, open the file in the MATLAB Editor.
After building the program, run the application on the MAT-file, testcells.mat.

First, create 3 cell variables and save:
cellvar = {"hello"; [2 3 4 6 8 9]; [2; 4; 5]};

structvar = {"cell with a structure®; patient; [2; 4; 5]};
multicellvar = {"cell with a cell”; cellvar; patient};

save testcells.mat cellvar structvar multicellvar

To display the mxArray type for the contents of cell cel lvar, type:
Imatreadcell testcells.mat cellvar

0: string

1: numeric class
2: numeric class

Related Examples
. “Table of MAT-File Source Code Files” on page 2-19

Table of MAT-File Source Code Files

Table of MAT-File Source Code Files

The matlabroot/extern/examples/eng_mat folder contains C/C++ and Fortran
source code for examples demonstrating how to use the MAT-file routines. These
examples create standalone programs. The source code is the same for both Windows,

Mac, and Linux systems.

To build a code example, first copy the file to a writable folder, such as c:\work on your

Windows path:

copyfile(fullfile(matlabroot, "extern”, "examples”, "eng_mat", . ..
"filename®), fullfile("c:","work"))

where filename is the name of the source code file.

For build information, see:

+ “MAT-File Library and Include Files” on page 2-5
* “Build on Mac and Linux Operating Systems” on page 2-21

* “Build on Windows Operating Systems” on page 2-23

Example

Description

matcreat.c

C program that demonstrates how to use the library routines
to create a MAT-file that you can load into MATLAB.

matcreat.cpp

C++ version of the matcreat.c program.

matdgns.c

C program that demonstrates how to use the library routines
to read and diagnose a MAT-file.

matdemol.F

Fortran program that demonstrates how to call the MATLAB
MAT-file functions from a Fortran program.

matdemo2.F

Fortran program that demonstrates how to use the library
routines to read the MAT-file created by matdemol.F and
describe its contents.

matimport.c

C program based on matcreat.c used in the example for
writing standalone applications.

matreadstructar ray.(

C program based on explore.c to read contents of a
structure array.

matreadcellarray.c

C program based on explore.c to read contents of a cell
array.

2-19

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-20

Example

Description

matcreat.c

C program that demonstrates how to use the library routines
to create a MAT-file that you can load into MATLAB.

matcreat.cpp

C++ version of the matcreat.c program.

matdgns.c

C program that demonstrates how to use the library routines
to read and diagnose a MAT-file.

matdemol.F

Fortran program that demonstrates how to call the MATLAB
MAT-file functions from a Fortran program.

matdemo2.F

Fortran program that demonstrates how to use the library
routines to read the MAT-file created by matdemol.F and
describe its contents.

matimport.c

C program based on matcreat.c used in the example for
writing standalone applications.

matreadstructarray .

C program based on explore.c to read contents of a
structure array.

matreadcellarray.c

C program based on explore.c to read contents of a cell
array.

For examples using the Matrix Library, see:

+ “Table of MEX File Source Code Files” on page 5-24.
* The explore.c example described in “Using Data Types” on page 4-12.

Build on Mac and Linux Operating Systems

Build on Mac and Linux Operating Systems

In this section...

“Setting Run-Time Library Path” on page 2-21

“Building the Application” on page 2-22

Setting Run-Time Library Path

At run time, you must tell the Mac and Linux operating system where the API shared
libraries reside by setting an environment variable. The Mac or Linux command you use
and the values you provide depend on your shell and system architecture. The following
table lists the name of the environment variable (envvar) and the value (pathspec) to
assign to it. The term matlabroot refers to the root folder of your MATLAB installation.

Operating System |envvar pathspec

64-bit Apple Mac |DYLD_LIBRARY_PATH matlabroot/bin/
maci64:matlabroot/sys/os/
maci64

64-bit Linux LD_LIBRARY_PATH matlabroot/bin/
glnxa64:matlabroot/sys/os/
glnxa64

Using the C Shell

Set the library path using the command:

setenv envvar pathspec

Replace the terms envvar and pathspec with the appropriate values from the table.
For example, on a Macintosh system use:

setenv DYLD_LIBRARY_PATH
matlabroot/bin/maci64:matlabroot/sys/os/maci64

You can place these commands in a startup script, such as ~/.cshrc.
Using the Bourne Shell

Set the library path using the command.:

2-21

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

2-22

envvar = pathspec:envvar
export envvar

Replace the terms envvar and pathspec with the appropriate values from the table.
For example, on a Macintosh system use:

DYLD_LIBRARY_PATH=matlabroot/bin/maci6é4:matlabroot/sys/os/maci64:$DYLD_LIBRARY_PATH
export DYLD_LIBRARY_PATH

You can place these commands in a startup script such as ~/.profile.

Building the Application

To compile and link the matcreat.c example, use the mex script with the -client
engine option.

copyfile(fullfile(matlabroot, "extern”, "examples”,“eng_mat”, "matcreat.c"),”.", ")
Use the following command to build it:

mex -v -client engine matcreat.c

If you need to modify the build instructions for your particular compiler, use the -v -n
options to view the current compiler and linker settings. Then, modify the settings using
the mex varname=varvalue option.

See Also

mex

Build on Windows Operating Systems

Build on Windows Operating Systems

To compile and link MAT-file programs, use the mex script with the —-client engine
option.

copyfile(fullfile(matlabroot, "extern”, "examples®,“eng_mat”, "matcreat.c"),".", ")
Use the following command to build it:

mex -v -client engine matcreat.c

If you need to modify the build instructions for your particular compiler, use the -v -n
options to view the current compiler and linker settings. Then, modify the settings using
the mex varname=varvalue option.

See Also

mex

Related Examples
. “Build Windows Engine Application” on page 7-11

2-23

2 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Share MAT-File Applications

2-24

MATLAB requires shared library files for building any MAT-file application. You must
also distribute the run-time versions of these files along with any MAT-file application
that you deploy to another system. Install the appropriate libraries in the matlabroot/
bin/arch folder.

Library File Names by Operating System

Windows Linux Mac
libmat.dll libmat.so libmat.dylib
libmx.dll libmx.so libmx.dylib

In addition to these libraries, you must have all third-party library files that Fibmat
requires. MATLAB uses these additional libraries to support Unicode® character
encoding and data compression in MAT-files. These library files must reside in the same
folder as Iibmx. Determine the libraries using the platform-specific methods described in
the following table.

Library Dependency Commands

Windows Linux Mac

See the following Idd -d libmat.so otool -L libmat.dylib
instructions for Dependency

Walker

On Windows systems, to find library dependencies, use the third-party product
Dependency Walker. Dependency Walker is a free utility that scans any 32-bit or 64-bit
Windows module and builds a hierarchical tree diagram of all dependent modules. For
each module found, it lists all the functions exported by that module, and which of those
functions are called by other modules. Download the Dependency Walker utility from the
website http://www.dependencywalker.com/. See http://www._mathworks.com/
matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-
mex-Ffile-or-stand-alone-application-requires for information on using the
Dependency Walker.

Drag and drop the file matlabroot/bin/win32/libmat.dll or matlabroot/bin/
win64/1ibmat._dll into Depends window.

http://www.dependencywalker.com/
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires

Calling C Shared Library Functions
from MATLAB

+ “Call Functions in Shared Libraries” on page 3-2

+ “Limitations to Shared Library Support” on page 3-8
+ “Limitations Using Structures” on page 3-13

* “Module Not Found Error” on page 3-15

+ “No Matching Signature Error” on page 3-16

+ “MATLAB Terminates Unexpectedly When Calling Function in Shared Library” on
page 3-17

+ “Pass Arguments to Shared Library Functions” on page 3-18
* “Shared Library shrilibsample” on page 3-23
+ “Pass String Arguments” on page 3-24

+ “Pass Structures” on page 3-26

+ “Pass Enumerated Types” on page 3-32

+ “Pass Pointers” on page 3-34

+ “Pass Arrays” on page 3-39

+ “Iterate Through an Array” on page 3-43

+ “Pointer Arguments” on page 3-46

* “Structure Arguments” on page 3-49

+ “Explore libstruct Objects” on page 3-51

+ “MATLAB Prototype Files” on page 3-52

3 Calling C Shared Library Functions from MATLAB

Call Functions in Shared Libraries

3-2

In this section...

“What Is a Shared Library?” on page 3-2
“Load and Unload Library” on page 3-3

“View Library Functions” on page 3-4

“Invoke Library Functions” on page 3-6

What Is a Shared Library?

A shared library is a collection of functions dynamically loaded by an application at run
time. This MATLAB interface supports libraries containing functions programmed in any
language, provided the functions have a C interface. MATLAB supports dynamic linking
on all supported platforms.

Platform Shared Library File Extension
Microsoft Windows dynamic link library file -dll
UNIX® and Linux shared object file -So

Apple Macintosh dynamic shared library .dylib

A shared library needs a header file, which provides signatures for the functions in the
library. A function signature, or prototype, establishes the name of the function and the
number and types of its parameters. Specify the full path of the shared library and its
header file.

You need an installed MATLAB-supported C compiler. For an up-to-date list of supported
compilers, see the Supported and Compatible Compilers website.

MATLAB accesses C routines built into external, shared libraries through a command-
line interface. This interface lets you load an external library into MATLAB memory
and access functions in the library. Although types differ between the two language
environments, usually you can pass types to the C functions without converting.
MATLAB converts for you.

Details about using a shared library are in the topics:

http://www.mathworks.com/support/compilers/current_release/

Call Functions in Shared Libraries

* “Load and Unload Library” on page 3-3
+ “View Library Functions” on page 3-4

* “Invoke Library Functions” on page 3-6

If the library function passes arguments, you need to determine the data type passed to
and from the function. For information about data, see:

+ “Pass Arguments to Shared Library Functions” on page 3-18

+ “Manually Convert Data Passed to Functions” on page 3-21

+ “Pointer Arguments” on page 3-46

* “Structure Arguments” on page 3-49

When you are finished working with the shared library, it is important to unload the
library to free memory.

For more information, see “Limitations to Shared Library Support” on page 3-8

Load and Unload Library

To give MATLAB access to functions in a shared library, first load the library into
memory. After you load the library, you can request information about library functions
and call them directly from the MATLAB command line. When you no longer need the
library, unload it from memory to conserve memory usage.

To load a shared library into MATLAB, use the loadl ibrary function. The most
common syntax is:

loadlibrary("shrlib®,"hfile")

where shrlib is the shared library file name, and hfile is the name of the header file
containing the function prototypes.

Note: The header file provides signatures for the functions in the library and is a
required argument for loadlibrary.

For example, load the Iibmx library that defines the MATLAB Matrix Library routines.
The following command creates the full path for the library header file, matrix.h:

3-3

3 Calling C Shared Library Functions from MATLAB

3-4

hfile = fullfile(matlabroot, "extern”, "include”, "matrix.-h");

To load the library, type:

loadlibrary("libmx® ,hfile)

Use the unloadl ibrary function to unload the library and free up memory.

Note: If you call loadlibrary on a library that is already loaded, MATLAB displays
a message, but does not reload the library. To determine if a library is loaded, use the
libisloaded function.

View Library Functions
View Functions in Command Window

To display information about library functions in the MATLAB Command Window, use
the libfunctions command. For example, to see what functions are available in the
1 ibmx library, type:

if not(libisloaded("libmx™))
hfile = [matlabroot "\extern\include\matrix.h"];
loadlibrary("libmx® ,hfile)

end

libfunctions libmx

MATLAB displays (in part):

Functions in library libmx:

mxAddField mxGetScalar
mxArrayToString mxGetString_730
mxCalcSingleSubscript_730 mxGetUserBits
mxCal loc mxIsCell
mxCreateCellArray_730 mx1sChar
mxCreateCel IMatrix_ 730 mxIsClass

To view function signatures, use the —ful l switch. This option shows the MATLAB
syntax for calling functions written in C. The types used in the parameter lists and

Call Functions in Shared Libraries

return values are MATLAB types, not C types. For more information on types, see “C and
MATLAB Equivalent Types” on page 3-18. For example, at the command line enter:

list = libfunctions("libmx",*-full™)

MATLAB displays (in part):
list =

"[int32, MATLAB array, cstring] mxAddField(MATLAB array, cstring)”
"[cstring, MATLAB array] mxArrayToString(MATLAB array)”

"[uint64, MATLAB array, uint64Ptr] mxCalcSingleSubscript_730(
MATLAB array, uint64, uint64Ptr)”

"lib.pointer mxCalloc(uint64, uint64)"

"[MATLAB array, uint64Ptr] mxCreateCellArray_730(uint64, uint64Ptr)”
"MATLAB array mxCreateCellMatrix_730(uint64, uint64)"

View Functions in Window

To get information about functions in a library, use the Iibfunctionsview function.
MATLAB opens a window to display the following information:

Heading Description

Return Type Types the method returns
Name Function name

Arguments Valid types for input arguments

To see the functions in the ibmx library, type:

if not(libisloaded("libmx™))
hfile = [matlabroot "\extern\include\matrix.h"];
loadlibrary(" libmx® ,hfile)

end

libfunctionsview libmx

MATLAB displays the following window:

3 Calling C Shared Library Functions from MATLAB

3-6

Functions in library libmx o] 4
Return Type | Mame | Arguments
[int32, MATLAE array, cstring] rmAddField (MATLAB array, cstring) l;
[cstring, MATLAE array] mcArrayTaString (MATLAE array)
[int32, MATLAE array, int32Ptr] mxCalcSingleSubscript (MATLAE array, int32, int32Pt =
lih.paointer mxCalloc {uint32, uint32) %
MATLAB array mxClearScalarDoubleFlag (MATLAE array)
[MATLAE array, int32Ptr] mxCreateZellArray {int32, int32Ptr)
MATLAB array mxCreateCellMatrix (int32, int32)
[MATLAE array, int32Ptr] mxCreateCharArray (int32, int32Ptn
[MATLAE array, stringPtrPir] rmxCreateCharatrizFromStrings (int32, stringPtrPir)
MATLAE array rmyCreateDoublematriz (int32, int32, mxComplexity)
MATLAE array rmyCreateDoubleScalar (double)
[MATLAE array, int32Ptr] myCreateLogicalArray {int32, int32Ptn
MATLAB array mxCreatelogicalMatriz [Uint32, uint32)
MATLAB array mxCreateLogicalScalar ibool) j

The types used in the argument lists and return values are MATLAB types, not C types.
For more information on types, see “C and MATLAB Equivalent Types” on page 3-18.

Invoke Library Functions

After loading a shared library into the MATLAB workspace, use the cal Il ib function to
call functions in the library. The syntax for calllib is:

calllib("libname*, "funcname® ,argl, ... ,argN)

Specify the library name, function name, and, if required, any arguments that get passed
to the function.

The following example calls functions from the Iibmx library. To load the library, type:
ifT not(libisloaded("libmx™))
hfile = [matlabroot "\extern\include\matrix.h"];

loadlibrary("libmx* ,hfile)
end

To create an array Yy, type:
y = rand(4,7,2);

To get information about y, type:

Call Functions in Shared Libraries

calllib(" libmx”®, "mxGetNumberOfElements”,y)

ans =
56

MATLAB displays the number of elements in the array.
Type:
calllib(" libmx", "mxGetClasslID",y)

ans =
mxDOUBLE_CLASS

MATLAB displays the class of the array.

For information on how to define the parameter types, see “Pass Arguments to Shared
Library Functions” on page 3-18.

3 Calling C Shared Library Functions from MATLAB

Limitations to Shared Library Support

3-8

In this section...

“MATLAB Supports C Library Routines” on page 3-8
“Workarounds for Loading C++ Libraries” on page 3-8
“Limitations Using printf Function” on page 3-9
“Bit Fields” on page 3-9

“Enum Declarations” on page 3-10

“Unions Not Supported” on page 3-10

“Compiler Dependencies” on page 3-11

“Limitations Using Pointers” on page 3-11

“Functions with Variable Number of Input Arguments Not Supported” on page 3-12

MATLAB Supports C Library Routines

The MATLAB shared library interface supports C library routines only. Most
professionally written libraries designed to be used by multiple languages and platforms
work fine. Many homegrown libraries or libraries that have only been tested from C++
have interfaces that are not usable and require modification or an interface layer. In this
case, we recommend using MEX-files.

Workarounds for Loading C++ Libraries

The shared library interface does not support C++ classes or overloaded functions
elements. However, if you have source code for the library, you can apply one of the
following strategies to load a C++ library using loadlibrary. After editing the source
code, rebuild the library.

Declare Functions as extern “C”

For example, the following function prototype from the file shrlibsample.h shows the
syntax to use for each function:

#ifdef _ cplusplus
extern "C" {
#endif

Limitations to Shared Library Support

void addMixedTypes(

short X,

int Y,

double z
);

/* other prototypes may be here */

#ifdef _ cplusplus

3
#endi T

The following C++ code is not legal C code for the header file:

extern "C" void addMixedTypes(short x,int y,double z);

Add Module Definition File in Visual Studio

While building the DLL from C++ code in Microsoft Visual Studio®, add a Module
Definition File ((DEF) in the project. At a minimum, the DEF file must contain the
following module-definition statements:

* The first statement in the file must be the LIBRARY statement.

+ The EXPORTS statement lists the names and, optionally, the ordinal values of the
functions exported by the DLL.

For example, if a DLL exports functions multDoubleArray and addMixedTypes,
module.def contains:

LIBRARY

EXPORTS
multDoubleArray
addMixedTypes

Limitations Using printf Function

MATLAB does not display the output of the C printf function to the command window.

Bit Fields

You can modify a bit field declaration by using type int or an equivalent. For example, if
your library has the following declared in its header file:

3-9

3 Calling C Shared Library Functions from MATLAB

int myfunction();

struct mystructure

{
/* note the sum of fields bits */
unsigned Ffieldl :4;
unsigned field2 :4;

};

edit the header file and replace it with:
int myfunction();

struct mystructure

{
/* Tield 8 bits wide to be manipulated in MATLAB */
/* A char is 8 bits on all supported platforms */
char allfields;

};

After editing the source code, rebuild the library. It is then possible to access the data in
the two fields using bit masking in MATLAB.

Enum Declarations

char definitions for enum are not supported. In C, a char constant, for example "A*",
is automatically converted to its numeric equivalent (65). MATLAB does not convert
constants. To use this type of enum, edit the header file by replacing "A" with the
number 65 (int8(“A”) == 65). For example, replace:

enum Enuml {ValA="A",ValB="B"};
with:
enum Enuml {ValA=65,ValB=66};

then rebuild the library.

Unions Not Supported

Unions are not supported. As a workaround, modify the source code taking out the
union declaration and replacing it with the largest alternative. Then, to interpret the

3-10

Limitations to Shared Library Support

results, write MATLAB code as needed. For example, edit the source code and replace the
following union:

struct mystruct

{
union
{
struct {char bytel,byte2;};
short word;
};
};
with:
struct mystruct
{
short word;
};

where on a little-endian based machine, bytel is mod(f,256), byte2 is f/256, and
word=byte2*256+bytel. After editing the source code, rebuild the library.

Compiler Dependencies
Header files must be compatible with the supported compilers on a platform. For an up-

to-date list of supported compilers, see the Supported and Compatible Compilers website.
You cannot load external libraries with explicit dependencies on other compilers.

Limitations Using Pointers
Function Pointers

The shared library interface does not support library functions that work with function
pointers.

Multilevel Pointers
Limited support for multilevel pointers and structures containing pointers. Using inputs
and outputs and structure members declared with more than two levels of indirection is

unsupported. For example, double ***outp translated to doublePtrPtrPtr is not
supported.

3-11

http://www.mathworks.com/support/compilers/current_release/

3 Calling C Shared Library Functions from MATLAB

3-12

Functions with Variable Number of Input Arguments Not Supported

The shared library interface does not support library functions with variable number of
arguments, represented by an ellipsis (- - .).

You can create multiple alias functions in a prototype file, one for each set of arguments
used to call the function. For more information, see “MATLAB Prototype Files” on page
3-52.

More About

. “Limitations Using Structures” on page 3-13

Limitations Using Structures

Limitations Using Structures

MATLAB Returns Pointers to Structures

MATLAB returns pointers to structures. Return by value is not supported.

Structure Cannot Contain Pointers to Other Structures

Nested structures or structures containing a pointer to a structure are not supported.
However, MATLAB can access an array of structures created in an external library.

Requirements for MATLAB Structure Arguments

When you pass a MATLAB structure to an external library function, the field names
must meet the following requirements.

+ Every MATLAB field name must match a field name in the library structure
definition.

+ MATLAB structures cannot contain fields that are not in the library structure
definition.

+ If a MATLAB structure contains fewer fields than defined in the library structure,
MATLAB sets undefined fields to zero.

* Field names are case-sensitive. For example, suppose that library mylib contains
function myfunc with the following structure definition.

struct S {
double len;

}:

The field name is len. If you pass a structure to myfunc with the field name Len,
MATLAB displays an error.

S.Len = 100;
calllib("mylib®, *myfunc*,S)

Requirements for C struct Field Names

When MATLAB loads a C struct definition, the field names in MATLAB are not case-
sensitive. For example, when you load a library containing the following definition,
MATLAB does not create two fields.

3-13

3 Calling C Shared Library Functions from MATLAB

struct S {
double Num;
double num;

}:

More About

. “Limitations to Shared Library Support” on page 3-8

3-14

Module Not Found Error

Module Not Found Error

This error occurs when the shared library has dependencies which MATLAB cannot find.

On Windows systems, to find library dependencies, use the third-party product
Dependency Walker. Dependency Walker is a free utility that scans any 32-bit or 64-bit
Windows module and builds a hierarchical tree diagram of all dependent modules. For
each module found, it lists all the functions exported by that module, and which of those
functions are called by other modules. Download the Dependency Walker utility from the
website http://www.dependencywalker.com/. See http://www.mathworks.com/
matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-
mex-File-or-stand-alone-application-requires for information on using the
Dependency Walker.

3-15

http://www.dependencywalker.com/
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires

3 Calling C Shared Library Functions from MATLAB

No Matching Signature Error

This error occurs when you call a function without the correct input arguments, or if
there is an error in the function signature in the header file.

For example, the function signature for the addStructByRef function in
shrilibsample is:

[double, c_structPtr] addStructByRef(c_structPtr)
Load the library.

addpath(fullfile(matlabroot, "extern®, "examples”, "shrlib®))
loadlibrary(“shrilibsample®)

Create a structure, and call addStructByRefT.

struct.pl = 4;
struct.p2 = 7.3;
struct.p3 = -290;

If you call the function without the input argument, MATLAB displays the error
message.

[res,st] = calllib("shrlibsample”, "addStructByRef")

Error using calllib
No method with matching signature.

The correct call is:

[res,st] = calllib("shrlibsample®, "addStructByRef",struct)

3-16

MATLAB Terminates Unexpectedly When Calling Function in Shared Library

MATLAB Terminates Unexpectedly When Calling Function in
Shared Library

Some shared libraries, compiled as Microsoft Windows 32-bit libraries, use a calling
convention that is incompatible with the default MATLAB calling convention. The
default calling convention for MATLAB and for Microsoft C and C++ compilers is cdecl.

For more information, see the MSDN® Calling Conventions article.

If your library uses a different calling convention, create a loadl ibrary prototype file
and modify it with the correct settings, as described in http://www.mathworks.com/
matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-
function-call-on-a-dlI-in-matlab-7-6-r2008a.

See Also

loadlibrary

Related Examples

Why does MATLAB crash when I make a function call on a DLL in MATLAB 7.6
(R2008a)?

More About
“MATLAB Prototype Files” on page 3-52

External Websites

Calling Conventions

3-17

http://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx
http://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
http://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
http://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
http://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
http://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
http://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx

3 Calling C Shared Library Functions from MATLAB

Pass Arguments to Shared Library Functions

3-18

In this section...

“C and MATLAB Equivalent Types” on page 3-18
“How MATLAB Displays Function Signatures” on page 3-20
“NULL Pointer” on page 3-21

“Manually Convert Data Passed to Functions” on page 3-21

C and MATLAB Equivalent Types

The shared library interface supports all standard scalar C types. The following table
shows these C types with their equivalent MATLAB types. MATLAB uses the type from
the right column for arguments having the C type shown in the left column.

Note: All scalar values returned by MATLAB are of type double.

MATLAB Primitive Types

C Type Equivalent MATLAB Type
char, byte int8
unsigned char, byte uint8
short intl6
unsigned short uintl6
int int32
long (Windows) int32,
long
long (Linux) int64,
long
unsigned int uint32
unsigned long (Windows) uint32,
long
unsigned long (Linux) uint64,
long

Pass Arguments to Shared Library Functions

C Type Equivalent MATLAB Type
float single

double double

char * char array (1xn)
*char[] cell array of strings

The following table shows how MATLAB maps C pointers (column 1) to the equivalent
MATLAB function signature (column 2). Usually, you can pass a variable from the
Equivalent MATLAB Type column to functions with the corresponding Argument Data
Type. See “Pointer Arguments in C Functions” on page 3-46 for information about
when to use a Iib.pointer object instead.

MATLAB Extended Types

C Pointer Type Argument Equivalent Example Function in
Data Type MATLAB Type “Shared Library
shrlibsample” on
page 3-23
double * doublePtr double addDoubleRef
float * singlePtr single
intsize * (integer |(u)int(size)Ptr |(u)int(size) multiplyShort
pointer types) For example,
int64 * becomes
int64Ptr.
byte[] int8Ptr int8
char[] (null- cstring char array (1xn) |[stringToUpper
terminated string
passed by value)
char ** (array of stringPtrPtr cell array of strings
pointers to strings)
enum enumPtr
type ** typePtrPtr lib_pointer allocateStruct
For example, object
double **
becomes
doublePtrPtr.

3-19

3 Calling C Shared Library Functions from MATLAB

3-20

C Pointer Type Argument Equivalent Example Function in
Data Type MATLAB Type “Shared Library
shrlibsample” on
page 3-23
void * voidPtr deallocateStruct
void ** voidPtrPtr lib.pointer
object
struct (C-style structure MATLAB struct |addStructFields
structure)
mxArray * MATLAB array MATLAB array
mxArray ** MATLAB arrayPtr |lib.pointer
object

How MATLAB Displays Function Signatures

Here are things to note about the input and output arguments shown in MATLAB
function signatures.

Many arguments (like iInt32 and double) are similar to their C counterparts. In
these cases, pass in the MATLAB types shown for these arguments.

Some C arguments (for example, **double, or predefined structures), are different
from standard MATLAB types. In these cases, either pass a standard MATLAB type
and let MATLAB convert it for you, or convert the data yourself using the MATLAB
functions libstruct and libpointer. For more information, see “Manually Convert
Data Passed to Functions” on page 3-21.

C functions often return data in input arguments passed by reference. MATLAB
creates additional output arguments to return these values. Input arguments ending
in Ptr or PtrPtr are also listed as outputs.

For an example of MATLAB function signatures, see “Shared Library shrlibsample” on
page 3-23.

Guidelines for Passing Arguments

Nonscalar arguments must be declared as passed by reference in the library
functions.

If the library function uses single subscript indexing to reference a two-dimensional
matrix, keep in mind that C programs process matrices row by row. MATLAB

Pass Arguments to Shared Library Functions

processes matrices by column. To get C behavior from the function, transpose the
input matrix before calling the function, and then transpose the function output.

+ Use an empty array, [], to pass a NULL parameter to a library function that supports
optional input arguments. This notation is valid only when the argument is declared
as a Ptr or PtrPtr as shown by libfunctions or libfunctionsview.

NULL Pointer

You can create a NULL pointer to pass to library functions in the following ways:

* Pass an empty array [] as the argument.

* Use the libpointer function:

p = libpointer; % no arguments

p libpointer("string®) % string argument

p libpointer(“"cstring”) % pointer to a string argument

+ Use the libstruct function:
p = libstruct("structtype®); % structure type
Empty libstruct Object

To create an empty libstruct object, call libstruct with only the structtype
argument. For example:

sci = libstruct("c_struct")

get(sci)
pl: O
p2: O
p3: O

MATLAB displays the initialized values.

Manually Convert Data Passed to Functions
Under most conditions, MATLAB software automatically converts data passed to and

from external library functions to the type expected by the external function. However,
you might choose to convert your argument data manually. For example:

3-21

3 Calling C Shared Library Functions from MATLAB

3-22

+ When passing the same data to a series of library functions, convert it once manually
before calling the first function rather than having MATLAB convert it automatically
on every call. This strategy reduces the number of unnecessary copy and conversion
operations.

* When passing large structures, save memory by creating MATLAB structures that
match the shape of the C structures used in the function instead of using generic
MATLAB structures. The Iibstruct function creates a MATLAB structure modeled
from a C structure taken from the library.

* When an argument to an external function uses more than one level of referencing
(for example, double **), pass a pointer created using the Iibpointer function
rather than relying on MATLAB to convert the type automatically.

See Also

libfunctions | libfunctionsview | libpointer | libstruct

Related Examples
. “Shared Library shrlibsample” on page 3-23

More About

. “Structure Arguments” on page 3-49

Shared Library shrilibsample

Shared Library shrilibsample

MATLAB includes a sample external library called shrlibsample. The library is in the
folder matliabroot\extern\examples\shrlib.

View the source code in MATLAB.

edit([matlabroot "/extern/examples/shrlib/shriibsample.c™]);
edit([matlabroot "/extern/examples/shrlib/shriibsample.h"]);

To use the shrilibsample library, choose one of the following.

+ Add the folder to your MATLAB path:

addpath(fullfile(matlabroot, "extern®, "examples”, "shrlib®))

* Make the folder your current working folder:

cd(fullfile(matlabroot, "extern”, "examples®, "shrlib®))

Load the library and display the MATLAB signatures for the functions in the library.

loadlibrary(“shrilibsample®)
libfunctions shrlibsample -full

Functions in library shrlibsample:

[double, doublePtr] addDoubleRef(double, doublePtr, double)
double addMixedTypes(intl6, int32, double)
[double, c_structPtr] addStructByRef(c_structPtr)
double addStructFields(c_struct)

c_structPtrPtr allocateStruct(c_structPtrPtr)
voidPtr deallocateStruct(voidPtr)

lib_pointer exportedDoubleValue

lib.pointer getListOfStrings

doublePtr multDoubleArray(doublePtr, int32)
[lib.pointer, doublePtr] multDoubleRef(doublePtr)
intl6Ptr multiplyShort(intl6Ptr, int32)

doublePtr print2darray(doublePtr, int32)
printExportedDoubleValue

cstring readEnum(Enuml)

[cstring, cstring] stringToUpper(cstring)

3-23

3 Calling C Shared Library Functions from MATLAB

Pass String Arguments

3-24

In this section...

“stringToUpper Function” on page 3-24

“Convert MATLAB Character Array to Uppercase” on page 3-24

stringToUpper Function

The stringToUpper function in the shrlibsample library converts the characters
in the input argument to uppercase. The input parameter, char *,is a C pointer to a
string.

EXPORTED_FUNCTION char* stringToUpper(char *input)

{
char *p = input;
if (p '= NULL)
while (*p!=0)
*p++ = toupper(*p);
return input;
}

The function signature for stringToUpper is shown in the following table. MATLAB
maps the C pointer type (char *)into cstring so you can pass a MATLAB character
array to the function.

Return Type Name Arguments
[cstring, stringToUpper |(cstring)
cstring]

Convert MATLAB Character Array to Uppercase

This example shows how to pass a MATLAB character array str to a C function,
stringToUpper.

str = "This was a Mixed Case string~;
Load the library containing the stringToUpper function.

if not(libisloaded("shrlibsample®))

Pass String Arguments

addpath(fullfile(matlabroot, "extern®, "examples”, "shrlib®))
loadlibrary(“shrlibsample®)
end

Pass str to the function.

res calllib("shrlibsample®, "stringToUpper*®,str)

res =
THIS WAS A MIXED CASE STRING

The input parameter is a pointer to type char. However, a MATLAB character array is
not a pointer, so the stringToUpper function does not modify the input argument, str.

str
str =

This was a Mixed Case string

Related Examples
. “Shared Library shrilibsample” on page 3-23
. “Iterate Through an Array” on page 3-43

3-25

3 Calling C Shared Library Functions from MATLAB

Pass Structures

In this section...

“addStructFields and addStructByRef Functions” on page 3-26
“Add Values of Fields in Structure” on page 3-27
“Preconvert MATLAB Structure Before Adding Values” on page 3-28

“Autoconvert Structure Arguments” on page 3-29

“Pass Pointer to Structure” on page 3-30

addStructFields and addStructByRef Functions

The shrilibsample example library contains two functions with ¢_struct structure
input parameters. C_struct is defined in the shrlibsample.h header file.

struct c_struct {

double p1;

short p2;

long p3;
}:
Both functions sum the values of the fields in the structure. The input to
addStructFields is c_struct. The input to addStructByRef is a pointer to
c_struct. This function also modifies the fields after summing the values.

addStructFields Function
The addStructFields function sums the values of the fields in a ¢_struct structure.

EXPORTED_FUNCTION double addStructFields(struct c_struct st)

{
double t = st_pl + st_.p2 + st.p3;

return t;

¥
The MATLAB function signature is:

Return Type Name Arguments

double addStructFields |(struct c_struct)

3-26

Pass Structures

addStructByReT Function

The addStructByRef function sums the values of the fields in a c_struct structure,
then modifies the fields. The function returns the sum calculated before modifying the
fields.

EXPORTED_FUNCTION double addStructByRef(struct c_struct *st) {
double t = st->pl + st->p2 + st->p3;

st->pl = 5.5;
st->p2 = 1234;
st->p3 = 12345678;
return t;

}

Since the function modifies the input argument, MATLAB also returns the input as an
output argument of type c_structPtr. The MATLAB function signature is:

Return Type Name Arguments

[double, addStructByRef (c_structPtr)
c_structPtr]

You can pass a MATLAB structure to the function and let MATLAB autoconvert the
argument. Or you can pass a pointer to a structure, which avoids creating a copy of the
structure.

Add Values of Fields in Structure

This example shows how to pass a MATLAB structure to the function,
addStructFields.

Create and initialize structure sm. Each field is of type double.

sm.pl = 476;
sm.p2 = -299;
sm.p3 = 1000;

Load the library containing the addStructFields function.

if not(libisloaded("shrlibsample®))
addpath(fullfile(matlabroot, "extern®, "examples”, "shrlib®))
loadlibrary(“shrilibsample®)

end

3-27

3 Calling C Shared Library Functions from MATLAB

3-28

Call the function. MATLAB automatically converts the fields of structure sm to the
library definition for c_struct.

calllib("shrlibsample®, "addStructFields”,sm)

ans =

1177

Preconvert MATLAB Structure Before Adding Values

This example shows how to preconvert structure smto c_struct before calling
addStructFields. If you repeatedly pass sm to functions, preconverting eliminates the
processing time required by MATLAB to autoconvert the structure for each function call.

Create and initialize a MATLAB structure.

sm.pl = 476;
sm.p2 = -299;
sm.p3 = 1000;

Load the library containing the addStructFields function.

if not(libisloaded("shrlibsample®))
addpath(fullfile(matlabroot, "extern®, "examples”®, "shrlib®))
loadlibrary(“shrilibsample®)

end

Convert the fields, which are of type double, to match the c_struct structure types,
double, short, and long.

sc = libstruct("c_struct®,sm);

Display the field names and values.

get(sc)
pl: 476
p2: -299
p3: 1000

Add the field values.

Pass Structures

calllib("shrlibsample®, "addStructFields”,sc)

ans =

1177

Autoconvert Structure Arguments

This example shows how to pass a MATLAB structure to a C library function,
addStructByRef. When you pass the structure, MATLAB automatically converts the
field types, but MATLAB also makes a copy of the fields.

Load the library.

it not(libisloaded("shrlibsample®))
addpath(fullfile(matlabroot, "extern®, "examples®, "shrlib®))
loadlibrary(“shrlibsample®)

end

Create a structure.

S.pl = 476;
S.p2 = -299;
S.p3 = 1000;

Call addStructByRef.

res calllib("shrlibsample®, "addStructByRef",S)

res

1177

MATLAB does not modify the contents of structure S, since it is not a pointer.

3-29

3 Calling C Shared Library Functions from MATLAB

p2: -299
p3: 1000

Pass Pointer to Structure

This example shows how calling the addStructByReT function with a pointer modifies
the fields in the input argument.

if not(libisloaded("shrilibsample®))
addpath(fullfile(matlabroot, "extern®, “examples”, "shrlib™))
loadlibrary(“shrilibsample®)

end

Create a structure of type c_struct.

S.pl = 20;
S.p2 = 99;
S.p3 = 3;

Create a pointer sp to the structure.

sp = libpointer(“c_struct”,S);

sp-Value
ans =
pl: 20
p2: 99
p3: 3

Pass the pointer to the function.

res = calllib("shrlibsample”, "addStructByRef",sp)

res

122

When you pass a pointer, the function modifies the fields in the structure it points to.

3-30

Pass Structures

sp-Value

ans =
pl: 5.5000
p2: 1234

p3: 12345678

See Also

libpointer | libstruct

Related Examples
- “Shared Library shrlibsample” on page 3-23

More About
. “Strategies for Passing Structures” on page 3-49
. “Limitations Using Structures” on page 3-13

3-31

3 Calling C Shared Library Functions from MATLAB

Pass Enumerated Types

3-32

In this section...

“readEnum Function” on page 3-32

“Display Enumeration Values” on page 3-32

readEnum Function

The readEnum function in the shrilibsample library displays a string that matches the
input argument.

EXPORTED_FUNCTION char* readEnum(TEnuml val)
{
static char outputs[][20] = {

{"You chose enl"},

{"You chose en2"},

{"You chose en4"},

{"enum not defined"},

{"ERROR"} };

switch (val) {
case enl: return outputs[0];
case en2: return outputs[1];
case en4: return outputs[2];
default : return outputs[3];

}

return outputs[4];

}

The function signature is:

Return Type Name Arguments

cstring readEnum (Enuml)

The values for the Enuml input are defined in the shrilibsample.h header file.

typedef enum Enuml {enl = 1, en2, end = 4} TEnuml;

Display Enumeration Values

This example shows how to pass enumeration values to the readEnum function in the
shrilibsample library. Load the library.

Pass Enumerated Types

if not(libisloaded("shrlibsample®))
addpath(fullfile(matlabroot, "extern®, "examples”, "shrlib®))
loadlibrary(“shrlibsample®)

end

In MATLAB, you can express an enumerated type as either the enumeration string or its
equivalent numeric value. Call readEnum with a string argument.

calllib("shrlibsample®, "readEnum®, "en4")

ans =

You chose en4

Call readEnum with the equivalent numeric argument. The Enuml1 definition declares
enumeration en4 equal to 4.

calllib("shrlibsample®, "readEnum®,4)

ans =

You chose en4

Related Examples
. “Shared Library shrilibsample” on page 3-23

3-33

3 Calling C Shared Library Functions from MATLAB

Pass Pointers

3-34

In this section...

“multDoubleRef Function” on page 3-34

“Pass Pointer of Type double” on page 3-34

“Create Pointer Offset from Existing lib.pointer Object” on page 3-35
“Multilevel Pointers” on page 3-36

“allocateStruct and deal locateStruct Functions” on page 3-36
“Pass Multilevel Pointer” on page 3-37

“Return Array of Strings” on page 3-37

mu ltDoubleRef Function

The multDoubleRef function in the shrlibsample library multiplies the input by 5.

EXPORTED_FUNCTION double *multDoubleRef(double *x)
{

*y *= 5-
return X;

}

The input is a pointer to a double, and the function returns a pointer to a double. The
MATLAB function signature is:

Return Type Name Arguments
[lib_pointer, multDoubleRef (doublePtr)
doublePtr]

Pass Pointer of Type double

This example shows how to construct and pass a pointer to C function multDoubleRef.

Load the library containing the function.

if not(libisloaded("shrlibsample®))
addpath(fullfile(matlabroot, "extern®, "examples”, "shrlib®))
loadlibrary(“shrlibsample®)

Pass Pointers

end

Construct a pointer, Xptr, to the input argument, X.

X 13.3;
X = li

ptr bpointer(“doublePtr=,X);
Verify the contents of Xptr.
get(Xptr)

Value: 13.3000
DataType: “doublePtr*

Call the function and check the results.
calllib("shrlibsample®, "multDoubleRef" ,Xptr);
Xptr.Value

ans =

66 .5000

Xptr is a handle object. Copies of this handle refer to the same underlying object and any
operations you perform on a handle object affect all copies of that object. However, Xptr
is not a C language pointer. Although it points to X, it does not contain the address of X.
The function modifies the Value property of Xptr but does not modify the value in the
underlying object X. The original value of X is unchanged.

X
X =

13.3000

Create Pointer Offset from Existing lib.pointer Object

This example shows how to create a pointer to a subset of a MATLAB vector X. The new
pointer is valid only as long as the original pointer exists.

3-35

3 Calling C Shared Library Functions from MATLAB

3-36

Create a pointer to a vector.

X = 1:10;
xp = libpointer(“doublePtr®,X);
xp-Value
ans =
1 2 3 4 5 6 7 8 9 10

Use the lib.pointer plus operator (+) to create a pointer to the last six elements of X.
Xp2 = Xp + 4;
xp2.Value

ans =

Multilevel Pointers

Multilevel pointers are arguments that have more than one level of referencing.
A multilevel pointer type in MATLAB uses the suffix PtrPtr. For example, use
doublePtrPtr for the C argument double **,

When calling a function that takes a multilevel pointer argument, use a lib_pointer

object and let MATLAB convert it to the multilevel pointer.

allocateStruct and deal locateStruct Functions

The al locateStruct function in the shrilibsample library takes a c_structPtrPtr

argument.

EXPORTED_FUNCTION void allocateStruct(struct c_struct **val)
{

val=(struct c_struct) malloc(sizeof(struct c_struct));

(*val)->pl = 12.4;
(val)->p2 = 222;
(*val)->p3 = 333333;

Pass Pointers

}

The MATLAB function signatures are:

Return Type Name Arguments
C_structPtrPtr allocateStruct (c_structPtrPtr)
voidPtr deallocateStruct |(voidPtr)

Pass Multilevel Pointer
This example shows how to pass a multilevel pointer to a C function.

Load the library containing al locateStruct and deal locateStruct.

if not(libisloaded("shrilibsample®))
addpath(fullfile(matlabroot, "extern®, "examples”, "shrlib™))
loadlibrary(“shrilibsample®)

end

Create a c_structPtr pointer.
sp = libpointer(“c_structPtr®);

Call allocateStruct to allocate memory for the structure.

res = calllib(“shrlibsample®,“"allocateStruct”,sp)
res =

pl: 12.4000

p2: 222

p3: 333333

Free the memory created by the al locateStruct function.

calllib("shrlibsample®, "deallocateStruct”,sp)

Return Array of Strings

Suppose that you have a library, myLib, with a function, acquireString, that reads an
array of strings. The function signature is:

3-37

3 Calling C Shared Library Functions from MATLAB

3-38

Return Type

Name

Arguments

char*>*

acquireString

(void)

char** acquireString(void)

The following pseudo-code shows how to manipulate the return value, an array of

pointers to strings.

ptr = calllib(myLib, "acquireString")

MATLAB creates a Iib._pointer object ptr of type stringPtrPtr. This object points
to the first string. To view other strings, increment the pointer. For example, to display
the first three strings, type:

for index = 0:2
ptr + index;
tempPtr._Value

tempPtr
end

ans =
"strl-

ans =
"str2*

ans =
"str3-

See Also

libpointer

Pass Arrays

Pass Arrays

In this section...

“print2darray Function” on page 3-39

“Convert MATLAB Array to C-Style Dimensions” on page 3-39
“multDoubleArray Function” on page 3-40

“Preserve 3-D MATLAB Array” on page 3-41

print2darray Function

The print2darray function in the shrilibsample library displays the values of a 2-D
array with three columns and a variable number of rows. The my2d parameter is a two-
dimensional array of double. The len parameter is the number of rows.

EXPORTED_FUNCTION void print2darray(double my2d[]1[3].,int len)

{
int indxi,indxj;
for(indxi=0; indxi<len;++indxi)
{
for(indxj=0; indxj<3;++indxj)
{
mexPrintf(""%10g” ,my2d[indxiJ[indxj]);
}
mexPrintf(*"\n"");
3
}

Convert MATLAB Array to C-Style Dimensions

This example shows how to pass data stored columnwise in a MATLAB array to a C
function that assumes a row-by-column format.

Load the library containing the print2darray function.

if not(libisloaded("shrilibsample®))
addpath(fullfile(matlabroot, "extern”, "examples”, "shrlib®))
loadlibrary(“shrilibsample™)

end

Create a MATLAB array with 4 rows and 3 columns.

3-39

3 Calling C Shared Library Functions from MATLAB

3-40

m = reshape(1:12,4,3)
m =

1 5 9

2 6 10

3 7 11

4 8 12

Display the values. The first column is [1 4 7 10] instead of [1 2 3 4].

calllib("shrlibsample®, "print2darray”,m,4)

o~NAPR
P o Ul N
N © o w

1 1 1

Transpose m to get the desired result.

calllib("shrlibsample®, "print2darray”,m",4)

1 5 9
2 6 10
3 7 11
4 8 12

multDoubleArray Function

The multDoubleArray function in the shrilibsample library multiplies each element
of an array by three. The function uses a single subscript (linear indexing) to navigate
the input array.

EXPORTED_FUNCTION void multDoubleArray(double *x,int size)
{

/* Multiple each element of the array by 3 */

int i1;

for (i=0;i<size;i++)

*X++ *= 3;

}
The MATLAB function signature is:

Pass Arrays

Return Type Name Arguments
doublePtr multDoubleArray |(doublePtr,

int32)
Preserve 3-D MATLAB Array

This example shows how a C function changes the dimensions of a MATLAB array, and
how to restore its shape.

Load the library.

ifT not(libisloaded("shrilibsample®))
addpath(fullfile(matlabroot, "extern®, “examples”, "shrlib™))
loadlibrary(“shrilibsample®)

end

Create a 2-by-5-by-2 input array and display its dimensions.

vin = reshape(1:20,2,5,2);
vs = size(vin)

VS

Call multDoubleArray to multiply each element. Display the dimensions of the output.
vout = calllib("shrlibsample®, "multDoubleArray”,vin,20);

size(vout)

ans =

2 10

Restore the original shape.

vout = reshape(vout,vs);
size(vout)

3-41

3 Calling C Shared Library Functions from MATLAB

3-42

lterate Through an Array

lterate Through an Array

In this section...

“Create Cell Array from lib.pointer Object” on page 3-43

“Perform Pointer Arithmetic on Structure Array” on page 3-44

Create Cell Array from lib.pointer Object

This example shows how to create a MATLAB® cell array of strings, mIStringArray,
from the output of the getListOFStrings function.

Load the shrilibsample library.

ifT not(libisloaded("shrilibsample®))
addpath(fullfile(matlabroot, "extern®, “examples”, "shrlib™))
loadlibrary(“shrilibsample®)

end

Call the getListOfStrings function to create an array of strings. The function returns
a pointer to the array.

ptr = calllib("shrlibsample”, "getListOfStrings”);
class(ptr)

ans =

lib_pointer

Create indexing variables to iterate through the arrays. Use ptrindex for the array
returned by the function and index for the MATLAB array.

ptrindex = ptr;
index = 1;

Create the cell array of strings mIStringArray. Copy the output of
getListOfStrings to the cell array.

% read until end of list (NULL)
while ischar(ptrindex.value{1l})
miStringArray{index} = ptrindex.value{l};

3-43

3 Calling C Shared Library Functions from MATLAB

3-44

% increment pointer
ptrindex = ptrindex + 1;
% increment array index
index = index + 1;

end

View the contents of the cell array.

mIStringArray

miStringArray =

"String 1° "String Two* " "Last string”

Perform Pointer Arithmetic on Structure Array

This example shows how to use pointer arithmetic to access elements of a structure.
The example creates a MATLAB structure, based on the ¢_struct definition in the
shrlibsample.h header file.

Load the definition.
iT not(libisloaded("shrilibsample™))
addpath(fullfile(matlabroot, "extern”, "examples”, "shrlib™))

loadlibrary(“shrilibsample™)
end

Create the MATLAB structure.

s = struct("p1-,{1,2,3},"p2",{1.1,2.2,3.3},"p3",{0});
Create a pointer to the structure.

sptr = libpointer("c_struct®,s);

Read the values of the first element.

vl = sptr.Value

vl

lterate Through an Array

pl: 1
p2: 1
p3: O

Read the values of the next element by incrementing the pointer.

sptr = sptr + 1;
v2 = sptr.Value

V2 =
pl: 2
p2: 2
p3: 0

3-45

3 Calling C Shared Library Functions from MATLAB

Pointer Arguments

3-46

In this section...

“Pointer Arguments in C Functions” on page 3-46
“Put String into Void Pointer” on page 3-46
“Memory Allocation for External Library” on page 3-47

Pointer Arguments in C Functions

Many functions in external libraries pass arguments by reference. When you pass by
reference, you pass a pointer to the value. In the function signature, pointer arguments
have names ending in Ptr and PtrPtr. Although MATLAB does not support passing
by reference, you can create a MATLAB argument, called a [ib.pointer object, that is
compatible with a C pointer. This object is an instance of the MATLAB class.

Often, you can simply pass a MATLAB variable (passing an argument by value), even
when the signature for that function declares the argument to be a pointer. There are
times, however, when it is useful to pass a lib.pointer.

* You want to modify the data in the input arguments.

* You are passing large amounts of data, and you want to control when MATLAB
makes copies of the data.

* The library stores and uses the pointer so you want the MATLAB function to control
the lifetime of the 1ib._pointer object.

Put String into Void Pointer

C represents characters as 8-bit integers. To use a MATLAB character array as an input
argument, convert the string to the proper type and create a voidPtr. For example:

str = "string variable®;
vp = libpointer("voidPtr-,[int8(str) 0]);

The syntax [Int8(str) 0] creates the null-terminated string required by the C
function. To read the string, and verify the pointer type, enter:

char(vp.Value)
vp.DataType

Pointer Arguments

ans =
string variable
ans =

voidPtr

MATLAB automatically converts an argument passed by value into an argument

passed by reference when the external function prototype defines the argument as a
pointer. Call a function that takes a voidPtr to a string as an input argument using the
following syntax.

func_name([int8(str) 0])

Although MATLAB converts the argument from a value to a pointer, it must be of the
correct type.

Memory Allocation for External Library

In general, MATLAB passes a valid memory address each time you pass a variable to a
library function. Use a lib.pointer object in cases where the library stores the pointer
and accesses the buffer over time. In these cases, ensure that MATLAB has control over
the lifetime of the buffer and prevent copies of the data from being made. The following
pseudo-code is an example of asynchronous data acquisition that shows how to use a
lib.pointer in this situation.

Suppose an external library myLib has the following functions:

AcquireData(int points,short *buffer)
IsAquisitionDone(void)

where buffer is declared as follows:
short buffer[99]

First, create a lib.pointer to an array of 99 points:

BufferSize = 99;
pBuffer = libpointer("intl6Ptr",zeros(BufferSize,1));

Then, begin acquiring data and wait in a loop until it is done:
calllib("myLib","AcquireData,BufferSize,pbuffer)

while (~calllib("myLib","IsAcquisitionDone*®)
pause(0.1)

3-47

3 Calling C Shared Library Functions from MATLAB

end

The following statement reads the data in the buffer:

result = pBuffer._Value;

When the library is done with the buffer, clear the MATLAB variable:

clear pBuffer

See Also

lib.pointer

3-48

Structure Arguments

Structure Arguments

Structure Argument Requirements

When you pass a MATLAB structure to an external library function:
+ Every MATLAB field name must match a field name in the library structure
definition. Field names are case-sensitive.

+ MATLAB structures cannot contain fields that are not in the library structure
definition.

+ If a MATLAB structure contains fewer fields than defined in the library structure,
MATLAB sets undefined fields to zero.

You do not need to match the data types of numeric fields. The cal Il ib function
converts to the correct numeric type.

Find Structure Field Names

To determine the name and data type of structure fields, you can:

* Consult the library documentation.
* Look at the structure definition in the library header file.

+ Use the libstruct function.

Strategies for Passing Structures

MATLAB automatically converts a structure to the library definition for that structure
type. For most cases, such as working with small structures, this works fine.

However, when working with repeated calls that pass large structures, convert the
structure manually before making any calls to external functions. You save processing
time by converting the structure data only once at the start rather than at each function
call. You can also save memory if the fields of the converted structure take up less space
than the original MATLAB structure.

To convert manually, call the 1 ibstruct function to create a libstruct object. Although

it is an object, it behaves like a MATLAB structure. The fields of the object are derived
from an externally specified structure type.

3-49

3 Calling C Shared Library Functions from MATLAB

See Also

libstruct

Related Examples

“Add Values of Fields in Structure” on page 3-27
“Preconvert MATLAB Structure Before Adding Values” on page 3-28

More About

“Limitations Using Structures” on page 3-13

3-50

Explore libstruct Objects

Explore libstruct Objects

This example shows how to display information about and modify a libstruct object,
c_struct.

Load the shrilibsample library containing the ¢_struct definition.

if not(libisloaded("shrlibsample®))
addpath(fullfile(matlabroot, "extern®, "examples”, "shrlib®))
loadlibrary(“shrilibsample®)

end

Create the libstruct object. Object sc is an instance of a MATLAB class called
lib.c_struct.

sc = libstruct("c_struct®)

SC =

lib.c_struct

Set structure field values.
set(sc, "pl1-,100, "p2°,150, "p3",200);
Display field values.
get(sc)
pl: 100

p2: 150
p3: 200

Modify values using MATLAB field structure syntax.

sc.pl = 23;
get(sc)
pl: 23
p2: 150
p3: 200

3-51

3 Calling C Shared Library Functions from MATLAB

MATLAB Prototype Files

3-52

In this section...

“When to Use Prototype Files” on page 3-52

“How to Create Prototype Files” on page 3-52

“How to Specify Thunk Files” on page 3-53

“Deploy Applications That Use loadlibrary” on page 3-53
“loadlibrary in Parallel Computing Environment” on page 3-53
“Change Function Signature” on page 3-53

“Rename Library Function” on page 3-53

“Load Subset of Functions in Library” on page 3-53

“Call Function with Variable Number of Arguments” on page 3-54

When to Use Prototype Files

MATLAB provides a way to modify header file information by creating a prototype file, a
file of MATLAB commands.

Like a header file, the prototype file contains the function signatures for the library. Here
are some reasons for using a prototype file.
* To deploy applications that use loadlibrary (using MATLAB Compiler™).

* Touse loadlibrary in a parallel computing environment (using Parallel Computing
Toolbox™).

* To change signatures of the library functions.
+ To rename some of the library functions.
+ To use only a small percentage of the functions in the library you are loading.

* To use functions with a variable number of arguments.

You can change the prototypes by editing the prototype file and reloading the library.

How to Create Prototype Files

To create a prototype file, use the mFi lename option of the loadl ibrary function.

MATLAB Prototype Files

How to Specify Thunk Files

For information about default thunk file names, see loadlibrary. To change the name,
use the thunkfilename option.

Deploy Applications That Use loadlibrary

To deploy a MATLAB application that uses loadlibrary, using MATLAB Compiler:
+ Create a prototype file.

+ For 64-bit applications, specify a thunk file.

+ Include all the relevant files when creating the project with mcc.

loadlibrary in Parallel Computing Environment

To use loadlibrary in a parallel computing environment (using Parallel Computing
Toolbox):

+ Create a prototype file.
+ For 64-bit applications, specify a thunk file.
* Make sure that all relevant files are accessible to all workers.

Change Function Signature

Edit the prototype file, changing the fcns.LHS or fcns.RHS field for that function. This
edit changes the types of arguments on the left-hand side or right-hand side, respectively.

Rename Library Function

Edit the prototype file, defining the fcns.al ias field for that function.

Load Subset of Functions in Library

Edit the prototype file, commenting out the unused functions. This edit reduces the
amount of memory required for the library.

3-53

3 Calling C Shared Library Functions from MATLAB

Call Function with Variable Number of Arguments

Create an alias function in a prototype file for each set of arguments you use to call the
function.

3-54

Intro to MEX-Files

* “Introducing MEX Files” on page 4-3

* “Using MEX Files” on page 4-4

+ “MEX File Placement” on page 4-5

* “Use Help Files with MEX Files” on page 4-6

+ “MATLAB Data” on page 4-7

* “Testing for Most-Derived Class” on page 4-15

+ “Build MEX File” on page 4-17

+ “Linking Multiple Files” on page 4-18

+ “What You Need to Build MEX Files” on page 4-19

* “Change Default Compiler” on page 4-20

* “Custom Build with MEX Script Options” on page 4-23
+ “Compiling MEX Files with the Microsoft Visual C++ IDE” on page 4-24
+ “Call LAPACK and BLAS Functions” on page 4-26

* “Running MEX Files with .DLL File Extensions on Windows 32-Bit Platforms” on
page 4-35

+ “Upgrade MEX-Files to Use 64-Bit API” on page 4-36

+ “Upgrade MEX Files to Use Graphics Objects” on page 4-47

+ “Platform Compatibility” on page 4-52

* “Invalid MEX File Error” on page 4-53

+ “Run MEX File You Receive from Someone Else” on page 4-54
+ “MEX File Dependent Libraries” on page 4-55

* “Document Build Information in the MEX File” on page 4-56

+ “Version Compatibility” on page 4-58

+ “Getting Help When MEX Fails” on page 4-59

* “Understanding MEX File Problems” on page 4-61

4 Intro to MEX-Files

+ “Compiler- and Platform-Specific Issues” on page 4-66
+ “Memory Management Issues” on page 4-67

* “Compiler Errors in Fortran MEX Files” on page 4-73

4-2

Introducing MEX Files

Introducing MEX Files

You can call your own C, C++, or Fortran subroutines from the MATLAB command

line as if they were built-in functions. These programs, called binary MEX files, are
dynamically linked subroutines that the MATLAB interpreter loads and executes. The
MEX file contains only one function or subroutine, and its name is the MEX file name. To
call a MEX file, use the name of the file, without the file extension.

For information about using a MEX file that someone else created, see “Call MEX File
Functions”.

The term mex stands for “MATLAB executable” and has different meanings, as shown in
the following table.

MEX Term Definition

source MEX file C, C++, or Fortran source code file.

binary MEX file Dynamically linked subroutine executed in the MATLAB
environment.

MEX function library |MATLAB C/C++ and Fortran API Reference library to perform
operations in the MATLAB environment.

meX build script MATLAB function to create a binary file from a source file.

Related Examples
. “Create C Source MEX File” on page 5-18

More About

. “Creating C++ MEX Files” on page 5-13
. “What You Need to Build MEX Files” on page 4-19

4-3

4 Intro to MEX-Files

Using MEX Files

Binary MEX files are subroutines produced from C/C++ or Fortran source code. They
behave just like MATLAB scripts and built-in functions. While scripts have a platform-
independent extension .m, MATLAB identifies MEX files by platform-specific extensions.
The following table lists the platform-specific extensions for MEX files.

MEX-File Platform-Dependent Extension

Platform Binary MEX-File Extension
Linux (64-bit) mexa64

Apple Mac (64-bit) mexmaci64

Microsoft Windows (32- |mexw32

bit)

Windows (64-bit) mexw64

You cannot use a binary MEX file on a platform if you compiled it on a different platform.
Recompile the source code on the platform for which you want to use the MEX file.For

information about using MEX S-functions, see your Simulink® documentation.

4-4

MEX File Placement

MEX File Placement

Put your MEX files in a folder on the MATLAB path. Alternatively, run MATLAB from
the folder containing the MEX file. MATLAB runs functions in the current working folder
before functions on the path.

To see the current folders on your path, use the path function. You can add new folders
to the path either by using the addpath function, or by selecting File > SetPath to edit
the path.

MEX Files on Windows Network Drives

Windows network drive file servers do not always report folder and file changes correctly.
If you change a MEX file on a network drive and find that MATLAB does not use the
latest changes, change folders away from and then back to the folder containing the file.

See Also
addpath | path

4-5

4

Intro to MEX-Files

Use Help Files with MEX Files

You can document the behavior of your MEX files by writing a MATLAB script
containing comment lines. The help command searches for a MATLAB script and
displays the appropriate text.

For example, copy the following text from the arrayProduct.c MEX source file into a
file, arrayproduct.m.

% arrayproduct.m Help file for arrayProduct MEX-file.
% arrayProduct.c - example in MATLAB External Interfaces
%

% Multiplies an input scalar (multiplier)

% times a 1xN matrix (inMatrix)

% and outputs a 1xN matrix (outMatrix)

%

% The calling syntax is:

%

% outMatrix = arrayProduct(multiplier, inMatrix)

%

% This is a MEX-File for MATLAB.
% Copyright 2007-2014 The MathWorks, Inc.
%

When you type:
help arrayproduct

MATLAB displays the comments.

See Also
help

Related Examples
. “Document Build Information in the MEX File” on page 4-56
. “Add Help for Your Program”

MATLAB Data

MATLAB Data

In this section...
“The MATLAB Array” on page 4-7
“Lifecycle of mxArray” on page 4-7

“Data Storage” on page 4-8
“MATLAB Types” on page 4-10
“Sparse Matrices” on page 4-11
“Using Data Types” on page 4-12

The MATLAB Array

The MATLAB language works with a single object type: the MATLAB array. All
MATLAB variables (including scalars, vectors, matrices, strings, cell arrays, structures,
and objects) are stored as MATLAB arrays. In C/C++, the MATLAB array is declared to
be of type mxArray. The mxArray structure contains the following information about the
array:

+ TIts type

+ Its dimensions

* The data associated with this array

+ If numeric, whether the variable is real or complex

+ If sparse, its indices and nonzero maximum elements

+ If a structure or object, the number of fields and field names

To access the mxArray structure, use the API functions in the Matrix Library. These
functions allow you to create, read, and query information about the MATLAB data in
your MEX files. Matrix Library functions use the mwSize type to avoid portability issues
and allow MEX source files to be compiled correctly on all systems.

Lifecycle of mxArray

Like MATLAB functions, a MEX-file “Components of MEX File” on page 5-3 passes
MATLAB variables by reference. However, these arguments are C pointers. A pointer
to a variable is the address (location in memory) of the variable. MATLAB functions
handle data storage for you automatically. When passing data to a MEX-file, you use

4-7

4

Intro to MEX-Files

pointers, which follow specific rules for accessing and manipulating variables. For
information about working with pointers, refer to a programming reference, such as The
C Programming Language by Kernighan, B. W., and D. M. Ritchie.

Note: Since variables use memory, you need to understand how your MEX-file creates an
mxArray and your responsibility for releasing (freeing) the memory. This is important to
prevent memory leaks. The lifecycle of an mxArray—and the rules for managing memory
—depends on whether it is an input argument, output argument, or local variable. The
function you call to deallocate an mxArray depends on the function you used to create it,
which is listed in the create function’s MX Matrix Library documentation.

Input Argument prhs

An mxArray passed to a MEX-file through the prhs input parameter exists outside the
scope of the MEX-file. Do not free memory for any mxArray in the prhs parameter.
Additionally, prhs variables are read-only; do not modify them in your MEX-file.

Output Argument plhs

If you create an mxArray (allocate memory and create data) for an output argument,
the memory and data exist beyond the scope of the MEX-file. Do not free memory on an
mxArray returned in the plhs output parameter.

Local Variable

You allocate memory whenever you use an mxCreate™ function to create an mxArray
or when you call the mxCal loc and associated functions. After observing the rules

for handling input and output arguments, the MEX-file should destroy temporary
arrays and free dynamically allocated memory. To deallocate memory, use either
mxDestroyArray or mxFree. Refer to the MX Matrix Library function documentation
for information about which function to use.

Data Storage

MATLAB stores data in a column-major (columnwise) numbering scheme, which is how
Fortran stores matrices. MATLAB uses this convention because it was originally written
in Fortran. MATLAB internally stores data elements from the first column first, then
data elements from the second column second, and so on, through the last column.

For example, given the matrix:

MATLAB Data

a = [“house®; "floor";
a =

house

floor

porch

its dimensions are:
size(a)

ans =
3 5

and its data 1s stored as:

"porch®]

Lhfflefo]ifo]ufo]rfs]ofc]efr]n]

If a matrix is N-dimensional, MATLAB represents the data in N-major order. For
example, consider a three-dimensional array having dimensions 4-by-2-by-3. Although
you can visualize the data as:

i q T
e R Vv
T Lar 5 W
e T T X
A E K Page 3
F L
c a Page 2
H
Page 1

MATLAB internally represents the data for this three-dimensional array in the following

order:

aBlcpfElr [elafr [sxjc MNjofr e[[s v [ufvwix |

4-9

4 Intro to MEX-Files

\o \1 \2 \3 \4 \5 ‘6 \7 ‘8 \9 \10\11 ‘12‘13‘14‘15‘16‘17 |18|19|20|21|22|23 \

The mxCalcSingleSubscript function creates the offset from the first element of an
array to the desired element, using N-dimensional subscripting.

MATLAB Types

Complex Double-Precision Matrices

The most common data type in MATLAB is the complex double-precision, nonsparse
matrix. These matrices are of type double and have dimensions m-by-n, where m is the
number of rows and n is the number of columns. The data is stored as two vectors of
double-precision numbers—one contains the real data and one contains the imaginary
data. The pointers to this data are referred to as pr (pointer to real data) and pi (pointer
to imaginary data), respectively. A noncomplex matrix is one whose pi is NULL.

Other Numeric Matrices

MATLAB supports single-precision floating-point and 8-, 16-, and 32-bit integers, both
signed and unsigned. The data is stored in two vectors in the same manner as double-
precision matrices.

Logical Matrices

The logical data type represents a logical true or false state using the numbers 1 and
0, respectively. Certain MATLAB functions and operators return logical 1 or logical O
to indicate whether a certain condition was found to be true or not. For example, the
statement (6 * 10) > 40 returns a logical 1 value.

MATLAB Strings

MATLAB strings are of type char and are stored the same way as unsigned 16-bit
integers except there is no imaginary data component. Unlike C, MATLAB strings are
not null terminated.

Cell Arrays

Cell arrays are a collection of MATLAB arrays where each mxArray is referred to as

a cell. Cell arrays allow MATLAB arrays of different types to be stored together. Cell
arrays are stored in a similar manner to numeric matrices, except the data portion
contains a single vector of pointers to mxArrays. Members of this vector are called cells.
Each cell can be of any supported data type, even another cell array.

4-10

MATLAB Data

Structures

A 1-by-1 structure is stored in the same manner as a 1-by-n cell array where n is the
number of fields in the structure. Members of the data vector are called fields. Each field
is associated with a name stored in the mxArray.

Objects

Objects are stored and accessed the same way as structures. In MATLAB, objects are
named structures with registered methods. Outside MATLAB, an object is a structure
that contains storage for an additional class name that identifies the name of the object.

Multidimensional Arrays

MATLAB arrays of any type can be multidimensional. A vector of integers is stored
where each element is the size of the corresponding dimension. The storage of the data is
the same as matrices.

Empty Arrays

MATLAB arrays of any type can be empty. An empty mxArray is one with at least one
dimension equal to zero. For example, a double-precision mxArray of type double, where
m and n equal 0 and pr is NULL, is an empty array.

Sparse Matrices

Sparse matrices have a different storage convention from full matrices in MATLAB. The
parameters pr and pi are still arrays of double-precision numbers, but these arrays
contain only nonzero data elements. There are three additional parameters: nzmax, ir,
and jc.

* nzmax is an integer that contains the length of ir, pr, and pi, if it exists. It is the
maximum number of nonzero elements in the sparse matrix.

* 1r points to an integer array of length hzmax containing the row indices of the
corresponding elements in pr and pi.

+ JcC points to an integer array of length n+1, where n is the number of columns in the
sparse matrix. The jc array contains column index information. If the jth column of
the sparse matrix has any nonzero elements, jc[j] is the index into ir, pr, and pi
of the first nonzero element in the jth column. Index jc[j+1] - 1 contains the last
nonzero element in that column. For the jth column of the sparse matrix, yc[J] is

4-11

4 Intro to MEX-Files

4-12

the total number of nonzero elements in all preceding columns. The last element of
the jc array, jc[n], is equal to nnz, the number of nonzero elements in the entire
sparse matrix. If nnz is less than nzmax, more nonzero entries can be inserted into
the array without allocating more storage.

Using Data Types

You can write source MEX files, MAT-file applications, and engine applications in C/C++
that accept any class or data type supported by MATLAB (see “Data Types”). In Fortran,
only the creation of double-precision n-by-m arrays and strings are supported. You use
binary C/C++ and Fortran MEX files like MATLAB functions.

Caution MATLAB does not check the validity of MATLAB data structures created

in C/C++ or Fortran using one of the Matrix Library create functions (for example,
mxCreateStructArray). Using invalid syntax to create a MATLAB data structure can
result in unexpected behavior in your C/C++ or Fortran program.

Declaring Data Structures

To handle MATLAB arrays, use type mxArray. The following statement declares an
mxArray named myData:

mxArray *myData;

To define the values of myData, use one of the mxCreate* functions. Some useful

array creation routines are mxCreateNumericArray, mxCreateCellArray, and
mxCreateCharArray. For example, the following statement allocates an m-by-1 floating-
point mxArray initialized to O:

myData = mxCreateDoubleMatrix(m, 1, mxREAL);

C/C++ programmers should note that data in a MATLAB array is in column-major order.
(For an illustration, see “Data Storage” on page 4-8.) Use the MATLAB mxGet*
array access routines to read data from an mxArray.

Manipulating Data

The mxGet™ array access routines get references to the data in an mxArray. Use these
routines to modify data in your MEX file. Each function provides access to specific
information in the mxArray. Some useful functions are mxGetData, mxGetPr, mxGetM,

MATLAB Data

and mxGetString. Many of these functions have corresponding mxSet* routines to allow
you to modify values in the array.

The following statements read the input string prhs[0] into a C-style string buf:

char *buf;

int buflen;

int status;

buflen = mxGetN(prhs[0])*sizeof(mxChar)+1;
buf = mxMalloc(buflen);

status = mxGetString(prhs[0], buf, buflen);

The explore Example

There is an example source MEX file included with MATLAB, called explore.c, that
identifies the data type of an input variable. The source code for this example is in
matlabroot/extern/examples/mex, where matlabroot represents the top-level
folder where MATLAB is installed on your system.

Note: In platform-independent discussions that refer to folder paths, this documentation
uses the UNIX convention. For example, a general reference to the mex folder is
matlabroot/extern/examples/mex.

To build the example MEX file, first copy the file to a writable folder on your path.
copyfile(fullfile(matlabroot, "extern”, "examples”, "mex”, "explore.c"),".","f")
Use the mex function to build the MEX file.

mex -largeArrayDims explore.c

Type:

X = 2;
explore(x)

Name: prhs[O]
Dimensions: 1x1
Class Name: double

4-13

4 Intro to MEX-Files

explore accepts any data type. Try using explore with these examples:

explore([1 2 3 4 5])

explore 1 2 3 45

explore({1 2 3 4 5})

explore(int8([1 2 3 4 5]))

explore {1 2 3 4 5}

explore(sparse(eye(5)))

explore(struct("name®, "Joe Jones”, "ext", 7332))
explore(l, 2, 3, 4, 5)

4-14

Testing for Most-Derived Class

Testing for Most-Derived Class

If you define functions that require inputs that are:

* MATLAB built-in types
* Not subclasses of MATLAB built-in types

use the following technique to exclude subclasses of built-in types from the input
arguments.

* Define a cell array that contains the names of built-in types accepted by your
function.

+ Call class and strcmp to test for specific types in a MATLAB control statement.

The following code tests an input argument, inputArg:

if strcmp(class(inputArg), “single”)
% Call function

else
inputArg = single(inputArg);

end

Testing for a Category of Types

Suppose that you create a MEX function, myMexFcn, that requires two numeric inputs
that must be of type double or single:

outArray = myMexFcn(a,b)

Define a cell array FloatTypes that contains the strings double and single

floatTypes = {"double”,"single"};

% Test for proper types

if any(strcmp(class(a),floatTypes)) && ...
any(strcmp(class(b),floatTypes))
outArray = myMexFcn(a,b);

else

% Try to convert inputs to avoid error

end

4-15

4 Intro to MEX-Files

Another Test for Buili-In Types

You can use isobject to separate built-in types from subclasses of built-in types. The
isobject function returns false for instances of built-in types. For example:

% Create a intl6 array
a = int16([2,5,7,11]);
isobject(a)

ans =
0

Determine if an array is one of the built-in integer types:

if isa(a, integer”) && ~isobject(a)
% a is a built-in integer type

end

4-16

Build MEX File

Build MEX File

This example shows how to build the example MEX file, timestwo. Use this example to
verify the build configuration for your system.

To build a code example, first copy the file to a writable folder on your path.
copyfile(fullfile(matlabroot, "extern”, "examples”, "refbook”, "timestwo.c"),".","f")
Use the mex function to build the MEX file.

mex timestwo.c

Building with *"Microsoft Visual C++ 2010 (C)~.
MEX completed successfully.

This command creates the file timestwo.ext, where ext is the value returned by the
mexext function.

The timestwo function takes a scalar input and doubles it. Call timestwo like a
MATLAB function.

timestwo(4)

ans =
8

See Also

mex | mexext

More About
. “What You Need to Build MEX Files” on page 4-19
. “Upgrade MEX-Files to Use 64-Bit API” on page 4-36

4-17

4 Intro to MEX-Files

Linking Multiple Files

4-18

You can combine multiple source files, object files, and file libraries to build a binary
MEX file. List the additional files, with their file extensions, separated by spaces. The
name of the MEX file is the name of the first file in the list.

The following command combines multiple files of different types into a binary MEX file
called circle.ext, where ext is the extension corresponding to the current platform:

mex circle.c square.obj rectangle.c shapes.lib

For a Fortran files, type:

mex circle_F square.o rectangle.F shapes.o

You can use a software development tool like MAKE to manage MEX file projects involving
multiple source files. Create a MAKEFILE that contains a rule for producing object files
from each of your source files. Then invoke the mex build script to combine your object
files into a binary MEX file. This method ensures that your source files are recompiled
only when necessary.

What You Need to Build MEX Files

What You Need to Build MEX Files

To create a MEX file:

Install a MATLAB-supported compiler.

Assemble your functions and the MATLAB API functions into one or more C/C++ or
Fortran source files.

Write a gateway function in one of your source files.
Use the MATLAB mex function, called a build script, to build a binary MEX file.
Use your binary MEX file like any MATLAB function.

If you have multiple compilers installed on your system, see “Change Default Compiler”
on page 4-20.

See Also

mex

Related Examples
“Build MEX File” on page 4-17

More About
“C/C++ Matrix Library API”
“Fortran Matrix Library API”
“Troubleshoot MEX Files”

External Websites
Supported and Compatible Compilers

4-19

http://www.mathworks.com/support/compilers/current_release/

4 Intro to MEX-Files

Change Default Compiler

4-20

In this section...

“Windows Systems” on page 4-20
“Mac and Linux Systems” on page 4-21

“Do Not Use mex -f optionsfile Syntax” on page 4-21

Windows Systems

If you have multiple MATLAB-supported compilers for a language installed on your
Windows system, MATLAB selects one as the default compiler. You can change the
default using the mex -setup language command. If you have multiple compilers,
MATLAB displays a message with links to set up a different compiler.

If you call mex -setup without the 1anguage argument, MATLAB displays links to the
other supported languages. Select a link to change the default for building MEX files in
that language. MATLAB maintains separate default compiler options for C language and
C++ language files.

If you call mnex -setup from an operating system prompt, MATLAB displays the same
information. However, the messages do not contain links. Instead, MATLAB displays the
appropriate mex command syntax for changing the default compiler. Copy the command
and paste it into the operating system prompt.

The compiler you choose remains the default until you call mex -setup to select a
different default.

C Compilers

To change the default C compiler, at the MATLAB command prompt, type:

mex -setup

mex -setup defaults to information about the C compiler. Alternatively, type:

mex -setup c
C++ Compilers

To change the default C++ compiler, type:

Change Default Compiler

mex -setup cpp

Mac and Linux Systems

MATLAB supports only one compiler for each language on Linux and Mac platforms.
If you have multiple compilers installed, the default compiler might not be the
MATLAB-supported compiler. You can either change the system default compiler for
all applications, or select the MATLAB-supported compiler each time you run the mex
command.

Change System Default Compiler
To determine the default gec compiler for your system, in MATLAB, type:
Iwhich gcc

If this compiler is not a MATLAB-supported compiler, you can change the default. When
you change the compiler, it becomes the default compiler for all applications on your
system. To change the system default compiler:

Select MATLAB-Supported Compiler When Running mex

To change the compiler in the mex command, set the varname variable. varname for
the gee compiler is GCC, in uppercase letters. For example, if the currently supported
gee compiler is version 4.7, and it is installed in the /usr/bin/gcc-4.7 folder on your
system, to build yprime.c, type:

copyfile(fullfile(matlabroot, "extern”, "examples”, "refbook”, "timestwo.c"),".","f")
mex -v GCC="/usr/bin/gcc-4.7" timestwo.c

Do Not Use mex -f optionsfile Syntax
The mex command -F option to specify a build configuration file will be removed in

a future release. Instead, use the work flows described in this topic for specifying a
compiler.

See Also

mex

Related Examples
. “Choose a C++ Compiler” on page 5-28

4-21

4 Intro to MEX-Files

External Websites
. Supported and Compatible Compilers

4-22

http://www.mathworks.com/support/compilers/current_release/

Custom Build with MEX Script Options

Custom Build with MEX Script Options

The mex build script is sufficient for building MEX files. Following are reasons that you
might need more detailed information:

* You want to use an Integrated Development Environment (IDE), rather than the
provided script, to build MEX files.

* You want to exercise more control over the build process than the script uses.

Use the mex -v -n options to display the build commands to configure an IDE. You can
also use the mex script options to modify the build steps.

Include Files

Header files for the MATLAB API (MEX files, engine, and MAT-files). These files are in
the matlabroot\extern\include folder.

+ matrix.h—C/C++ header file containing a definition of the mxArray structure and
function prototypes for matrix access routines.

+ mex.h—Header file for building C/C++ MEX files. Contains function prototypes for
meX routines.

+ engine.h—C/C++ header file for MATLAB engine programs. Contains function
prototypes for engine routines.

+ mat.h—C/C++ header file for programs accessing MAT-files. Contains function
prototypes for mat routines.

+ Fintrf.h—Header file for building Fortran MEX files. Contains function prototypes
for mex routines.

See Also

mex

4-23

4 Intro to MEX-Files

Compiling MEX Files with the Microsoft Visual C++ IDE

4-24

Note: This topic provides information on how to compile source MEX files in the

Microsoft Visual C++* IDE. It assumes that you know how to use the IDE. If you need
more information, refer to the corresponding Microsoft documentation.

To build MEX files with the Microsoft Visual C++ integrated development environment:

Create a project and insert your MEX source files.

2 Create a .def file to export the MEX entry point. On the Project menu, click Add
New Item and select Module-Definition File (.def). For example:

LIBRARY MYFILE

EXPORTS mexFunction <-- for a C MEX-File
or
EXPORTS _MEXFUNCTION <-- for a Fortran MEX-File

3 On the Project menu, click Properties for the project to open the property pages.

4 Under C/C++ General properties, add the MATLAB include folder,
matlab\extern\include, as an additional include folder.

5 Under C/C++ Preprocessor properties, add MATLAB_MEX FILE as a preprocessor
definition.

6 Under Linker General properties, change the output file extension. If you are
building for a 32-bit platform, use .mexw32. If you are building for a 64—bit
platform, use .mexw64.

7 Locate the . Lib files for the compiler you are using under matlabroot\extern
\lib\win32\microsoft or matlabroot\extern\lib\win64\microsoft.
Under Linker Input properties, add Fibmx. lib, libmex.lib, and libmat.l1ib as
additional dependencies.

8 Under Linker Input properties, add the module definition (.de¥) file you created.

9 Under Linker Debugging properties, if you intend to debug the MEX file
using the IDE, specify that the build generates debugging information. For more
information about debugging, see “Debugging on Microsoft Windows Platforms” on
page 5-52.

If you are using a compiler other than the Microsoft Visual C++ compiler, the process
for building MEX files is similar. In step 4, locate the . l'ib files for the compiler you are

Compiling MEX Files with the Microsoft Visual C++ IDE

using in a folder of matlabroot\extern\lib\win32 or matlabroot\extern\lib
\win64.

4-25

4 Intro to MEX-Files

Call LAPACK and BLAS Functions

In this section...

“What You Need to Know” on page 4-26

“Creating a MEX File Using LAPACK and BLAS Functions” on page 4-26
“Preserving Input Values from Modification” on page 4-28

“Passing Arguments to Fortran Functions from C/C++ Programs” on page 4-29
“Passing Arguments to Fortran Functions from Fortran Programs” on page 4-30
“Handling Complex Numbers in LAPACK and BLAS Functions” on page 4-31
“Modifying the Function Name on UNIX Systems” on page 4-34

What You Need to Know

You can call a LAPACK or BLAS function using a MEX file. To create a MEX file,

you need C/C++ or Fortran programming experience and the software resources
(compilers and linkers) to build an executable file. It also is helpful to understand how
to use Fortran subroutines. MATLAB provides the mwlapack and mwblas libraries in
matlabroot/extern/lib. To work with complex numbers, use the conversion routines
in the fort.c and fort.h files in matlabroot/extern/examples/refbook. To help
you get started, there are source code examples in matlabroot/extern/examples/
refbook.

Creating a MEX File Using LAPACK and BLAS Functions

To call LAPACK or BLAS functions:

Create a source MEX file containing the mexFunction gateway routine.
2 Select a supported compiler for your platform.
3 Build a binary MEX file using the mex command with one or more of the following
options:
Link your source file to one or both of the libraries, mwlapack and mwblas.

+ Use the -largeArrayDims option; the mvlapack and mwblas libraries only
support 64-bit integers for matrix dimensions.

4-26

Call LAPACK and BLAS Functions

+ If your function uses complex numbers, build your source file with fort.c and
include the Fort.h header file.

The following topics show how to use the mex command using the example
matrixMultiply.c. To work with this file, copy it to a local folder. For example:

copyfile(fullfile(matlabroot, "extern®, "examples®, "refbook”, "matrixMultiply.c®),".")

The example files are read-only files. To modify an example, ensure that the file is
writable by typing:

fileattrib("matrixMultiply.c®,"+w")
Building on Windows Platforms

There are compiler-specific versions of the libraries on the Windows platform. To link to
a specific library, look at the matlabroot/extern/lib/ folder and choose the path for
your architecture and compiler.

For example, to link to the libraries for a Microsoft C/C++ compiler, create the following
build command variables, lapacklib and blaslib. These variables identify the full
path and file name of each library.

lapacklib = fullfile(matlabroot, "extern®,"lib",computer(“arch®), "microsoft”, ...
"libmwlapack.lib");

blaslib = fullfile(matlabroot, "extern®,"lib",computer(“arch®), "microsoft”, ...
"libmwblas.lib");

When you use a variable to identify the library, use the function syntax of the mex
command. (For more information, see “Command vs. Function Syntax”.) To build
matrixMultiply.c, which uses functions from the BLAS library, type:

mex("-v", "-largeArrayDims®, "matrixMultiply.c®, blaslib)

To build a MEX file with functions that use complex numbers, see “Handling Complex
Numbers in LAPACK and BLAS Functions” on page 4-31.

Building on UNIX Platforms

To build the MEX file matrixMultiply.c, which uses functions from the BLAS library,
type:

mex -v -largeArrayDims matrixMultiply.c -Imwblas

4-27

4 Intro to MEX-Files

To build a MEX file with functions that use complex numbers, see “Handling Complex
Numbers in LAPACK and BLAS Functions” on page 4-31.

Testing the matrixMultiply MEX File

To run the matrixMultiply MEX file, type:

A=1[135;24T7];
B=1[-5811; 39 21; 40 8];
X = matrixMultiply(A,B)

X =

24 35 114
30 52 162

Preserving Input Values from Modification

Many LAPACK and BLAS functions modify the values of arguments passed to them. It is
good practice to make a copy of arguments you can modify before passing them to these
functions. For information about how MATLAB handles arguments to the mexFunction,
see “Managing Input and Output Parameters” on page 5-4.

Example — matrixDivide.c

The following example calls the LAPACK function dgesv that modifies its input
arguments. The code in this example makes copies of prhs[0] and prhs[1], and passes
the copies to dgesv to preserve the contents of the input arguments.

To see the example, open the file in the MATLAB Editor. To create the MEX file, copy the
source file to a writable folder.

copyfile(fullfile(matlabroot, "extern”, "examples”®, "refbook”, "matrixDivide.c"),".")

To build the file on Windows, type:

lapacklib = fullfile(matlabroot, "extern®, "lib",computer(“arch®), "microsoft”, ...
“"libmwlapack.lib®);

mex("-v", "-largeArrayDims”, "matrixDivide.c", lapacklib)

To build the file on UNIX type:

mex -v -largeArrayDims matrixDivide.c -Imwlapack

4-28

Call LAPACK and BLAS Functions

To test, type:

A=1[12; 3 4];
B = [5; 6];
X = matrixDivide(A,B)
X =
-4._.0000
4 _.5000

Passing Arguments to Fortran Functions from C/C++ Programs

The LAPACK and BLAS functions are written in Fortran. C/C++ and Fortran use
different conventions for passing arguments to and from functions. Fortran functions
expect the arguments to be passed by reference, while arguments to C/C++ functions are
passed by value. When you pass by value, you pass a copy of the value. When you pass by
reference, you pass a pointer to the value. A reference is also the address of the value.

When you call a Fortran subroutine, like a function from LAPACK or BLAS, from a C/C+
+ program, be sure to pass the arguments by reference. To do this, precede the argument
with an ampersand (&), unless that argument is already a reference. For example, when
you create a matrix using the mxGetPr function, you create a reference to the matrix and
do not need the ampersand before the argument.

In the following code snippet, variables m, n, p, one, and zero need the & character to
make them a reference. Variables A, B, C, and chn are pointers, which are references.

/* pointers to input & output matrices*/
double *A, *B, *C;

/* matrix dimensions */

mwSignedindex m,n,p;

/* other inputs to dgemm */

char *chn = "N"';

double one = 1.0, zero = 0.0;

/* call BLAS function */
dgemm(chn, chn, &m, &n, &p, &one, A, &m, B, &p, &zero, C, &m);

Example — matrixMultiply.c

The matrixMultiply.c example calls dgemm, passing all arguments by reference. To
see the source code, open the file in the MATLAB Editor. To build and run this example,
see “Creating a MEX File Using LAPACK and BLAS Functions” on page 4-26.

4-29

4 Intro to MEX-Files

Passing Arguments to Fortran Functions from Fortran Programs

You can call LAPACK and BLAS functions from Fortran MEX files. The following
example takes two matrices and multiplies them by calling the BLAS routine dgemm. To
run the example, copy the code into the editor and name the file cal ldgemm.F

#include "fintrf.h"

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
mwPointer plhs(*), prhs(*)

integer nlhs, nrhs

mwPointer mxcreatedoublematrix
mwPointer mxgetpr

mwPointer A, B, C

mwSize mxgetm, mxgetn
mwSignedIndex m, n, p

mwSize numel

double precision one, zero, ar, br
character chl, ch2

chl = *N*
ch2 = *N-*
one = 1.0

zero = 0.0

mxgetpr(prhs(1))
mxgetpr(prhs(2))
mxgetm(prhs(1))
mxgetn(prhs(l1))
mxgetn(prhs(2))

5T 3 W >
[T TR TR T

plhs(1) = mxcreatedoublematrix(m, n, 0.0)
C = mxgetpr(plhs(1))

numel = 1

call mxcopyptrtoreal8(A, ar, numel)

call mxcopyptrtoreal8(B, br, numel)

call dgemm(chl1, ch2, m, n, p, one, %val(A), m,
+ %val(B), p, zero, %val(C), m)

return
end

Link to the BLAS library, which contains the dgemm function.

4-30

Call LAPACK and BLAS Functions

blaslib = fullfile(matlabroot, "extern®,"lib",computer(“arch®), "microsoft”, ...
"libmwblas.lib");

To build the file, type:

mex("-v","-largeArrayDims®, "calldgemm.F" ,blaslib)

Handling Complex Numbers in LAPACK and BLAS Functions

MATLAB stores complex numbers differently than Fortran. MATLAB stores the real
and imaginary parts of a complex number in separate, equal length vectors, pr and pi.
Fortran stores the same complex number in one location with the real and imaginary
parts interleaved.

As a result, complex variables exchanged between MATLAB and a Fortran function are
incompatible. Use the conversion routines, mat2fort and fort2mat, that change the
storage format of complex numbers to address this incompatibility.

+ mat2fort — Convert MATLAB complex matrix to Fortran complex storage.

+ fort2mat — Convert Fortran complex storage to MATLAB real and imaginary parts.

The fort.c and fort.h files provide routines for conversion between MATLAB and
Fortran complex data structures. These files define the mat2fort and fort2mat
routines.

To use these routines:
1 Include the fort.h header file in your source file, using the statement #include

"fort.h".

2 Link the fort.c file with your program. Specify the full path, matlabroot/
extern/examples/refbook for fort.c in the build command.

3 To indicate the header file, use the -lpathname switch. Specify the full path,
matlabroot/extern/examples/refbook for fort.h in the build command.

4 When you specify the full path, replace the term matlabroot with the actual folder
name.

Handling Complex Number Input Values

It is unnecessary to copy arguments for functions that use complex number input
values. The mat2fort conversion routine creates a copy of the arguments for you. For
information, see “Preserving Input Values from Modification” on page 4-28.

4-31

4 Intro to MEX-Files

Handling Complex Number Output Arguments
For complex variables returned by a Fortran function, do the following:

1 When allocating storage for the variable, allocate a real variable with twice as much
space as you would for a variable of the same size. Do this because the returned
variable uses the Fortran format, which takes twice the space. See the allocation of
zout in the example.

2 To make the variable compatible with MATLAB, use the fort2mat function.
Example — Passing Complex Variables

This example shows how to call a function, passing complex prhs[0] as input and
receiving complex plhs[0] as output. Temporary variables zin and zout contain the
input and output values in Fortran format. To see the example, open the file in the
MATLAB Editor. To create the MEX file, copy the source file to a writable folder.

copyFile(fullfile(matlabroot, "extern”, "examples”, "refbook”, "matrixDivideComplex.c")," .

To build the file on a Windows platform, type:

lapacklib = fullfile(matlabroot, “"extern®,"lib",computer(“arch®), "microsoft”, ...
"libmwlapack.lib®);
fortfile = fullfile(matlabroot, "extern”, "examples”, "refbook”,*fort.c");
fortheaderdir = fullfile(matlabroot, "extern”, "examples®, "refbook™);
mex("-v", "-largeArrayDims®, ["-1" fortheaderdir],
"matrixDivideComplex.c®, fortfile, lapacklib)

To build on a UNIX platform, type:

fortfile = fullfile(matlabroot, "extern®, "examples”, "refbook”,*fort.c");

fortheaderdir = fullfile(matlabroot, "extern”, "examples®, "refbook™);

mex("-v", "-largeArrayDims®, ["-1" fortheaderdir],
"matrixDivideComplex.c®, fortfile, "-Imwlapack®)

To test:

Areal = [1 2; 3 4];
Aimag = [1 1; 0 0];
Breal = [5; 6];
Bimag = [0; O];

Acomplex = complex(Areal ,Aimag);
Bcomplex = complex(Breal ,Bimag);
X = matrixDivideComplex(Acomplex,Bcomplex)

4-32

Call LAPACK and BLAS Functions

X =
-4.4000 + 0.80001
4._.8000 - 0.6000i

Example — Handling Fortran Complex Return Type

Some level 1 BLAS functions (for example, zdotu and zdotc) return a double
complex type, which the C language does not support. The following C MEX file,
dotProductComplex.c, shows how to handle the Fortran complex return type for
function zdotu. To see the example, open the file in the MATLAB Editor.

The calling syntax for a C program calling a Fortran function that returns a
value in an output argument is platform-dependent. On the Windows platform,
pass the return value as the first input argument. MATLAB provides a macro,
FORTRAN_COMPLEX_FUNCTIONS_RETURN_VOID, to handle these differences.

The dotProductComplex example computes the dot product X of each element of two
complex vectors A and B. The calling syntax is:

X = dotProductComplex(A,B)
where A and B are complex vectors of the same size and X is a complex scalar.

For example, to build the MEX file on a Windows platform, type:

blaslib = fullfile(matlabroot, “"extern®,"l1ib",computer(“arch®), "microsoft”, ...
“libmwblas.lib");
fortfile = fullfile(matlabroot, "extern®, “examples”, "refbook”,*fort.c");
fortheaderdir = fullfile(matlabroot, "extern”, "examples®, "refbook®);
mex("-v", "-largeArrayDims®, ["-1" fortheaderdir],
“dotProductComplex.c®, fortfile, blaslib)

To test, type;

al [1+2§; 2+3i];

bl [-1+2i; -1+3i];

X = dotProductComplex(al,bl)
X

-16.0000 + 3.00001
Example — Symmetric Indefinite Factorization Using LAPACK

The example utdu_slv.c calls LAPACK functions zhesvx and dsysvx. To see the
example, open the file in the MATLAB Editor. To create the MEX file, copy the source file
to a writable folder.

4-33

4 Intro to MEX-Files

4-34

copyfile(fullfile(matlabroot, "extern®, "examples”, "refbook”,"utdu_slv.c"),".")

To build the file on Windows, type:

lapacklib = fullfile(matlabroot, "extern®,"lib",computer(“arch®), "microsoft”, ...
“"libmwlapack.lib");

fortheaderdir = fullfile(matlabroot, "extern”, "examples”, "refbook");

mex("-v","-largeArrayDims®",["-1" fortheaderdir], "utdu_slv.c",fortfile, lapacklib)

To build on a UNIX platform, type:

mex -v -largeArrayDims utdu_slv.c -Imwlapack

Modifying the Function Name on UNIX Systems

Add an underscore character following the function name when calling LAPACK or
BLAS functions on a UNIX system. For example, to call dgemm, use:

dgemm_(argl, arg2, ..., argn);
Or add these lines to your source code:
#if 1defined(_WIN32)

#define dgemm dgemm_
#endif

Running MEX Files with .DLL File Extensions on Windows 32-Bit Platforms

Running MEX Files with .DLL File Extensions on Windows 32-Bit
Platforms

A MEX file is a shared library dynamically loaded at runtime. Shared libraries are
sometimes called .dl1 files, for dynamically linked library. MEX files have a platform-
dependent extension, which the mex function automatically assigns.

On 32-bit Windows platforms, the MEX file extension is .mexw32. MATLAB also
supports .dl1l as a secondary MEX file extension. However, future versions of MATLAB
will not support this extension.

To convert a MEX file to the .mexw32 file extension, rebuild the source file.

More About
“Call MEX File Functions”
“Build MEX File” on page 4-17

4-35

4 Intro to MEX-Files

Upgrade MEX-Files to Use 64-Bit API

4-36

In this section...

“MATLAB Support for 64-Bit Indexing” on page 4-36

“MEX Uses 32-Bit API by Default” on page 4-36

“What If I Do Not Upgrade?” on page 4-38

“How to Upgrade MEX-Files to Use the 64-Bit API” on page 4-38

MATLAB Support for 64-Bit Indexing

MATLAB Version 7.3 (R2006b) added support for 64-bit indexing. With 64-bit indexing,

you can create variables with up to 2*%-1 elements on 64-bit platforms. Before Version
7.3, the C/C++ and Fortran API Reference library functions used int in C/C++ and
INTEGER*4 in Fortran to represent array dimensions. These types limit the size of an
array to 32-bit integers. Simply building and running MEX-files on a 64-bit platform does
not guarantee you access to the additional address space. You must update your MEX
source code to take advantage of this functionality.

The following changes to the MX Matrix Library support 64-bit indexing:

* New types, mwSize and mwlndex, enabling large-sized data.

+ Updated MX Matrix Library functions use mwSize and mwlndex types for inputs and
outputs. These functions are called the 64-bit API or the large-array-handling API.

+ New -largeArrayDims flag for mex build command enabling use of the 64-bit API.

To help transition your MEX-files to the 64-bit API, MATLAB maintains an
interface, or compatibility layer. To build MEX-files with this interface, use the -
compatibleArrayDims flag.

Note: Only variables representing array size or index value require the mwSize or
mwlndex types. The C-language int data type is valid for variables representing, for
example, the number of fields or arrays.

MEX Uses 32-Bit API by Default

The mex command uses the —compatibleArrayDims flag (32-bit API) by default. In
a future version of MATLAB, the mex command will change to use the large-array-

Upgrade MEX-Files to Use 64-Bit AP

handling API. Then, the -largeArrayDims option will be the default. This topic
describes how to upgrade your MEX-files now in preparation for that transition.

Can | Run Existing Binary MEX-Files?

You can run existing binary MEX-files without upgrading the files for use with the 64-
bit API. However, unrelated incompatibilities that prevent execution of an existing MEX-
file can occur. If your MEX-file does not execute properly, review the MEX Compatibility
Considerations topics in the Release Notes for this release. To find MEX topics, check the
External Interfaces section of the Compatibility Summary for MATLAB release notes
table for each relevant version.

Must | Update Source MEX-Files on 64-Bit Platforms?

If you build MEX-files on 64-bit platforms or write platform-independent applications,
you must upgrade your MEX-files when the default changes. To upgrade, review your
source code, make appropriate changes, and rebuild using the mex command.

Previous versions of the External Interfaces Release Notes provide instructions for
updating your MEX-files. What action you take now depends on whether your MEX-files
currently use the 64-bit API. The following table helps you identify your next actions.

State of Your Source Code Next Action

I do not plan to update my code. You have chosen to opt out and you must
build using the —~compatibleArrayDims
flag.

I want to update my code. Where do I start?|See “How to Upgrade MEX-Files to Use the
64-Bit API” on page 4-38.

I use MEX-files, but do not have access to |Ask the owner of the source code to follow

the source code. the steps in “How to Upgrade MEX-Files to
Use the 64-Bit API” on page 4-38.
I use third-party libraries. Ask the vendor if the libraries support

64-bit indexing. If not, you cannot use
these libraries to create 64-bit MEX-
files. Build your MEX-file using the -
compatibleArrayDims flag.

If the libraries support 64-bit indexing,
review your source code, following the steps

4-37

4 Intro to MEX-Files

4-38

State of Your Source Code Next Action

in “How to Upgrade MEX-Files to Use the
64-Bit API” on page 4-38, and then test.

I updated my code in a previous release. Review your source code, following the
steps in “How to Upgrade MEX-Files to
Use the 64-Bit API” on page 4-38, and
then test.

Must | Update Source MEX-Files on 32-Bit Platforms?

There are no changes to building 32-bit MEX-files. However, in a future version of
MATLAB, the compatibility layer, with the —~compatibleArrayDims flag, might be
unsupported and you then would need to upgrade your MEX-files.

If you build MEX-files exclusively on 32-bit platforms, but want to write platform-
independent code, you still can upgrade your code. If possible, build on a 64-bit system to
validate your changes.

What If | Do Not Upgrade?

On 32-bit platforms, you do not need to make any changes to build MEX-files.
On 64-bit platforms, you can build MEX-files by using the —~compatibleArrayDims flag.

On 64-bit platforms, if you do not update your source files and you build without the -
compatibleArrayDims flag, the results are unpredictable. One or more of the following
could occur:

* Increased compiler warnings and/or errors from your native compiler
* Run-time errors

* Wrong answers

How to Upgrade MEX-Files to Use the 64-Bit API

To review and update MEX-file source code, use the following checklist.

1 Prepare your code before editing — see “Back Up Files and Create Tests” on page
4-39.

Upgrade MEX-Files to Use 64-Bit AP

6

Tteratively change and test code.

Before building your MEX-files with the 64-bit API, refactor your existing code by
checking for the following conditions:

a “Update Variables” on page 4-40.

b “Replace Unsupported Functions” on page 4-42.

¢ If necessary, “Update Fortran Source Code” on page 4-44.

After each change, build and test your code:
* Build with the 32-bit API. For example, to build myMexFile.c, type:

mex -compatibleArrayDims myMexFile.c

Test after each refactoring — see “Test, Debug, and Resolve Differences After
Each Refactoring Iteration” on page 4-42.

Compile using the 64-bit API. To build myMexFile.c, type:

mex -largeArrayDims myMexFile.c

Resolve failures and warnings — see “Resolve -largeArrayDims Build Failures and
Warnings” on page 4-43.

Compare Results — see “Execute 64-Bit MEX-File and Compare Results with 32-Bit
Version” on page 4-43.

Check memory — see “Experiment with Large Arrays” on page 4-43.

The following procedures use C/C++ terminology and example code. Fortran MEX-files
share the same issues, with more tasks described in “Update Fortran Source Code” on
page 4-44.

Back Up Files and Create Tests

Before adapting your code to handle large arrays, verify the MEX-file works with the
traditional 32-bit array dimensions. At a minimum, build a list of expected inputs and
outputs, or create a full test suite. To compare the results with the upgraded source code,
use these tests. The results should be identical.

Back up all source, binary, and test files.

4-39

4 Intro to MEX-Files

4-40

Update Variables

To handle large arrays, convert variables containing array indices or sizes to use the
mwSize and mwlndex types instead of the 32-bit Int type. Review your code to see if it
contains the following types of variables:

* Variables used directly by the MX Matrix Library functions — see “Update
Arguments Used to Call Functions in the 64-Bit API” on page 4-40.

+ Intermediate variables — see “Update Variables Used for Array Indices and Sizes” on
page 4-41.

* Variables used as both size/index values and as 32-bit integers — see “Analyze Other
Variables” on page 4-41.

Update Arguments Used to Call Functions in the 64-Bit API

Identify the 64-bit API functions in your code that use the mwSize / mwlndex types. For
the list of functions, see “Using the 64-Bit API” on page 5-61. Search for the variables
that you use to call the functions. Check the function signature, shown under the Syntax
heading on the function reference documentation. The signature identifies the variables
that take mwSize / mwIndex values as input or output values. Change your variables to
use the correct type.

For example, suppose that your code uses the mxCreateDoubleMatrix function, as
shown in the following statements:

int nrows,ncolumns;

)-/;c-)ut = mxCreateDoubleMatrix(nrows, ncolumns, mxREAL);

To see the function signature, type:

doc mxCreateDoubleMatrix

The signature is:

mxArray *mxCreateDoubleMatrix(mwSize m, mwSize n, mxComplexity ComplexFlag)

The type for input arguments m and n is mwSize. Change your code as shown in the
table.

Replace: With:

int nrows,ncolumns; mwSize nrows,ncolumns;

Upgrade MEX-Files to Use 64-Bit AP

Update Variables Used for Array Indices and Sizes

If your code uses intermediate variables to calculate size and index values, use mwSize
/ mwlndex for these variables. For example, the following code declares the inputs to
mxCreateDoubleMatrix as type mwSize:

mwSize nrows,ncolumns; /* inputs to mxCreateDoubleMatrix */
int numDataPoints;

nrows = 3;

numDataPoints = nrows * 2;

ncolumns = numDataPoints + 1;

y_out = mxCreateDoubleMatrix(nrows, ncolumns, mxREAL);

This example uses the intermediate variable, numDataPoints (of type int), to calculate
the value of ncolumns. If you copy a 64-bit value from nrows into the 32-bit variable,
numDataPoints, the resulting value truncates. Your MEX-file could crash or produce
incorrect results. Use type mwSize for numDataPoints, as shown in the following table.

Replace: With:
int numDataPoints; mwSize numDataPoints;
Analyze Other Variables

You do not need to change every integer variable in your code. For example, field
numbers in structures and status codes are of type int. However, you need to identify
variables used for multiple purposes and, if necessary, replace them with multiple
variables.

The following example creates a matrix, myNumeric, and a structure, myStruct, based on
the number of sensors. The code uses one variable, numSensors, for both the size of the
array and the number of fields in the structure.

mxArray *myNumeric, *myStruct;

int numSensors;

mwSize m, n;

char **fieldnames;

myNumeric = mxCreateDoubleMatrix(numSensors, n, mxREAL);
myStruct = mxCreateStructMatrix(m, n, numSensors, fieldnames);

The function signatures for mxCreateDoubleMatrix and mxCreateStructMatrix are:

mxArray *mxCreateDoubleMatrix(mwSize m, mwSize n,

4-41

4 Intro to MEX-Files

4-42

mxComplexity ComplexFlag)
mxArray *mxCreateStructMatrix(mwSize m, mwSize n,
int nfields, const char **fieldnames);

For the mxCreateDoubleMatrix function, your code uses numSensors for the variable
m. The type for m is mwSize. For the mxCreateStructMatrix function, your code uses
numSensors for the variable nfields. The type for nfields is int. Replace numSensors
with two new variables to handle both functions, as shown in the following table.

Replace: With:
int numSensors; /* create 2 variables */
/* of different types */
mwSize numSensorSize;
int numSensorFields;
myNumeric = /* use mwSize variable */
mxCreateDoubleMatrix(/* numSensorSize */
numSensors, myNumeric =
n, mxREAL); mxCreateDoubleMatrix(
numSensorSize,
n, mxREAL);
myStruct = /* use int variable */
mxCreateStructMatrix(/* numSensorFields */
m, n, myStruct =
numSensors, mxCreateStructMatrix(
fieldnames); m, n,
numSensorFields,
fieldnames);

Replace Unsupported Functions

While updating older MEX-files, you could find calls to unsupported functions, such
as mxCreateFul I, mxGetName, or mx1sString. MATLAB removed support for these
functions in Version 7.1 (R14SP3). You cannot use unsupported functions with 64-

bit array dimensions. For the list of unsupported functions and the recommended
replacements, see “Obsolete Functions No Longer Documented”.

Update your code to use an equivalent function, if available. For example, use
mxCreateDoubleMatrix instead of mxCreateFull.

Test, Debug, and Resolve Differences After Each Refactoring lteration

To build myMexFi le.c with the 32-bit API, type:

Upgrade MEX-Files to Use 64-Bit AP

mex -compatibleArrayDims myMexFile.c

Use the tests you created at the beginning of this process to compare the results of your
updated MEX-file with your original binary file. Both MEX-files should return identical
results. If not, debug and resolve any differences. Differences are easier to resolve now
than when you build using the 64-bit API.

Resolve -largeArrayDims Build Failures and Warnings

After reviewing and updating your code, compile your MEX-file using the large array
handling API. To build myMexFile.c with the 64-bit API, type:

mex -largeArrayDims myMexFile.c

Since the mwSize / mwlndex types are MATLAB types, your compiler sometimes refers to
them as size_t, unsigned_Int64, or by other similar names.

Most build problems are related to type mismatches between 32- and 64-bit types. Refer
to http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-
update-mex-files-to-use-the-large-array-handling-api-largearraydims,
Step 5 to identify common build problems for specific compilers, and possible solutions.

Execute 64-Bit MEX-File and Compare Results with 32-Bit Version

Compare the results of running your MEX-file compiled with the 64-bit API with the
results from your original binary. If there are any differences or failures, use a debugger
to investigate the cause. For information on the capabilities of your debugger, refer to
your compiler documentation.

Refer to http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-
update-mex-Ffiles-to-use-the-large-array-handling-api-largearraydims,
Step 6 to identify issues you might encounter when running your MEX-files, and possible
solutions.

After you resolve any issues and upgrade your MEX-file, it replicates the functionality of
your original code while using the large array handling API.

Experiment with Large Arrays

If you have access to a machine with large amounts of memory, you can experiment
with large arrays. An array of double-precision floating- point numbers (the default in

MATLAB) with 2% elements takes approximately 32 GB of memory.

4-43

http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-update-mex-files-to-use-the-large-array-handling-api-largearraydims
http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-update-mex-files-to-use-the-large-array-handling-api-largearraydims
http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-update-mex-files-to-use-the-large-array-handling-api-largearraydims
http://www.mathworks.com/matlabcentral/answers/99144-how-do-i-update-mex-files-to-use-the-large-array-handling-api-largearraydims

4 Intro to MEX-Files

4-44

For an example that demonstrates the use of large arrays, see the arraySize.c MEX-
file in “Handling Large mxArrays” on page 5-61.

Update Fortran Source Code

All of the previous information applies to Fortran, as well as C/C++. Fortran uses similar
API signatures, identical mwSize / mwlndex types, and similar compilers and debuggers.
To make your Fortran source code 64-bit compatible, perform these additional tasks:

+ “Use Fortran API Header File” on page 4-44

* “Declare Fortran Pointers” on page 4-44

* “Require Fortran Type Declarations” on page 4-44

* “Use Variables in Function Calls” on page 4-45

+ “Manage Reduced Fortran Compiler Warnings” on page 4-46

Use Fortran APl Header File

To make your Fortran MEX-file compatible with the 64-bit API, use the fintrf.h
header file in your Fortran source files. Name your source files with an uppercase .F file

extension. For more information about these requirements, see “Components of Fortran
MEX File” on page 6-2.

Declare Fortran Pointers

Pointers are 32- or 64-bit addresses, based on machine type. This requirement is not
directly tied to array dimensions, but you could encounter problems when moving 32-bit
code to 64-bit machines as part of this conversion.

For more information, see “Preprocessor Macros” on page 6-5 and mwPointer.

The C/C++ compiler automatically handles pointer size. In Fortran, MATLAB uses
the mwPointer type to handle this difference. For example, mxCreateDoubleMatrix
returns an mwPointer:

mwPointer mxCreateDoubleMatrix(m, n, ComplexFlag)
mwSize m, n
integer*4 ComplexFlag

Require Fortran Type Declarations

Fortran uses implicit type definitions. This means undeclared variables starting with
letters I through N are implicitly declared type INTEGER. Variable names starting with

Upgrade MEX-Files to Use 64-Bit AP

other letters are implicitly declared type REAL*4. Using the implicit INTEGER type could
work for 32-bit indices, but is not safe for large array dimension MEX-files. To force you
to declare all variables, add the IMPLICIT NONE statement to your Fortran subroutines.
For example:

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
implicit none

This statement helps identify 32-bit integers in your code that do not have explicit
type declarations. Then, you can declare them as INTEGER*4 or mwSize / mwIndex, as
appropriate. For more information on IMPLICIT NONE, refer to your Fortran compiler
documentation.

Use Variables in Function Calls

If you use a number as an argument to a function, your Fortran compiler could assign the
argument an incorrect type. On a 64-bit platform, an incorrect type can produce Out of
Memory errors, segmentation violations, or incorrect results. For example, definitions for
the argument types for the mxCreateDoubleMatrix function are:

mwPointer mxCreateDoubleMatrix(m, n, ComplexFlag)
mwSize m, n
integer*4 ComplexFlag

Suppose that you have a C/C++ MEX-file with the following statement:

myArray = mxCreateDoubleMatrix(2, 3, mxREAL);

Most C/C++ compilers interpret the number 2 as a 64-bit value. Some Fortran compilers
cannot detect this requirement, and supply a 32-bit value. For example, an equivalent
Fortran statement is:

myArray = mxCreateDoubleMatrix(2, 3, 0)

The compiler interprets the value of the ComplexFlag argument O correctly as type
INTEGER*4. However, the compiler could interpret the argument 2 as a 32-bit value,
even though the argument m is declared type mwSize.

A compiler-independent solution to this problem is to declare and use an mwSize /
mwlndex variable instead of a literal value. For example, the following statements
unambiguously call the mxCreateDoubleMatrix function in Fortran:

mwSize nrows, ncols
INTEGER*4 flag

4-45

4 Intro to MEX-Files

nrows = 2
ncols = 3
flag = 0

myArray = mxCreateDoubleMatrix(nrows, ncols, flag)

Manage Reduced Fortran Compiler Warnings

Some Fortran compilers cannot detect as many type mismatches as similar C/C+

+ compilers. This inability can complicate the step “Resolve -largeArrayDims Build
Failures and Warnings” on page 4-43 by leaving more issues to find with your
debugger in the step “Execute 64-Bit MEX-File and Compare Results with 32-Bit
Version” on page 4-43.

4-46

Upgrade MEX Files to Use Graphics Objects

Upgrade MEX Files to Use Graphics Obijects

MATLAB Version 8.4 (R2014b) changes the data type of handles to graphics objects from
double to object.

Before Version 8.4, MEX files used the C/C++ and Fortran API Reference library
functions mexGet and mexSet, which declare the input handle argument as type
double. If your MEX function uses mexGet or mexSet, MATLAB displays the following
“Deprecated MEX function” error.

Error using mex

Deprecated MEX function mexGet|mexSet was called. Either update the source code
to use mxGetProperty|mxSetProperty, OR rerun MEX with the -DMEX DOUBLE_HANDLE
added to the command line to enter compatibility mode.

To upgrade your MEX file, consider one or more of the following actions.

In this section...

“Replace mexGet and mexSet Functions” on page 4-47
“mex Automatically Converts Handle Type” on page 4-50
“I Want to Rebuild MEX Source Code Files” on page 4-50
“I Do Not Have MEX Source Code File” on page 4-50

Replace mexGet and mexSet Functions

To upgrade a MEX file to use a graphics object, replace calls to mexGet with
mxGetProperty and calls to mexSet with mxSetProperty. The following program
listings show an example of a before and after source MEX file.

The following code uses mexCal IMATLAB to create a plot, which returns the graphics
handle in variable plhs[0]. To change the line color, the example uses mxGetScalar to
convert the handle to a double, then passes it to mexGet and mexSet.

#include "mex.h"

#define RED 0

#define GREEN 1

#define BLUE 2

void fill_array(double *x)

4-47

4 Intro to MEX-Files

4-48

int 1 = 0;
for(i =0 ; i <4 ; i++)
{
x[i] = i+1;
i

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray

{

}

mxArray *color;

int ret;

double handle;
mxArray *copycolor;
double *acolor;

mxArray *data = mxCreateDoubleMatrix(1,4,mxREAL);
fill_array(mxGetPr(data));

ret = mexCal IMATLAB(1,&plhs[0],1,&data, plot™);
if(Iret)
{
handle = mxGetScalar(plhs[0]);
color = mexGet(handle,"Color™);
copycolor = mxDuplicateArray(color);
acolor = mxGetPr(copycolor);
acolor[RED] = (1 + acolor[RED]) /2;
acolor[GREEN] = acolor[GREEN]/2;
acolor[BLUE] = acolor[BLUE]/2;

mexSet(handle, "Color",copycolor);
mxSetProperty(plhs[0],0,"Color",copycolor);

}

*prhs[])

When you build this MEX file, MATLAB displays the “Deprecated MEX function” error.

To change the source file, make the following edits. This code uses the variable plhs[0]
in mxGetProperty to get the Color property directly. There is no need to create an
intermediate handle variable.

#include "mex.h"
#define RED 0
#define GREEN 1

Upgrade MEX Files to Use Graphics Objects

#define BLUE 2

void fill_array(double *x)

{
int 1 = 0;
for(i =0 ; 1 <4 ; i++)
{
x[i] = i+1;
i
3

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{

mxArray *color;

int ret;

mxArray *copycolor;
double *acolor;

mxArray *data = mxCreateDoubleMatrix(1,4,mxREAL);
fill_array(mxGetPr(data));

ret = mexCal IMATLAB(1,&plhs[0],1,&data, plot™);
if(Iret)
{
color = mxGetProperty(plhs[0],0,"Color™);
copycolor = mxDuplicateArray(color);
acolor = mxGetPr(copycolor);
acolor[RED] = (1 + acolor[RED]) /2;
acolor[GREEN] = acolor[GREEN]/2;
acolor[BLUE] = acolor[BLUE]/2;

mxSetProperty(plhs[0],0,"Color",copycolor);

}
}

To build this MEX file, type:
mex mymex.c

Building with *"Microsoft Visual C++ 2010 (C)~.
MEX completed successfully.

Alternatively, you can build the original source file by following the steps in “I Want to
Rebuild MEX Source Code Files” on page 4-50.

4-49

4 Intro to MEX-Files

4-50

mex Automatically Converts Handle Type

If your MEX function uses the mexCal IMATLAB or mexGetVariable functions to
get a graphics handle and to pass the handle to the mexGet and mexSet APIs, then
MATLAB automatically detects that behavior and your MEX function continues to
execute correctly. You know that your MEX function uses this pattern if the function
executes without error.

If you rebuild this MEX file in MATLAB R2014b or later, MATLAB displays the
“Deprecated MEX function” error. To rebuild the file, follow the instructions in either
“Replace mexGet and mexSet Functions” on page 4-47 or “I Want to Rebuild MEX
Source Code Files” on page 4-50.

| Want to Rebuild MEX Source Code Files

If you rebuild your MEX source files in MATLAB R2014b or later, MATLAB displays the
“Deprecated MEX function” error.

You might be able to use the mex function compatibility flag, -DMEX_ DOUBLE_HANDLE,
to build the MEX file to work with graphics objects. If the MEX function calls a function
that returns a graphics handle using the mexCal IMATLAB or mexGetVariable
functions, MATLAB automatically detects and converts the handle type. To build the
source file, mymex. c, type:

mex -DMEX_DOUBLE_HANDLE mymex.c

If you pass a graphics handle to a MEX function, convert the handle to double before
calling the function. For more information, see “I Do Not Have MEX Source Code File” on
page 4-50.

I Do Not Have MEX Source Code File

If you get a runtime error and you do not have the source code, you might be able to
use the following workaround. Use this workaround only for MEX functions that take a
graphics handle as an input argument.

Before you pass a graphics handle to the MEX function, first convert the handle to a
double. For example, if you call MEX function, mymex:

10;

Y 1:
h plot(Y);

Upgrade MEX Files to Use Graphics Objects

mymex(h)

add a statement to convert the handle h to double:

Y 1:10;
h plot(Y);
h double(h);

mymex(h)

See Also
mxGetProperty | mxSetProperty

More About
. “Graphics Object Handles”

4-51

4 Intro to MEX-Files

Platform Compatibility

In this section...

“Verify the MEX File Is Built for Your Platform” on page 4-52
“Verify Your Architecture on Windows Platforms” on page 4-52

Verify the MEX File Is Built for Your Platform

If you obtain a binary MEX file from another source, be sure that the file was compiled
for the same platform on which you want to run it. The file extension reflects the

platform, as shown in the following table. To determine the extension for your platform,
use the mexext function.

MEX-File Platform-Dependent Extension

Platform Binary MEX-File Extension
Linux (64-bit) mexa64

Apple Mac (64-bit) mexmaci64

Microsoft Windows (32- |mexw32

bit)

Windows (64-bit) mexw64

Verify Your Architecture on Windows Platforms
Verify the MEX file is for the same architecture, 32- vs. 64-bit.

On non-Windows platforms, MATLAB is supported for 64-bit architectures only.

More About

. “Version Compatibility” on page 4-58

4-52

Invalid MEX File Error

Invalid MEX File Error

If MATLAB cannot find all .dl1 files referenced by a MEX file, it cannot load the MEX
file. MATLAB displays the following error message:

Invalid MEX-File <mexfilename>:
The specified module could not be found.

where mexfi lename is the module with the dependency error. This module cannot find
its dependent libraries. To resolve this error, find the names of the dependent libraries,
and determine if they are present on your system and on the system path.

On Windows systems, to find library dependencies, use the third-party product
Dependency Walker. Dependency Walker is a free utility that scans any 32-bit or 64-bit
Windows module and builds a hierarchical tree diagram of all dependent modules. For
each module found, it lists all the functions exported by that module, and which of those
functions are called by other modules. Download the Dependency Walker utility from the
website http://www.dependencywalker.com/. See http://www._mathworks.com/
matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-
mex-File-or-stand-alone-application-requires for information on using the
Dependency Walker.

For .dl1 files that the MEX file linked against when it was built, the .dl1 files must be
on the system path or in the same folder as the MEX file.

MEX files might require additional libraries that are not linked to the MEX file. Failure
to find one of these explicitly loaded libraries might not prevent a MEX file from loading,
but prevents it from working correctly. The search path used to find these explicitly
loaded libraries is controlled by the code that loads the libraries and might not include
the folder that contains the MEX file. Consult the library documentation on proper
installation locations.

Possible reasons for failure include:

+ MATLAB version incompatibility

* Missing compiler runtime libraries. If your system does not have the same compiler
that built the MEX file, see the Microsoft MSDN website for information about Visual
C++ Redistributable Packages.

* Missing or incorrectly installed specialized runtime libraries. Contact your MEX file
or library vendor.

4-53

http://www.dependencywalker.com/
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires
http://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires

4 Intro to MEX-Files

Run MEX File You Receive from Someone Else

4-54

To call a MEX file, put the file on your MATLAB path. Then type the name of the file,
without the file extension.

If you have MEX file source code, see “Build MEX File” on page 4-17 for information
about creating the executable function.

If you get runtime errors when you call a MEX file that you did not create, consider the
following:

+ “Platform Compatibility” on page 4-52
+ “Version Compatibility” on page 4-58

* On Windows platforms, install the C++ compiler runtime libraries used to create the
MEX file. This step is needed if you do not have the same compiler installed on your
machine that was used to compile the MEX file.

+ If the MEX file uses specialized runtime libraries, those libraries must be installed on
your system.

If you write a MEX file, build it, and then execute it in the same MATLAB session, all
of the dependent libraries are available, as expected. However, if you receive a MEX file
from another MATLAB user, you might not have all of the dependent libraries.

A MEX file is a dynamically linked subroutine that the MATLAB interpreter loads and
executes when you call the function. Dynamic linking means that when you call the
function, the program looks for dependent libraries. MEX files use MATLAB runtime
libraries and language-specific libraries. A MEX file might also use specialized runtime
libraries. The code for these libraries is not included in the MEX file; the libraries must
be present on your computer when you run the MEX file.

For troubleshooting library dependencies, see “Invalid MEX File Error” on page 4-53.

For information about how MATLAB finds a MEX file, see “Files and Folders that
MATLAB Accesses”.

MEX File Dependent Libraries

MEX File Dependent Libraries

When you build a MEX file, MATLAB dynamically links your code with the following
libraries:

* MATLAB runtime libraries, Iibmex.dll and Libmx.dl1l. To avoid compatibility
issues, run the MEX file with the same version of MATLAB that was used to create
the MEX file. For more information, see “Version Compatibility” on page 4-58.

+ Language-specific libraries, provided by the compiler. C-language MEX files built on
Windows systems require Visual C++ runtime libraries.

* Other runtime libraries, which you specify in the build command.
Dynamic linking means that when you call the function, the program looks for these
dependent libraries. The code for these libraries is not included in the MEX file. When

you share a MEX file with another MATLAB user, these libraries must be present on the
user’s computer.

4-55

4 Intro to MEX-Files

Document Build Information in the MEX File

This example shows how to document the xtimesy MEX file built on a Windows
platform using a Microsoft Visual C++ compiler.

When you share a MEX file, your users need the following information about the
configuration used to build the MEX file:

+ MATLAB version.

* Build platform.

* Compiler.

Copy the source file to a folder on your MATLAB path.

copyfile(fullfile(matlabroot, "extern®, "examples”, "refbook”, "xtimesy.c"),".")

Create a help file, xtimesy.m, and copy the header information from the source file.

% xtimesy.m Help file for XTIMESY MEX-Ffile

%

% XTIMESY Multiplies a scalar and a matrix

% C = XTIMESY(b,A) multiplies scalar b with matrix A,
% and returns the result in C

%

% MEX-File function.

Identify your MATLAB version.

v = ver("matlab®);
v.Release

ans =
(R2012a)

Identify your platform.

archstr = computer(“arch®)

archstr
win64

Identify the MEX file extension.

ext = mexext

4-56

Document Build Information in the MEX File

ext =
mexwe4

Identify your C compiler.

cc = mex.getCompilerConfigurations("C","Selected™);
cc.Name

ans =
Microsoft Visual C++ 2008 (C)

Add this information to the help file.

% xtimesy.m Help file for XTIMESY MEX-Ffile

%

% XTIMESY Multiplies a scalar and a matrix

% C = XTIMESY(b,A) multiplies scalar b with matrix A,
% and returns the result in C

%

% Created with:

% MATLAB R2012a

% Platform: win64

% Microsoft Visual C++ 2008

% MEX-File function.
Provide your users with the following.

+ xtimesy.mexw64
+ xtimesy.m

* Instructions for downloading and installing the runtime library from the Microsoft
Visual C++ 2008 Redistributable Package.

+ If you build a MEX file with a third-party library, instructions for acquiring and
installing the necessary files.

Related Examples
. “Use Help Files with MEX Files” on page 4-6

4-57

4 Intro to MEX-Files

Version Compatibility

4-58

For best results, your version of MATLAB must be the same version that was used to
create the MEX file.

MEX files use MATLAB runtime libraries. MEX files are usually backward compatible,
which means you can run a MEX file that was created on an earlier version of MATLAB
on later versions of MATLAB. If the MEX file generates errors, recompile the MEX file
from the source code.

Sometimes a MEX file created on a newer version of MATLAB runs on an older version of
MATLAB (forward compatibility), but this is not supported.

More About
. “Platform Compatibility” on page 4-52

Getting Help When MEX Fails

Getting Help When MEX Fails

In this section...

“Errors Finding Supported Compiler” on page 4-59
“Errors Building MEX Function” on page 4-59

“Preview mex Build Commands” on page 4-60

To help diagnose compiler set up and build errors, call mex with the verbose option, -v.
For an example of the information mex provides, type the following commands from a
writable folder:

copyfile(fullfile(matlabroot, "extern”, "examples”, "refbook”, "timestwo.c"),".","f")

mex -v timestwo.c

Errors Finding Supported Compiler

In verbose mode, mex displays the steps used to find a supported compiler and to
determine if it is properly installed. Each step begins with the following text:

. Looking for

If the compiler is not configured properly, these messages show you the expected values
for specific files, paths, and variables in the configuration.

If the compiler is found, mex displays a message similar to:

Building with “Microsoft Visual C++ 2010 (C)*

Errors Building MEX Function

After locating the installed compiler, indicated by the “Building with” message, verbose
mode displays the compile and link commands mex passes to the build tools. For
example, the compile command on Windows platforms might be similar to the following:

cl /c /GR /W3 /EHs /nologo /MD /DMX_COMPAT_32 /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECUI
timestwo.c

mex displays error messages from the compiler build tools. For information about errors
and warnings, see your compiler or language reference documentation.

4-59

4 Intro to MEX-Files

If you have experience with program development and want to modify a command
parameter, use the mex varname=varvalue option.

Preview mex Build Commands

To display the build command details without executing the commands, type:

mex -n timestwo.c

See Also

mex

4-60

Understanding MEX File Problems

Understanding MEX File Problems

Use the following figure to help isolate common problems that occur when creating
binary MEX files.

4-61

4

Intro to MEX-Files

Can you

compile and run ~ Are you
timestwo.c or using a supported
timestwo.f? compiler?

Acquire a supported
compiler. See
"Supported Compilers"
for details.

Double-check your
configuration. See
"Testing your Configuration

yes

on UNIX (or Windows)".
Can you Check for:
compile your ANSI C code

program? General C syntax errors

Check for:
Spelling of mexFunction

Can MATLAB
load your MEX-file?

Link against all libraries
you intend to use.

Segmentation
fault or
bus error?

Do you get
the right answer?

Use:
mexPrintf
matlab -check_malloc

Run in debugger.

Use:
matlab -check _malloc
mex -argcheck

Troubleshooting MEX File Creation Problems

4-62

Understanding MEX File Problems

In this section...
“Problem 1 — Compiling a Source MEX File Fails” on page 4-63

“Problem 2 — Compiling Your Own Program Fails” on page 4-63
“Problem 3 — Binary MEX File Load Errors” on page 4-64
“Problem 4 — Segmentation Fault” on page 4-65

“Problem 5 — Program Generates Incorrect Results” on page 4-65

Problems 1 through 5 refer to the corresponding numbered sections of the previous
flow chart. For additional suggestions on resolving MEX file build problems, see the
MathWorks Technical Support website http:/www.mathworks.com/support.

Problem 1 — Compiling a Source MEX File Fails

Syntax Errors Compiling C/C++ MEX Files on UNIX

The most common configuration problem in creating C/C++ source MEX files on UNIX
systems involves using a non-ANSI C compiler, or failing to pass to the compiler a flag
that tells it to compile ANSI C code.

A reliable way of knowing if you have this type of configuration problem is if the header
files supplied by MATLAB generate a string of syntax errors when you try to compile

your code. See “What You Need to Build MEX Files” on page 4-19 or, if necessary, obtain
an ANSI C compiler.

File Not Found on Windows

The mex function cannot find files located in folder names that contain non-ASCII
characters.

Problem 2 — Compiling Your Own Program Fails

Mixing ANSI and non-ANSI C code can generate a string of syntax errors. MATLAB
provides header and source files that are ANSI C compliant. Therefore, your C code must
also be ANSI compliant.

Other common problems that can occur in any C/C++ program are neglecting to include
all necessary header files, or neglecting to link against all required libraries.

4-63

http://www.mathworks.com/support

4 Intro to MEX-Files

4-64

Make sure that you are using a MATLAB-supported compiler. For an up-to-date list of
supported compilers, see the Supported and Compatible Compilers website. Additional
information can be found in “Compiler- and Platform-Specific Issues” on page 4-66.

Symbol mexFunction Unresolved or Not Defined

Attempting to compile a MEX function that does not include a gateway function
generates errors about the mexFunction symbol. For example, using a C/C++ compiler,
MATLAB displays information like:

LINK : error LNK2001l: unresolved external symbol mexFunction

Using a Fortran compiler, MATLAB displays information like:

unresolved external symbol _MEXFUNCTION

If you want to call functions from a C/C++ or Fortran library from MATLAB, write a
gateway function, as described in “Components of MEX File” on page 5-3.

Problem 3 — Binary MEX File Load Errors

If you receive an error of the form:

Unable to load mex file:
Invalid MEX-File

MATLAB does not recognize your MEX file.

MATLAB loads MEX files by looking for the gateway routine, mexFunction. If you
misspell the function name, MATLAB cannot load your MEX file and generates an error
message. On Windows systems, check that you are exporting mexFunction correctly.

On some platforms, if you fail to link against required libraries, you might get an error
when MATLAB loads your MEX file rather than when you compile your MEX file.

In such cases, a system error message referring to unresolved symbols or unresolved
references appears. Be sure to link against the library that defines the function in
question.

On Windows systems, MATLAB fails to load MEX files if it cannot find all .dl1 files
referenced by the MEX file; the .dl1 files must be on the path or in the same folder as
the MEX file. This is also true for third party .dl1 files. To diagnose this problem, see
“Invalid MEX File Error” on page 4-53 for information.

http://www.mathworks.com/support/compilers/current_release/

Understanding MEX File Problems

Problem 4 — Segmentation Fault

If a binary MEX-file causes a segmentation violation or assertion, it means the MEX-file
attempted to access protected, read-only, or unallocated memory.

These types of programming errors are sometimes difficult to track down. Segmentation
violations do not always occur at the same point as the logical errors that cause them.

If a program writes data to an unintended section of memory, an error might not occur
until the program reads and interprets the corrupted data. Consequently, a segmentation
violation can occur after the MEX-file finishes executing.

One cause of memory corruption is to pass a null pointer to a function. To check for this
condition, add code in your MEX-file to check for invalid arguments to MEX Library and
MX Matrix Library API functions.

To troubleshoot problems of this nature, run MATLAB within a debugging environment.
For more information, see “Debugging on Microsoft Windows Platforms” on page 5-52
or “Debug Fortran Source MEX-Files” on page 6-31.

Problem 5 — Program Generates Incorrect Results

If your program generates the wrong answers, there are several causes. First, there could
be an error in the computational logic. Second, the program could be reading from an
uninitialized section of memory. For example, reading the 11th element of a 10-element
vector yields unpredictable results.

Another cause of generating a wrong answer could be overwriting valid data due to
memory mishandling. For example, writing to the 15th element of a 10-element vector
might overwrite data in the adjacent variable in memory. This case can be handled in a
similar manner as segmentation violations, as described in Problem 4.

In all of these cases, you can use mexPrintf to examine data values at intermediate
stages. Alternatively, run MATLAB within a debugger.

4-65

4 Intro to MEX-Files

Compiler- and Platform-Specific Issues

In this section...

“Linux gcc Compiler Version Error” on page 4-66

“Linux gcc -fPIC Errors” on page 4-66

Linux gcc Compiler Version Error

For information concerning a gee compiler version error on Linux systems, see http://
www .mathworks.com/matlabcentral/answers/97943-why-do-i-receive-an-
error-about-gcc-version-when-executing-a-mex-file-or-an-executable-
generated-by.

Linux gcc -fPIC Errors

If you link a static library with a MEX file, which is a shared library, you might get an
error message containing the text recompile with -fPIC. Try compiling the static
library with the —fPIC flag in order to create position independent code. For information
about using the gcc compiler, see www.gnu.org. For an up-to-date list of supported
compilers, see the Supported and Compatible Compilers website.

4-66

http://www.mathworks.com/matlabcentral/answers/97943-why-do-i-receive-an-error-about-gcc-version-when-executing-a-mex-file-or-an-executable-generated-by
http://www.mathworks.com/matlabcentral/answers/97943-why-do-i-receive-an-error-about-gcc-version-when-executing-a-mex-file-or-an-executable-generated-by
http://www.mathworks.com/matlabcentral/answers/97943-why-do-i-receive-an-error-about-gcc-version-when-executing-a-mex-file-or-an-executable-generated-by
http://www.mathworks.com/matlabcentral/answers/97943-why-do-i-receive-an-error-about-gcc-version-when-executing-a-mex-file-or-an-executable-generated-by
http://www.gnu.org/
http://www.mathworks.com/support/compilers/current_release/

Memory Management Issues

Memory Management Issues

In this section...

“Overview” on page 4-67

“Improperly Destroying an mxArray” on page 4-68

“Incorrectly Constructing a Cell or Structure mxArray” on page 4-68
“Creating a Temporary mxArray with Improper Data” on page 4-69
“Creating Potential Memory Leaks” on page 4-70

“Improperly Destroying a Structure” on page 4-70

“Destroying Memory in a C++ Class Destructor” on page 4-71

Overview

When a MEX file returns control to MATLAB, it returns the results of its computations
in the output arguments—the mxArrays contained in the left-side arguments plhs[].
These arrays must have a temporary scope, so do not pass arrays created with the
mexMakeArrayPersistent function in plhs. MATLAB destroys any mxArray created
by the MEX file that is not in plhs. MATLAB also frees any memory that was allocated
in the MEX file using the mxCal loc, mxMal loc, or mxReal loc functions.

In general, MathWorks® recommends that MEX-file functions destroy their own
temporary arrays and free their own dynamically allocated memory. It is more efficient
to perform this cleanup in the source MEX-file than to rely on the automatic mechanism.
This approach is consistent with other MATLAB API applications (MAT-file applications,
engine applications, and MATLAB Compiler generated applications, which do not have
any automatic cleanup mechanism.)

However, do not destroy an mxArray in a source MEX file when it is:

+ passed to the MEX file in the right-hand side list prhs[]
* returned in the left side list plhs[]
* returned by mexGetVariablePtr

+ used to create a structure

This section describes situations specific to memory management. We recommend
that you review code in your source MEX files to avoid using these functions in the

4-67

4 Intro to MEX-Files

4-68

following situations. For more information, see “Memory Management” on page 5-65
in Creating C/C++ Language MEX Files. For guidance on memory issues, see “Strategies
for Efficient Use of Memory”.

Potential memory management problems include:

Improperly Destroying an mxArray
Do not use mxFree to destroy an mxArray.
Example

In the following example, mxFree does not destroy the array object. This operation frees
the structure header associated with the array, but MATLAB still operates as if the
array object needs to be destroyed. Thus MATLAB tries to destroy the array object, and
in the process, attempts to free its structure header again:

mxArray *temp = mxCreateDoubleMatrix(1,1,mxREAL);
meree&émp); /* INCORRECT */

Solution

Call mxDestroyArray instead:

mxDestroyArray(temp); /* CORRECT */

Incorrectly Constructing a Cell or Structure mxArray
Do not call mxSetCell or mxSetField variants with prhs[] as the member array.
Example

In the following example, when the MEX file returns, MATLAB destroys the entire cell
array. Since this includes the members of the cell, this implicitly destroys the MEX file's
input arguments. This can cause several strange results, generally having to do with the
corruption of the caller's workspace, if the right-hand side argument used is a temporary
array (for example, a literal or the result of an expression):

myfunction(“hello®)

Memory Management Issues

/* myfunction is the name of your MEX-file and your code
/* contains the following: */

mxArray *temp = mxCreateCellMatrix(l1,1);
mxSetCell (temp, O, prhs[0]); /* INCORRECT */
Solution

Make a copy of the right-hand side argument with mxDuplicateArray and use that
copy as the argument to mxSetCell (or mxSetField variants). For example:

mxSetCell (temp, 0, mxDuplicateArray(prhs[0])); /* CORRECT */

Creating a Temporary mxArray with Improper Data

Do not call mxDestroyArray on an mxArray whose data was not allocated by an API
routine.

Example

If you call mxSetPr, mxSetPi, mxSetData, or mxSetlImagData, specifying memory
that was not allocated by mxCal loc, mxMal loc, or mxReal loc as the intended data
block (second argument), then when the MEX file returns, MATLAB attempts to free
the pointers to real data and imaginary data (if any). Thus MATLAB attempts to free
memory, in this example, from the program stack:

mxArray *temp = mxCreateDoubleMatrix(0,0,mxREAL);
double data[5] = {1,2,3,4,5};

mxSetM(temp,1); mxSetN(temp,5); mxSetPr(temp, data);
/* INCORRECT */

Solution

Rather than use mxSetPr to set the data pointer, instead, create the mxArray with the
right size and use memcpy to copy the stack data into the buffer returned by mxGetPr:

mxArray *temp = mxCreateDoubleMatrix(1,5,mxREAL);
double data[5] = {1,2,3,4,5};

memcpy (mxGetPr(temp), data, 5*sizeof(double)); /* CORRECT */

4-69

4 Intro to MEX-Files

4-70

Creating Potential Memory Leaks

Before Version 5.2, if you created an mxArray using one of the API creation routines
and then you overwrote the pointer to the data using mxSetPr, MATLAB still freed the
original memory. MATLAB no longer frees the memory.

For example:

pr = mxCalloc(5*5, sizeof(double));

. <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxSetPr(plhs[0], pr); /* INCORRECT */

now leaks 5*5*8 bytes of memory, where 8 bytes is the size of a double.

You can avoid that memory leak by changing the code to:

plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
pr = mxGetPr(plhs[0]);
. <load data into pr>

or alternatively:

pr = mxCalloc(5*5, sizeof(double));
. <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxFree(mxGetPr(plhs[0]));
mxSetPr(plhs[0], pr):

The first solution is more efficient.

Similar memory leaks can also occur when using mxSetPi, mxSetData,
mxSetlmagData, mxSetlr, or mxSetJc. You can avoid memory leaks by changing the
code as described in this section.

Improperly Destroying a Structure

For a structure, you must call mxDestroyArray only on the structure, not on the field
data arrays. A field in the structure points to the data in the array used by mxSetField
or mxSetFieldByNumber. When mxDestroyArray destroys the structure, it attempts
to traverse down through itself and free all other data, including the memory in the data
arrays. If you call mxDestroyArray on each data array, the same memory is freed twice
which can corrupt memory.

Memory Management Issues

Example

The following example creates three arrays: one structure array aStruct and two data
arrays, myDataOne and myDataTwo. Field name one contains a pointer to the data in
myDataOne, and field name two contains a pointer to the data in myDataTwo.

mxArray *myDataOne;

mxArray *myDataTwo;

mxArray *aStruct;

const char *fields[] = { "one", "two" };

myDataOne
myDataTwo

mxCreateDoubleScalar(1.0);
mxCreateDoubleScalar(2.0);

aStruct = mxCreateStructMatrix(l1,1,2,fields);

mxSetField(aStruct, 0, "one", myDataOne);

mxSetField(aStruct, 1, "two", myDataTwo);
mxDestroyArray(myDataOne) ;

mxDestroyArray(myDataTwo) ;

mxDestroyArray(aStruct); /* tries to free myDataOne and myDataTwo */

Solution

The command mxDestroyArray(aStruct) destroys the data in all three arrays:
aStruct = mxCreateStructMatrix(1,1,2,fields);

mxSetField(aStruct, 0, "one'", myDataOne);

mxSetField(aStruct, 1, "two'", myDataTwo);
mxDestroyArray(aStruct);

Destroying Memory in a C++ Class Destructor

Do not use the mxFree or mxDestroyArray functions in a C++ destructor of a class used
in a MEX-function. If the MEX-function throws an error, MATLAB cleans up MEX-file
variables, as described in “Automatic Cleanup of Temporary Arrays” on page 5-65.

If an error occurs that causes the object to go out of scope, MATLAB calls the C++
destructor. Freeing memory directly in the destructor means both MATLAB and the
destructor free the same memory, which can corrupt memory.

See Also

mxDestroyArray | mxFree

4-71

4 Intro to MEX-Files

More About

“Memory Management” on page 5-65
“Strategies for Efficient Use of Memory”

“Automatic Cleanup of Temporary Arrays” on page 5-65

4-72

Compiler Errors in Fortran MEX Files

Compiler Errors in Fortran MEX Files

When you compile a Fortran MEX file using a free source form format, MATLAB displays
an error message of the following form:

Il1legal character in statement label field

meX supports the fixed source form. The difference between free and fixed source forms is
explained in the Fortran Language Reference Manual Source Forms topic. The URL for
this topic is:

http://h21007 .www2 . hp.com/portal/download/files/unprot/Fortran/
docs/Irm/1rm0015 . htm#source_formatmenu?&Record=383697&STASH=7

The URL for the Fortran Language Reference Manual is:

http://h21007 .www2 .hp.com/portal/download/files/unprot/Fortran/
docs/Irm/dflrm.htm

4-73

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/docs/lrm/lrm0015.htm#source_formatmenu?&Record=383697&STASH=7

C/C++ MEX-Files

* “Components of MEX File” on page 5-3

+ “MATLAB API Libraries” on page 5-6

+ “User Messages” on page 5-8

+ “Error Handling” on page 5-9

* “Data Flow in MEX Files” on page 5-10

+ “Creating C++ MEX Files” on page 5-13

+ “C++ Class in MEX Files” on page 5-15

+ “Handle Files with C++” on page 5-16

* “Create C Source MEX File” on page 5-18

+ “Table of MEX File Source Code Files” on page 5-24
* “Choose a C++ Compiler” on page 5-28

+ “Set Up C/C++ Examples” on page 5-30

+ “Pass Scalar Values” on page 5-31

+ “Pass Strings” on page 5-34

+ “Handling Strings in C/C++” on page 5-36

+ “Pass Multiple Inputs or Outputs” on page 5-39

+ “Pass Structures and Cell Arrays” on page 5-41

+ “Create 2-D Cell Array” on page 5-42

+ “Fill mxArray” on page 5-43

+ “Prompt User for Input” on page 5-45

+ “Handle Complex Data” on page 5-46

+ “Handle 8-, 16-, and 32-Bit Data” on page 5-47

+ “Manipulate Multidimensional Numerical Arrays” on page 5-48
+ “Handle Sparse Arrays” on page 5-50

+ “Call MATLAB Functions from C/C++ MEX Files” on page 5-51

5 C/C++ MEX-Files

+ “Debugging on Microsoft Windows Platforms” on page 5-52
* “Debugging on Linux Platforms” on page 5-54

* “Debugging on Mac Platforms” on page 5-56

* “Handling Large mxArrays” on page 5-61

+ “Memory Management” on page 5-65

+ “Handling Large File I/O” on page 5-68

* “Install MinGW-w64 Compiler” on page 5-74

* “Troubleshooting and Limitations Compiling C/C++ MEX Files with MinGW-w64” on
page 5-77

5-2

Components of MEX File

Components of MEX File

In this section...

“mexFunction Gateway Routine” on page 5-3

“Naming the MEX File” on page 5-3

“Required Parameters” on page 5-3

“Managing Input and Output Parameters” on page 5-4
“Validating Inputs” on page 5-4

“Computational Routine” on page 5-5

mexFunction Gateway Routine

The gateway routine is the entry point to the MEX file. It is through this routine that
MATLAB accesses the rest of the routines in your MEX files. The name of the gateway
routine is mexFunction. It takes the place of the main function in your source code.

Naming the MEX File

The name of the source file containing mexFunction is the name of your MEX file, and,
hence, the name of the function you call in MATLAB.

The file extension of the binary MEX file is platform-dependent. You find the file
extension using the mexext function, which returns the value for the current machine.
Required Parameters

The signature for mexfunction is:
void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

Place this function after your computational routine and any other functions in your
source file.

The following table describes the parameters for mexFunction.

5-3

5 C/C++ MEX-Files

5-4

Parameter Description

prhs Array of right-side input arguments.

plhs Array of left-side output arguments.

nrhs Number of right-side arguments, or the size of the prhs array.
nlhs Number of left-side arguments, or the size of the plhs array.

Declare prhs and plhs as type mxArray *, which means they point to MATLAB arrays.
They are vectors that contain pointers to the arguments of the MEX file. The keyword
const, which modifies prhs, means that your MEX file does not modify the input
arguments.

You can think of the name prhs as representing the “parameters, right-hand side,” that
is, the input parameters. Likewise, plhs represents the “parameters, left-hand side,” or
output parameters.

Managing Input and Output Parameters

Input parameters (found in the prhs array) are read-only; do not modify them in your
MEX file. Changing data in an input parameter can produce undesired side effects.

You also must take care when using an input parameter to create output data or any
data used locally in your MEX file. To copy an input array into a locally defined variable,
myData, call the mxDupl icateArray function to make of copy of the input array. For
example:

mxArray *myData = mxCreateStructMatrix(l,1,nfields,fnames);
mxSetField(myData,0, ""myFieldName" ,mxDuplicateArray(prhs[0]));

For more information, see the troubleshooting topic “Incorrectly Constructing a Cell or
Structure mxArray” on page 4-68.

Validating Inputs

For a list of functions to validate inputs to your functions, see the Matrix Library
category, “Validate Data”.

The mxIsClass function is a general-purpose way to test an mxArray. For example,
suppose your second input argument (identified by prhs[1]) must be a full matrix of
real numbers. To check this condition, use the following statements.

Components of MEX File

if(mxIsSparse(prhs[1]) |1
mxIsComplex(prhs[1]) |1
mxIsClass(prhs[1], " char')) {
mexXErrMsgTxt(""input2 must be full matrix of real values.');

}

This example is not an exhaustive check. You can also test for structures, cell arrays,
function handles, and MATLAB objects.

Computational Routine

The computational routine contains the code for performing the computations you

want implemented in the binary MEX file. Although not required, consider writing the
gateway routine, mexFunction, to call a computational routine. Use the mexFunction
code as a wrapper to validate input parameters and to convert them into the types
required by the computational routine.

If you write separate gateway and computational routines, you can combine them
into one source file or into separate files. If you use separate files, the file containing
mexFunction must be the first source file listed in the mex command.

See Also

mexext | mexFunction | mxDuplicateArray | mxIsClass

More About
. “MATLAB API Libraries” on page 5-6

5 C/C++ MEX-Files

MATLAB API Libraries

In this section...

“Matrix Library” on page 5-6
“MEX Library” on page 5-6

“Preprocessor Macros” on page 5-6

Use Matrix Library and the MEX Library functions in gateway and computational
routines to interact with data in the MATLAB workspace. These libraries are part of the
MATLAB C/C++ and Fortran API Reference library.

To use these functions, include the mex header, which declares the entry point and
interface routines. Put this statement in your source file:

#include "mex.h"

Matrix Library

Use Matrix Library functions to pass mxArray, the type MATLAB uses to store arrays,
to and from MEX files. For examples using these functions, see matlabroot/extern/
examples/mx.

MEX Library

Use MEX Library functions to perform operations in the MATLAB environment. For
examples using these functions, see matlabroot/extern/examples/mex

Unlike MATLAB functions, MEX file functions do not have their own variable workspace.
MEX file functions operate in the caller workspace. Use mexEvalString to evaluate

the string in the caller workspace. Use the mexGetVariable and mexPutVariable
functions to get and put variables into the caller workspace.

Preprocessor Macros

The Matrix and MEX libraries use the MATLAB preprocessor macros mwSize and
mwIndex for cross-platform flexibility. mwSize represents size values, such as array
dimensions and number of elements. mwlIndex represents index values, such as indices
into arrays.

5-6

MATLAB API Libraries

See Also

mexEvalString | mexGetVariable | mexPutVariable | mwlndex | mwSize |
mxArray

More About

. “MATLAB Data” on page 4-7
. “MEX Library API”
. C/C++ Matrix Library

5-7

5 C/C++ MEX-Files

User Messages

5-8

To print a string in the MATLAB Command Window, use the mexPrintf function as
you would a C/C++ printf function. To print error and warning information in the
Command Window, use the mexErrMsgldAndTxt and mexWarnMsgldAndTxt functions.

For example, the following code snippet prints the input string, prhs[0].

char *buf;
int buflen;

if (mxGetString(prhs[0], buf, buflen) == 0) {
mexPrintf(*'The input string is: %s\n", buf);
}

See Also
mexErrMsgldAndTxt | mexPrintf | mexWarnMsgldAndTxt

Error Handling

Error Handling

The mexErrMsgldAndTxt function prints error information and terminates your

binary MEX file. The mexWarnMsgldAndTxt function prints information, but does not
terminate the MEX file.

char *buf;
int buflen;

it (mxIsChar(prhs[0])) {
if (mxGetString(prhs[0], buf, buflen) == 0) {
mexPrintf("'The input string is: %s\n", buf);

s
else {
mexErrMsgldAndTxt(""MyProg:ConvertString",
"Could not convert string data.™);
// exit MEX file
s
b
else {
mexWarnMsg ldAndTxt(*'"MyProg: InputString",
"Input should be a string to print properly.');
b

// continue with processing

See Also
mexXErrMsgldAndTxt | mexWarnMsgldAndTxt

5-9

5 C/C++ MEX-Files

Data Flow in MEX Files

5-10

In this section...

“Showing Data Input and Output” on page 5-10

“Gateway Routine Data Flow Diagram” on page 5-11

Showing Data Input and Output

Suppose your MEX-file myFunction has two input arguments and one output argument.
The MATLAB syntax is [X] = myFunction(Y, Z). To call myFunction from
MATLAB, type:

X = myFunction(Y, Z);

The MATLAB interpreter calls mexFunction, the gateway routine to myFunction, with
the following arguments:

nlhs =1

nrhs = 2

plhs > & > @

prhs > @ >
9 -

Your input is prhs, a two-element array (nrhs = 2). The first element is a pointer to an
mxArray named Y and the second element is a pointer to an mxArray named Z.

Your output is plhs, a one-element array (nlhs = 1) where the single element is a nul'l
pointer. The parameter plhs points at nothing because the output X is not created until
the subroutine executes.

The gateway routine creates the output array and sets a pointer to it in plhs[0]. If
the routine does not assign a value to plhs[0] but you assign an output value to the
function when you call it, MATLAB generates an error.

Data Flow in MEX Files

Note: It is possible to return an output value even if nlhs = 0, which corresponds to
returning the result in the ans variable.

Gateway Routine Data Flow Diagram

The following MEX Cycle diagram shows how inputs enter a MEX-file, what functions
the gateway routine performs, and how outputs return to MATLAB.

In this example, the syntax of the MEX-file funcis [C, D] = func(A,B). In the
figure, a call to Func tells MATLAB to pass variables A and B to your MEX-file. C and D
are left unassigned.

The gateway routine, func.c, uses the mxCreate* functions to create the MATLAB
arrays for your output arguments. It sets plhs[0] and plhs[1] to the pointers to

the newly created MATLAB arrays. It uses the mxGet* functions to extract your data
from your input arguments prhs[0] and prhs[1]. Finally, it calls your computational
routine, passing the input and output data pointers as function parameters.

MATLAB assigns plhs[0] to C and plhs[1] to D.

5-11

5 C/C++ MEX-Files

5-12

MATLAB

A call to
MEX-file func:

[C,D]=func(A,B)

Inputs

const mxArray *B
B = prhs[1]

tells MATLAB to
pass variables A and
B to your MEX-file.

C and D are left
unassigned.

MATLAB

On return from
MEX-file func:

[C,D]=func(A,B)

toCand plhs[1]is
assigned to D.

~—

C/C++ MEX Cycle

v

A = prhs[0] —

const mxArray *A

func.c

void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

In the gateway routine:

® Use the mxCreate functions to create
the MATLAB arrays for your output
arguments. Set plhs[0],[1],...
to the pointers to the newly created
MATLAB arrays.

Use the mxGet functions to extract
your data from prhs[0],[1],... .

Call your C subroutine passing the
input and output data pointers as
function parameters.

mxarray *D

D = plhs[1]

plhs[0] is assigned |¢—

mxarray *C
C = plhs[0]

Outputs

Creating C++ MEX Files

Creating C++ MEX Files

In this section...

“Creating Your C++ Source File” on page 5-13

“Compiling and Linking” on page 5-13

“Memory Considerations for Class Destructors” on page 5-13

“Use mexPrintf to Print to MATLAB Command Window” on page 5-14

MEX files support all C++ language standards. This topic discusses specific C++
language issues to consider when creating and using MEX files.

Use the C syntax statements in the MATLAB API libraries in your C++ applications.
You can also copy MATLAB C code examples into C++ applications. For example, see the
mexcpp -cpp file that contains both C and C++ statements.

Creating Your C++ Source File

The C++ source code for the examples provided by MATLAB use the . cpp file extension.
The extension .cpp is unambiguous and recognized by C++ compilers. Other possible
extensions include .C, .cc, and .cxX.

Compiling and Linking

To build a C++ MEX file, type:

mex filename.cpp

where filename is the name of the source file.

You can run a C++ MEX file only on systems with the same version of MATLAB that the
file was compiled on.

Memory Considerations for Class Destructors
Do not use the mxFree or mxDestroyArray functions in a C++ destructor of a class used

in a MEX-function. If the MEX-function throws an error, MATLAB cleans up MEX-file
variables, as described in “Automatic Cleanup of Temporary Arrays” on page 5-65.

5-13

5 C/C++ MEX-Files

If an error occurs that causes the object to go out of scope, MATLAB calls the C++
destructor. Freeing memory directly in the destructor means both MATLAB and the
destructor free the same memory, which can corrupt memory.

Use mexPrintf to Print to MATLAB Command Window

Using cout or the C-language printf function does not work as expected in C++ MEX
files. Use the mexPrintf function instead.

See Also

mexPrintf

Related Examples
. “C++ Class in MEX Files” on page 5-15
. “Handle Files with C++” on page 5-16

. mexcpp.cpp

More About
. “Build MEX File” on page 4-17

5-14

C++ Class in MEX Files

C++ Class in MEX Files

This example, mexcpp - cpp, shows how to use C++ code with your C language MEX file.
It uses member functions, constructors, destructors, and the 1ostream include file.

To build this example, at the command prompt type:
mex mexcpp.cpp
The calling syntax is mexcpp(numl, num2).

The routine defines a class, myData, with member functions display and set_data,
and variables v1 and v2. It constructs an object d of class myData and displays the
initialized values of v1 and v2. It then sets v1 and v2 to your input and displays the new
values. Finally, the delete operator cleans up the object.

Related Examples
. mexcpp.cpp

5-15

5 C/C++ MEX-Files

Handle Files with C++

5-16

In this section...

“C++ Example” on page 5-16

“C Example” on page 5-16

The mexatexit.cpp example shows C++ file handling features. Compare it with the C
code example mexatexit.c, which uses the mexAtEXit function.

C++ Example

The C++ example uses a Fileresource class to handle the file open and close functions.
The MEX file calls the destructor for this class (which closes the data file). This example
also prints a message on the screen when performing operations on the data file.
However, in this case, the only C file operation performed is the write operation,
fprintf.

To build the mexatexit.cpp MEX file, type:
mex mexatexit.cpp
Type:

z = "for the C++ MEX-File";
mexatexit(x)

mexatexit(z)

clear mexatexit

Writing data to fTile.
Writing data to fTile.

Display the contents of matlab.data.
type matlab.data

my input string

for the C++ MEX-File

C Example

The C code example registers the mexAtEXit function to perform cleanup tasks (close
the data file) when the MEX file clears. This example prints a message on the screen
(using mexPrintf) when performing file operations fopen, fprintf, and fclose.

Handle Files with C++

To build the MEX file, type:

mex mexatexit.c

Run the example.

X = "my input string”;
mexatexit(x)

Opening Ffile matlab.data.
Writing data to file.

Clear the MEX file.

clear mexatexit

Closing file matlab.data.

Display the contents of matlab.data.
type matlab.data

my input string

See Also

mexAtExXit

Related Examples
. mexatexit.cpp

. mexatexit.c

5-17

5 C/C++ MEX-Files

Create C Source MEX File

5-18

This example shows how to write a MEX file to call a C function, arrayProduct, in
MATLAB using a MATLAB matrix. You can use these same C statements in a C++
application.

arrayProduct multiplies an n-dimensional array, Yy, by a scalar value, X, and returns
the results in array, z.

void arrayProduct(double x, double *y, double *z, int n)

{

int i;
for (i=0; i<n; i++) {
z[i] = x * y[i];
b
T

Create Source File

Open MATLAB Editor, create a file, and document the MEX file with the following
information.

N
*

arrayProduct.c - example in MATLAB External Interfaces
Multiplies an input scalar (multiplier)

times a 1xN matrix (inMatrix)

and outputs a 1xN matrix (outMatrix)

The calling syntax is:

outMatrix = arrayProduct(multiplier, iInMatrix)

X ok % 3 ok X ok X % %

This 1s a MEX Ffile for MATLAB.

*

N

Add the C/C++ header file, mex.h, containing the MATLAB API function declarations.

#include "mex.h"

Save the file on your MATLAB path, for example, in c:\work, and name it
arrayProduct.c. The name of your MEX file is arrayProduct.

Create C Source MEX File

Create Gateway Routine

Every C program has a main() function. MATLAB uses the gateway routine,
mexfunction, as the entry point to the function. Add the following mexFunction code.

/* The gateway function */
void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])
{

/* variable declarations here */

/* code here */

}

This table describes the input parameters for mexfunction.

Parameter Description

nlhs Number of output (left-side) arguments, or the size of the plhs array.
plhs Array of output arguments.

nrhs Number of input (right-side) arguments, or the size of the prhs array.
prhs Array of input arguments.

Verify MEX File Input and Output Parameters

Verify the number of MEX file input and output arguments using the nrhs and nlhs
arguments.

To check for two input arguments, multiplier and inMatriXx, use this code.

if(nrhs 1= 2) {
mexErrMsgldAndTxt(*'"MyToolbox:arrayProduct:nrhs',
"Two inputs required.');

}

Use this code to check for one output argument, the product outMatrix.
if(nlhs 1= 1) {

mexErrMsgldAndTxt(""MyToolbox:arrayProduct:nlhs",
"One output required.');

5-19

5 C/C++ MEX-Files

}

Verify the argument types using the plhs and prhs arguments. This code validates that
multiplier, represented by prhs[0], is a scalar.

/* make sure the first input argument is scalar */
if('mxlsDouble(prhs[0]) ||
mxIsComplex(prhs[0]) |1
mxGetNumberOfElements(prhs[0]) =1) {
mexErrMsgldAndTxt("*MyToolbox:arrayProduct:notScalar",
"Input multiplier must be a scalar.');

}

This code validates that inMatrix, represented by prhs[1], is type double.

iT('mxIsDouble(prhs[1]) |1
mxIsComplex(prhs[1])) {
mexErrMsgldAndTxt(*'"MyToolbox:arrayProduct:notDouble",
"Input matrix must be type double.™);

}
Validate that inMatrix is a row vector.

/* check that number of rows in second input argument is 1 */
if(mxGetM(prhs[1]) = 1) {
mexErrMsgldAndTxt("*MyToolbox:arrayProduct:notRowVector",
"Input must be a row vector.');

}

Create Computational Routine

Add the arrayProduct code. This function is your computational routine, the source
code that performs the functionality you want to use in MATLAB.

void arrayProduct(double x, double *y, double *z, int n)

{

int i;

for (i=0; i<n; i++) {
z[i] = x * y[i];
}
}

A computational routine is optional. Alternatively, you can place the code within the
mexfunction function block.

5-20

Create C Source MEX File

Write Code for Cross-Platform Flexibility

MATLAB provides a preprocessor macro, mwsize, that represents size values for
integers, based on the platform. The computational routine declares the size of the array
as Int. Replace the int declaration for variables n and i with mwsize.

void arrayProduct(double x, double *y, double *z, mwSize n)

{

mwSize 1;
for (i=0; i<n; i++) {
z[i] = x * y[il;
}
}

Declare Variables for Computational Routine
Put the following variable declarations in mexFunction.

* Declare variables for the input arguments.

double multiplier; /* input scalar */
double *inMatrix; /* 1xN input matrix */

* Declare ncols for the size of the input matrix.

mwSize ncols; /* size of matrix */

* Declare the output argument, outMatrix.
double *outMatrix; /* output matrix */
Later you assign the mexFunction arguments to these variables.
Read Input Data
To read the scalar input, use the mxGetScalar function.

/* get the value of the scalar input */
multiplier = mxGetScalar(prhs[0]);

Use the mxGetPr function to point to the input matrix data.

/* create a pointer to the real data in the input matrix */
inMatrix = mxGetPr(prhs[1]);

Use the mxGetN function to get the size of the matrix.

5-21

5 C/C++ MEX-Files

5-22

/* get dimensions of the input matrix */
ncols = mxGetN(prhs[1]);

Prepare Output Data

To create the output argument, plhs[0], use the mxCreateDoubleMatrix function.

/* create the output matrix */
plhs[0] = mxCreateDoubleMatrix(l,ncols,mxREAL);

Use the mxGetPr function to assign the outMatrix argument to plhs[0]

/* get a pointer to the real data in the output matrix */
outMatrix = mxGetPr(plhs[0]);

Perform Calculation

Pass the arguments to arrayProduct.

/* call the computational routine */
arrayProduct(multiplier, inMatrix,outMatrix,ncols);

View Complete Source File

Compare your source file with arrayProduct.c, located in matlabroot/extern/
examples/mex. Open the file in the editor.

Build Binary MEX File
At the MATLAB command prompt, build the binary MEX file.

mex arrayProduct.c

Test the MEX File

s = 5;

A =[1.5, 2, 9];

B = arrayProduct(s,A)
B =

7.5000 10.0000 45_.0000
Validate MEX File Input Arguments

It is good practice to validate the type of a MATLAB variable before calling a MEX file.
To test the input variable, inputArg, and convert it to double, if necessary, use this
code.

Create C Source MEX File

A =11.5, 2, 9];

inputArg = intl6(A);

if ~strcmp(class(inputArg), “double™)
inputArg = double(inputArg);

end

B = arrayProduct(s, inputArg)

See Also

mexfunction | mwvSize | mxCreateDoubleMatrix | mxGetN | mxGetPr |
mxGetScalar

Related Examples

. arrayProduct.c

More About
. “Creating C++ MEX Files” on page 5-13

5-23

5 C/C++ MEX-Files

Table of MEX File Source Code Files

5-24

Source code for the MEX examples shown in the following table is in subfolders of
matlabroot/extern/examples. Make sure that you have a MATLAB-supported
compiler installed.

To build a code example, first copy the file to a writable folder on your path:

copyfile(fullfile(matlabroot, "extern®, “examples®, "foldername~, . ..
“filename®),".","f")

where filename is the name of the example, for example arrayProduct.c, and
foldername is the subfolder name, for example mex.

You can create and compile MEX files in MATLAB or at your operating system prompt.
At either prompt, type:

mex -v filename

For examples listing multiple Fortran sources files, both files are required to build the
MEX file.

mex -v filel.F file2.F

You can modify the source code for the examples. For convenience, the example
instructions open the files in MATLAB Editor, but you can use any code development
editor.

Example Name Example Subfolder Description

arrayFillGetPr.c refbook Fill mxArray using
mxGetPr.

arrayFillSetData.c refbook Fill mxArray with non-
double values.

arrayFillSetPr.c refbook Fill mxArray using mxSetPr
to allocate memory
dynamically.

arrayProduct.c mex Multiply a scalar times 1xN
matrix.

arraySize.c mex Tlustrate memory
requirements of large
mxArray.

Table of MEX File Source Code Files

Example Name Example Subfolder Description

convec.c refbook Pass complex data.

convec.F

dblmat.F refbook Use of Fortran %VAL.

compute.F

dotProductComplex.c refbook Handle Fortran complex
return type for function
called from a C MEX file.

doubleelement.c refbook Use unsigned 16-bit integers.

explore.c mex Identify data type of input
variable.

findnz.c refbook Use N-dimensional arrays.

fulltosparse.c refbook Populate a sparse matrix.

fulltosparse.F, loadsparse.F

matrixDivide.c refbook Call a LAPACK function.

matrixDivideComplex.c refbook Call a LAPACK function
with complex numbers.

matrixMultiply.c refbook Call a BLAS function.

matsq.F refbook Pass matrices in Fortran.

matsqint8.F refbook Pass non-double matrices in
Fortran.

mexatexit.c mex Register an exit function to

mexatexit.cpp close a data file.

mexcallmatlab.c mex Call built-in MATLAB disp
function.

mexcallmatlabwithtrap.c mex How to capture error
information.

mexcpp.cpp mex Ilustrate some C++
language features in a MEX
file.

mexevalstring.c mex Use mexEvalString

to assign variables in
MATLAB.

5-25

5 C/C++ MEX-Files

Example Name Example Subfolder Description
mexfunction.c mex How to use mexfunction.
mexgetproperty.c mex Use mxGetProperty and

mxSetProperty to change
the Color property of a
graphic object.

mexgetarray.c mex Use mexGetVariable and
mexPutVariable to track
counters in the MEX file

and in the MATLAB global
workspace.
mexlock.c mex How to lock and unlock a
mexlockf.F MEX file.
mxcalcsinglesubscript.c mx Demonstrate MATLAB 1-

based matrix indexing versus
C 0-based indexing.

mxcreatecellmatrix.c mx Create 2-D cell array.

mxcreatecellmatrixf.F

mxcreatecharmatrixfromstr.qmx Create 2-D string array.

mxcreatestructarray.c mx Create MATLAB structure
from C structure.

mxgeteps.c mx Read MATLAB eps value.

mxgetepsf.F

mxgetinf.c mx Read inf value.

mxgetnzmax.c mx Display number of nonzero

elements in a sparse matrix
and maximum number of
nonzero elements it can

store.

mxisclass.c mx Check if array is member of
specified class.

mxisfinite.c mx Check for NaN and infinite
values.

5-26

Table of MEX File Source Code Files

Example Name Example Subfolder Description

mxislogical.c mx Check if workspace variable
1s logical or global.

mxmalloc.c mx Allocate memory to copy
a MATLAB string to a C
string.

mxsetdimensions.c mx Reshape an array.

mxsetdimensionsf.F

mxsetnzmax.c mx Reallocate memory for
sparse matrix and reset
values of pr, pi, ir, and
nzmax.

passstr.F refbook Pass C character matrix
from Fortran to MATLAB.

phonebook.c refbook Manipulate structures and
cell arrays.

revord.c refbook Copy MATLAB string data to

revord.F and from C-style string.

sincall.c refbook Create mxArray and pass

sincall.F, fill.F to MATLAB sin and plot
functions

timestwo.c refbook Demonstrate common

timestwo.F workflow of MEX file.

utdu_slv.c refbook Use LAPACK for symmetric
indefinite factorization.

xtimesy.c refbook Pass multiple parameters.

xtimesy.F

yprime.c mex Solve simple three body orbit

yprimef.F, yprimefg.F

problem.

5-27

5 C/C++ MEX-Files

Choose a C++ Compiler

5-28

Select Microsoft Visual Studio Compiler

This example shows how to determine and change the default compiler for building C+
+ MEX files when you have multiple versions of Microsoft Visual Studio on your system.
The messages in this example assume that you have Microsoft Visual C++ 2012 and
Microsoft Visual C++ 2010. Use these steps for any C++ compilers on your system.

MATLAB chooses a default compiler for C source files and a default complier for C++
source files. To see the default C++ compiler, type:

mex -setup c++

MEX configured to use “Microsoft Visual C++ 2012° for C++ language compilation.
MATLAB also displays links to other C++ compilers installed on your system.

To change the default to MSVC 2010, click the link:

Microsoft Visual C++ 2010

MEX configured to use "Microsoft Visual C++ 2010" for C++ language compilation.

Microsoft Visual C++ 2010 remains the default until you call mex -setup c++ to select
a different default.

When you call the mex command with a source file, MATLAB displays the name of the
compiler used to build the MEX file. You can also find this information using the mex -
setup lang command. By default, when you type mex -setup, MATLAB shows you
information for the C compiler only. If you want information for C++ compilers, type:

mex -setup c++

Select MinGW-wé4 Compiler

If you only have the MinGW compiler installed on your system, the mex command
automatically chooses MinGW for both C and C++ MEX files. If you have multiple C or C
++ compilers, use mex -setup to choose MinGW for both C and C++ MEX files.

mex -setup
mex -setup cpp

Choose a C++ Compiler

If you only type mex -setup choosing MinGW, when you compile a C++ file, mnex might
choose a different compiler.

More About
. “Change Default Compiler” on page 4-20

5-29

5 C/C++ MEX-Files

Set Up C/C++ Examples

5-30

The Matrix Library provides a full set of routines that handle the types supported by
MATLAB. For each data type, there is a specific set of functions that you can use for data
manipulation. The first example discusses the simple case of doubling a scalar. After
that, the examples discuss how to pass in, manipulate, and pass back various data types,
and how to handle multiple inputs and outputs. Finally, the sections discuss passing and
manipulating various MATLAB types.

Source code for the examples in this section is in the matlabroot/extern/examples/
refbook folder. To build an example, first copy the file to a writable folder on your path:

copyfile(fullfile(matlabroot, "extern”, "examples”, "refbook”, ...
“filename.c"),".","f")

where filename is the name of the example.

At the MATLAB command prompt, type:

mex filename.c

The following topics look at source code for the examples. Unless otherwise specified, the
term "MEX file” refers to a source file.

For a list of MEX example files available with MATLAB, see “Table of MEX File Source
Code Files” on page 5-24.

Pass Scalar Values

Pass Scalar Values

In this section...

“Pass Scalar as Matrix” on page 5-31

“Pass Scalar by Value” on page 5-32

Pass Scalar as Matrix
This example shows how to write a MEX file that passes scalar values.

Suppose that you have the following C code, timestwo, that takes a scalar input, a 1-
by-1 matrix, and doubles it.

void timestwo(double y[], double x[])

y[0] = 2.0*x[0];
return;

}
C Code Analysis

To see the function written as a MEX file, open the file, timestwo.c, in the MATLAB
Editor.

In C/C++, the compiler checks function arguments for number and type. However, in
MATLAB, you can pass any number or type of arguments to a function; the function is
responsible for argument checking. MEX files also allow variable inputs. Your MEX file
must safely handle any number of input or output arguments of any supported type.

This code checks for the proper number of arguments.

if(nrhs 1= 1) {
mexErrMsgldAndTxt("MATLAB:timestwo:invalidNumlnputs",
"One iInput required.');
} else if(nlhs>1) {
mexErrMsgldAndTxt("MATLAB:timestwo:maxlhs",
"Too many output arguments.');

}

This code checks if the input is a scalar double value.

5-31

5 C/C++ MEX-Files

5-32

mrows = mxGetM(prhs[0]):
ncols = mxGetN(prhs[0]);
if('mxlsDouble(prhs[0]) || mxIsComplex(prhs[0]) |1
I'(mrows==1 && ncols==1)) {
mexErrMsgldAndTxt(""MATLAB:timestwo: inputNotRealScalarDouble™,
"Input must be a noncomplex scalar double.™);

}
Build and Test Example

Build the MEX file.

mex -v timestwo.c

Call the function.

X = 23
y = timestwo(x)
y =
a
Pass Scalar by Value

This example shows how to write a MEX file that passes a scalar by value.

The mxGetScalar function returns the value of a scalar instead of a pointer to a copy of
the scalar variable, X.

The following C code implements the timestwo_alt function.

void timestwo_alt(double *y, double x)

{
}

*y = 2.0*X;

Compare the timestwo_alt function signature with the timestwo function signature.
void timestwo_alt(double *y, double Xx)

void timestwo(double y[], double x[])

The input value X is a scalar of type double. In the timestwo function, the input value
1s a matrix of type double.

Pass Scalar Values

To see the function written as a MEX file, open the file, timestwoalt.c, in the
MATLAB Editor.

Compare the call to timestwo_alt to the call to timestwo.

/* Get the scalar value of the input x */
/* note: mxGetScalar returns a value, not a pointer */
X = mxGetScalar(prhs[0]);

/* Assign a pointer to the output */
y = mxGetPr(plhs[0]);

/* Call the timestwo_alt subroutine */
timestwo_alt(y,x);

/* Assign pointers to each input and output. */
mxGetPr(prhs[0]);
mxGetPr(plhs[0]);

X =
y =
/* Call the timestwo subroutine. */
timestwo(y,X);

The value X, created by mxGetScalar, is a scalar not a pointer.

5-33

5 C/C++ MEX-Files

Pass Strings

This example shows how to pass strings to a MEX file. The example revord. c accepts a
string and returns the characters in reverse order.

C Code Analysis

To see the code, open the file, revord.c, in the MATLAB Editor.

The gateway function, mexFunction, creates a C string from the input variable,
prhs[0]. By isolating variables of type mxArray from the computational subroutine,
revord, you can avoid making significant changes to your original C and C++ code.

Convert the input argument, prhs[0], to a C-style string, input_buf.
input_buf = mxArrayToString(prhs[0]);

Allocate memory for the output argument, output_buf, a C-style string.
output_buf = mxCalloc(buflen, sizeof(char));

The size of the output argument is equivalent to the size of the input argument.
Call the computational subroutine, revord.

revord(input_buf, buflen, output_buf);

Convert the output, output_buf, to an mxArray and assign to plhs[0].
plhs[0] = mxCreateString(output_buf);

Do not release memory for this variable because it is an output argument.

The mxArrayToString function, used to create the temporary input_buf variable,
allocates memory; use the mxFree function to release the memory.

mxFree(input_buf);
Build and Test Example
Run the following commands from the MATLAB command line.

Build the example.

5-34

Pass Strings

mex -v revord.c

Call the function.

X = "hello world";
y = revord(x)
y =

dlrow olleh

Related Examples

. revord.c

5-35

5 C/C++ MEX-Files

Handling Strings in C/C++

5-36

In this section...

“How MATLAB Represents Strings in MEX-Files” on page 5-36
“Character Encoding and Multibyte Encoding Schemes” on page 5-36
“Converting MATLAB String to C-Style String” on page 5-37
“Converting C-Style String to MATLAB String” on page 5-37
“Returning Modified Input String” on page 5-37

“Memory Management” on page 5-37

How MATLAB Represents Strings in MEX-Files

In C/C++ MEX-files, a MATLAB string is an mxArray of type mxChar, using a locale-
neutral data representation (Unicode encoding). MATLAB represents C-style strings as
type char, and uses the character encoding scheme specified by the user locale setting.

The following C/C++ Matrix Library functions provides string handling functions to help
you work with both mxArrays and C-style strings.

+ mxCreateString — Creates a string mxArray initialized to the input string.

+ mxArrayToString — Copies a string mxArray into a C-style string. Supports
multibyte encoded characters.

+ mxGetString — Copies a string mxArray into a C-style string. Best used with single-
byte encoded characters. Supports multibyte encoded characters when you calculate
string buffer size.

+ mxGetChars — Returns a pointer to the first mxChar element in the mxArray.

Consider the following topics when choosing a string handling function.

Character Encoding and Multibyte Encoding Schemes

MATLAB supports the character encoding scheme specified by the user locale setting.
When an MX Library function converts mxChar data to a C char type, MATLAB also
converts the character to the user default encoding.

Handling Strings in C/C++

If you use a multibyte encoding scheme, use the mxArrayToString function.

The mxGetChars function provides a pointer to the mxChar array; it does not change the
character encoding.

You can also use the mxGetString function with multibyte encoding schemes.
mxGetString converts the mxChar data to your user default encoding, and copies the
converted characters to the destination buffer. However, you must calculate the size of
the destination buffer. For single-byte encoding, the size of the buffer is the number of
characters, plus 1 for the null terminator. For multibyte encoding, the size of a character
1s one or more bytes. Some options for calculating the buffer size are to overestimate the
amount (calculating the number of characters times the maximum number of bytes used
by the encoding scheme), analyze the string to determine the precise size used by each
character, or utilize 3rd-party string buffer libraries. After this calculation, add 1 for the
null terminator.

Converting MATLAB String to C-Style String

When you pass a character array to a MEX-function, it is an mxArray of type mxChar.
If you call a C function to manipulate the string, first convert the data to a C type char
using the mxArrayToString or mxGetString functions.

Converting C-Style String to MATLAB String

If your MEX-file creates a C string and returns the data to MATLAB, use the
mxCreateString function to copy the C string into an mxChar array.

Returning Modified Input String

Suppose your MEX-file takes a string input argument, modifies it, and returns the result.
Since MEX-file input parameters (the prhs array) are read-only, you must define a
separate output parameter to handle the modified string.

Memory Management

MathWorks recommends that MEX-file functions destroy their own temporary arrays
and free their own dynamically allocated memory. The function you use to release
memory depends on how you use the string buffer and what function you use to create
the buffer.

5-37

5 C/C++ MEX-Files

If you call this function:

Release memory using this function:

Any string function listed here

Do not destroy an mxArray in a source
MEX-file when it is:

+ Passed to the MEX-file in the right-hand
side list prhs[].
* Returned in the left side list plhs[].

* Returned by the mexGetVariablePtr
function.

+ Used to create a structure.

mxArrayToString mxFree

mxGetString When using mxCal loc / mxMalloc /
mxReal loc to create input argument buf,
call mxFree(buf).

mxCreateString mxDestroyArray

mxGetChars None. Function creates a pointer to an
mxArray but does not allocate additional
memory.

More About

. “C/C++ Matrix Library APT”

. “Locale Settings for MATLAB Process”

5-38

Pass Multiple Inputs or Outputs

Pass Multiple Inputs or Outputs

This example shows how to call a MEX file with multiple inputs. The function, xtimesy,
multiplies an input scalar by a scalar or matrix and outputs a matrix.

The plhs[] and prhs[] parameters are vectors that contain pointers to each left-side
(output) variable and each right-side (input) variable, respectively. plhs[0] contains
a pointer to the first left-side argument, plhs[1] contains a pointer to the second left-
side argument, and so on. Likewise, prhs[0] contains a pointer to the first right-side
argument, prhs[1] points to the second, and so on.

C Code Analysis

To see the code, open the file, xtimesy.c, in the MATLAB Editor.

Get the scalar input value, X.

X = mxGetScalar(prhs[0]);

Get the second input, y, which can be either a scalar or a matrix.

y = mxGetPr(prhs[1]);

Create the output argument, plhs[0], which is the same size as argument V.
/* get the dimensions of the matrix input y */

mrows = mxGetM(prhs[1]):
ncols mxGetN(prhs[1]);

/* set the output pointer to the output matrix */
plhs[0] = mxCreateDoubleMatrix((mwSize)mrows, (mwSize)ncols, mxREAL);

Build and Test Example

Run the following commands from the MATLAB command line.
Build the example.

mex -v xtimesy.c

Call the function with scalar values.

X
y

7;
7;

5-39

5 C/C++ MEX-Files

5-40

z = xtimesy(X,Y)

Z =
49

Call the function with a matrix.

9.

y = ones(3);

z = xtimesy(X,y)

Z =
9 9 9
9 9 9
9 9 9

Related Examples

. xtimesy.c

Pass Structures and Cell Arrays

Pass Structures and Cell Arrays

Passing structures and cell arrays into MEX files is like passing any other data type,
except the data itself is of type mxArray. In practice, mxGetField (for structures) and
mxGetCell (for cell arrays) return pointers of type mxArray. You treat the pointers like
any other pointers of type mxArray. To pass the data contained in the mxArray to a C/C+
+ routine, use an API function such as mxGetData to access it.

This example takes an m-by-n structure matrix as input and returns a new 1-by-1
structure that contains these fields:

* String input generates an m-by-n cell array

* Numeric input (noncomplex, scalar values) generates an m-by-n vector of numbers

with the same class ID as the input, for example int, double, and so on.

To build this example, at the command prompt type:

mex phonebook.c

To see how this program works, enter this structure:

friends(l).name = "Jordan Robert”;
friends(1) .phone = 3386;
friends(2).name = “Mary Smith";
friends(2) .phone = 3912;
friends(3).name = "Stacy Flora“;
friends(3).phone = 3238;
friends(4).name = “Harry Alpert®;
friends(4) .phone = 3077;

Call the MEX file:
phonebook(friends)
ans =

name: {1x4 cell }
phone: [3386 3912 3238 3077]

Related Examples
. phonebook.c

5-41

5 C/C++ MEX-Files

Create 2-D Cell Array

This example shows how to create a cell array in a MEX file, using the
mxcreatecel Imatrix.c function, which places input arguments in a cell array.

C Code Analysis
To see the code, open the file in MATLAB Editor.

Create a cell array for the number of input arguments.

cell_array ptr = mxCreateCel IMatrix((mwSize)nrhs,1);

Copy the input arguments into the cell array.

for(i=0; i<(mwindex)nrhs; i++){
mxSetCell(cell_array_ ptr,i,mxDuplicateArray(prhs[i]));

Build and Test Example
Run the following commands from the MATLAB command line.

Build the example.

mex -v mxcreatecellmatrix.c

Create input arguments.

strl = "hello”;
str2 = “world";
num = 2012;

Create a 3-x-1 cell array and call disp to display the contents.
mxcreatecel Imatrix(strl,str2,num)

The contents of the created cell is:

"hello”
"world*®
[2012]

Related Examples

. mxcreatecellmatrix.c

5-42

Fill mxArray

Fill mxArray

In this section...

“Options” on page 5-43
“Copying Data Directly into an mxArray” on page 5-43
“Pointing to Data” on page 5-43

Options

You can move data from a C/C++ program into an mxArray using the Matrix Library.
The functions you use depend on the type of data in your application. Use the mxSetPr
and mxGetPr functions for data of type double. For numeric data other than

double, use the mxSetData function. For nonnumeric data, see the examples for the
mxCreateString function.

The following examples use a variable. data, to represent data from a computational
routine. Each example creates an mxArray using the mxCreateNumericMatrix
function, fills it with data, and returns it as the output argument plhs[0].

These examples use real data only. If you have complex data, use the mxGetPi and
mxSetPi functions as needed.

Copying Data Directly into an mxArray

The arrayFi 1 1GetPr.c example uses the mxGetPr function to copy the values from
data to plhs[O0].

Pointing to Data
The arrayFi 1 1SetPr.c example uses the mxSetPr function to point plhs[0] to data.

The example arrayFillSetData. c shows how to fill an mxArray for numeric types
other than double.

See Also

mxCreateString | mxGetPr | mxSetData | mxSetPr

5-43

5 C/C++ MEX-Files

Related Examples
. arrayFillGetPr.c
. arrayFillSetPr.c
. arrayFillSetData.c

5-44

Prompt User for Input

Prompt User for Input

Because MATLAB does not use stdin and stdout, do not use C/C++ functions like
scanf and printf to prompt for user input. The following example shows how to use
mexCal IMATLAB with the input function to get a number from the user.

#include "mex.h"
#include "string.h"
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{
mxArray *new_number, *str;
double out;
str = mxCreateString("'Enter extension: ');
mexCal IMATLAB(1,&new_number,1,&str,"input');
out = mxGetScalar(new_number);
mexPrintf(*"'You entered: %.0f ', out);
mxDestroyArray(new_number);
mxDestroyArray(str);
return;
}
See Also

input | inputdlg | mexCal IMATLAB

5-45

5 C/C++ MEX-Files

Handle Complex Data

MATLAB separates complex data into real and imaginary parts. The MATLAB API
provides two functions, mxGetPr and mxGetPi, that return pointers (of type double *)
to the real and imaginary parts of your data.

This example, convec.c, takes two complex row vectors and convolves them.

To build this example, at the command prompt type:

mex convec.c

Enter these numbers at the MATLAB prompt.

X = [3.000 - 1.000i, 4.000 + 2.000i, 7-000 - 3.000i];
y = [8.-000 - 6.000i, 12.000 + 16.000i, 40.000 - 42.000i];
Call the MEX file.

z = convec(X,Y)

zZ =
1.0e+02 *

Columns 1 through 4
0.1800 - 0.26001 0.9600 + 0.2800iF 1.3200 - 1.44001 3.7600 - 0.1200i
Column 5

1.5400 - 4.1400i

Compare the results with the built-in MATLAB function conv.

See Also

mxGetPi1 | mxGetPr

Related Examples

* convec.c

5-46

Handle 8-, 16-, and 32-Bit Data

Handle 8-, 16-, and 32-Bit Data

The MATLAB API provides a set of functions that support signed and unsigned 8-,
16-, and 32-bit data. For example, the mxCreateNumericArray function constructs
an unpopulated N-dimensional numeric array with a specified data size. For more
information, see mxClassID.

Once you have created an unpopulated MATLAB array of a specified data type, you can
access the data using mxGetData and mxGetlImagData. These two functions return
pointers to the real and imaginary data. You can perform arithmetic on data of 8-, 16-,
or 32-bit precision in MEX files and return the result to MATLAB, which recognizes the
correct data class.

The example, doubleelement.c, constructs a 2-by-2 matrix with unsigned 16-bit
integers, doubles each element, and returns both matrices to MATLAB.

To build this example, at the command prompt type:

mex doubleelement.c

Call the example.

doubleelement
ans =
2 6
4 8

The output of this function is a 2-by-2 matrix populated with unsigned 16-bit integers.

See Also

mxClassID | mxCreateNumericArray | mxGetData | mxGetlmagData

Related Examples

. doubleelement.c

5-47

5 C/C++ MEX-Files

Manipulate Multidimensional Numerical Arrays

5-48

You can manipulate multidimensional numerical arrays by using mxGetData and
mxGetlmagData. These functions return pointers to the real and imaginary parts of the
data stored in the original multidimensional array. The example, Findnz.c, takes an
N-dimensional array of doubles and returns the indices for the nonzero elements in the
array.

Build the example.
mex Findnz.c

Create a sample matrix.

matrix = [309 0; 0824; 0924; 309 3;9920]

matrix =
3 0 9 0
0 8 2 4
0 9 2 4
3 0 9 3
9 9 2 0

findnz determines the position of all nonzero elements in the matrix.
nz = findnz(matrix)

nz =

PWONOAOPMWONPFRPOOWNODMPRE
APrBRABROVWCOWOWWWNNNRERPRER

Manipulate Multidimensional Numerical Arrays

See Also

mxGetData | mxGetlmagData

Related Examples

. findnz.c

5-49

5 C/C++ MEX-Files

Handle Sparse Arrays

5-50

The MATLAB API provides a set of functions that allow you to create and manipulate
sparse arrays from within your MEX files. These API routines access and manipulate ir
and jc, two of the parameters associated with sparse arrays. For more information on
how MATLAB stores sparse arrays, see “The MATLAB Array” on page 4-7.

The example Ful lItosparse.c shows how to populate a sparse matrix.
Build the example.

mex fulltosparse.c

Create a full, 5-by-5 identity matrix.

full = eye(b)

full

[cNoNeoNoN I
[cNeoNeh _Ne)
[cNeol NeNe)
OPr OOO0
R OOOO

Call ful Itosparse to produce the corresponding sparse matrix.
spar = fulltosparse(full)

spar =
1.1
2.,2)
G.3)
4.4
(5.5)

PR RRR

Related Examples

. fulltosparse.c

Call MATLAB Functions from C/C++ MEX Files

Call MATLAB Functions from C/C++ MEX Files

It is possible to call MATLAB functions, operators, user-defined functions, and other
binary MEX files from within your C/C++ source code by using the API function
mexCal IMATLAB.

The example, sincall .c, creates an mxArray, passes various pointers to a local
function to acquire data, and calls mexCal IMATLAB to calculate the sine function and
plot the results.

To build this example, at the command prompt type:
mex sincall.c
Run the example.

sincall

MATLAB displays a sin curve equivalent to executing the following MATLAB commands:

MAX = 1000;

mm = MAX/2;
for i = 1:mm-1

X(1) = 1*(4*3.14159/MAX);
end

Y = sin(X);
plot(X,Y)

See Also
mexCal IMATLAB

Related Examples

. sincall.c

5-51

5 C/C++ MEX-Files

Debugging on Microsoft Windows Platforms

This example shows how to debug yprime.c, found in your matlabroot/extern/
examples/mex/ folder, with Microsoft Visual Studio 2010.

1 Make sure Visual Studio is your selected C compiler:

cc = mex.getCompilerConfigurations("C","Selected®);
cc.Name

ans =

Microsoft Visual C++ 2010 (C)

2 Compile the source MEX file with the —g option, which builds the file with debugging
symbols included. For example:
copyfile(fullfile(matlabroot, "extern”, "examples®, "mex”, "yprime.c"),".","f")
mex -g yprime.c

3 Start Visual Studio. Do not exit your MATLAB session.

From the Visual Studio Tools menu, select Attach to Process...

5 In the Attach to Process dialog box, select the MATLAB process and click Attach.

n

Visual Studio loads data then displays an empty code pane.

6 Open the source file yprime.c by selecting File > Open > File. Locate yprime.c in
the folder, c:\work.

7 Set a breakpoint by right-clicking the desired line of code and following Breakpoint
> Insert Breakpoint on the context menu. It is often convenient to set a breakpoint
at mexFunction to stop at the beginning of the gateway routine.

If you have not yet run the executable file, ignore any “!” icon that appears with the
breakpoint next to the line of code.

Once you hit one of your breakpoints, you can make full use of any commands the
debugger provides to examine variables, display memory, or inspect registers.

8 Open MATLAB and type:
yprime(1,1:4)

yprime.c is opened in the Visual Studio debugger at the first breakpoint.
9 Ifyou select Debug > Continue, MATLAB displays:

5-52

Debugging on Microsoft Windows Platforms

ans =
2.0000 8.9685 4.0000 -1.0947
For more information on how to debug in the Visual Studio environment, see your
Microsoft documentation.
Notes on Debugging

Binary MEX files built with the —g option do not execute on other computers because
they rely on files that are not distributed with MATLAB. For more information on
isolating problems with MEX files, see “Troubleshoot MEX Files”.

5-53

5 C/C++ MEX-Files

Debugging on Linux Platforms

5-54

The GNU® Debugger gdb, available on Linux systems, provides complete source code
debugging, including the ability to set breakpoints, examine variables, and step through
the source code line-by-line.

In this procedure, the MATLAB command prompt >> is shown in front of MATLAB
commands, and I Inux> represents a Linux prompt; your system might show a different
prompt. The debugger prompt is <gdb>.

To debug with gdb:

1 Compile the source MEX file with the —g option, which builds the file with debugging
symbols included. For this example, at the Linux prompt, type:
linux> mex -g yprime.c

2 At the Linux prompt, start the gdb debugger using the matlab function -D option.

linux> matlab -Dgdb
3 Tell gdb to stop for debugging.

<gdb> handle SIGSEGV SIGBUS nostop noprint

4 Start MATLAB without the Java® Virtual Machine (JVM™) by using the —nojvm
startup flag.
<gdb> run -nojvm

5 In MATLAB, enable debugging with the dbmex function and run your binary MEX
file.

>> dbmex on
>> yprime(1,1:4)

6 You are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

<gdb> break mexFunction
<gdb> r

7 Once you hit one of your breakpoints, you can make full use of any commands the
debugger provides to examine variables, display memory, or inspect registers.

Debugging on Linux Platforms

To proceed from a breakpoint, type:

<gdb> continue

8 After stopping at the last breakpoint, type:
<gdb> continue
yprime finishes and MATLAB displays:
ans =

2.0000 8.9685 4.0000 -1.0947
9 From the MATLAB prompt you can return control to the debugger by typing:

>> dbmex stop

Or, if you are finished running MATLAB, type:

>> quit

10 When you are finished with the debugger, type:
<gdb> quit
You return to the Linux prompt.

Refer to the documentation provided with your debugger for more information on its use.

5-55

5 C/C++ MEX-Files

Debugging on Mac Platforms

5-56

In this section...

“Using Xcode” on page 5-56
“Using LLDB” on page 5-58

Using Xcode
This example shows how to debug the MEX-file, yprime.c, using Xcode.
Copy the source MEX file

The yprime.c source code is in the matlabroot folder. In MATLAB, copy the file to a
local, writable folder, for example Zusr/work/my_data. Create the folder if it does not
already exist.

copyfile(fullfile(matlabroot, "extern”, "examples”, "mex”, "yprime.c"), ...
fullfile("/", usr=, "work®, "my_data®))

Set your current folder in MATLAB to Zusr/work/my_data.

Compile the source MEX file

Compile the source MEX-file with the -g option, which adds debugging symbols.
mex -g yprime.c

MATLAB creates the binary MEX-file, yprime.mexmaci64.

Create an empty Xcode project for debugging

In Xcode,

Select File > New > Project.

In the Choose a template for your project dialog box, in the OS X section, select
Other.

Select Empty.
Set Product Name to debug_yprime.

Debugging on Mac Platforms

Add yprime files to the project

To add breakpoints to your source code file, add the yprime.c file to the project. You
can either drag the file directly into the project or right-click in the project and click Add
files to "debug_yprime" to add files.

Make sure the Destination option, Copy items into destination group®s
folder (if needed), is unchecked. Unchecking this option enables breakpoints to be
added to the file that MATLAB runs.

Click Finish to add the file.
Create a scheme

+ Select Product > Scheme > New Scheme....

+ Set Name to debug.

+ Set Target to None.

* Press OK. The scheme editing dialog box opens.

* Set the Run > Info > Executable option to the MATLAB executable to use to debug
the MEX-file, for example, MATLAB_R2014a.app.

Add a symbolic breakpoint
Open the Debug menu:
* In Xcode 4.6.x:

Select Product > Debug > Create Symbolic Breakpoint .
* In Xcode 5.0 and later:

Select Debug > Breakpoints > Create Symbolic Breakpoint.
Set Symbol to NSApplicationMain.

Click Add action to add the following debugger command:
process handle -p true -n false -s false SIGSEGV SIGBUS

Check Automatically continue after evaluating.
Set breakpoints

To add a breakpoint to yprime.c, click the gutter next to the line where you want
execution to pause. For more information, refer to the Xcode documentation.

5-57

5 C/C++ MEX-Files

Start MATLAB

Click Run at the top left of the project window (or type Command-R) to start the
MATLAB executable. The executable pauses twice; press Continue.

Run the binary MEX-file in MATLAB

In MATLAB, change the current folder to the folder with the yprime files.
Run the binary MEX-file.

yprime(1,1:4)

The debugger opens yprime.c at the first breakpoint.

Press Continue. MATLAB displays:

ans =

2.0000 8.9685 4._.0000 -1.0947

Using LLDB

LLDB is the debugger available with Xcode on Mac OS X systems. Refer to the
documentation provided with your debugger for more information on its use.

In this procedure, >> indicates the MATLAB command prompt, and % represents a Mac
Terminal prompt. The debugger prompt is (11db).

* “Debug MEX Without JVM” on page 5-58
* “Debug MEX with JVM” on page 5-60

Debug MEX Without JVM

This example debugs the yprime MEX file without the Java Virtual Machine (JVM).
Running MATLAB in this mode minimizes memory usage and improves initial startup
speed, but restricts functionality. For example, you cannot use the desktop.

1 Compile the source MEX file with the —g option, which builds the file with debugging
symbols included. At the Terminal prompt, type:

% mex -g yprime.c
2 Start the lldb debugger using the matlab function -D option:

5-58

Debugging on Mac Platforms

% matlab -DI1ldb
Start MATLAB using the —nojvm startup flag:

(11db) run -nojvm
In MATLAB, enable debugging with the dbmex function and run your MEX file:

>> dbmex on
>> yprime(1,1:4)

The debugger traps a user-defined signal and the prompt returns to 1ldb.
You are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

(11db) b mexFunction

Once you hit a breakpoint, you can use any debugger commands to examine
variables, display memory, or inspect registers. To proceed from a breakpoint, type:

(11db) ¢
After stopping at the last breakpoint, type:

(11db) ¢
yprime finishes and MATLAB displays:
ans =

2.0000 8.9685 4.0000 -1.0947
From the MATLAB prompt, return control to the debugger by typing:

>> dbmex stop
Or, if you are finished running MATLAB, type:

>> quit

When you are finished with the debugger, type:
(11db) q

You return to the Terminal prompt.

5-59

5 C/C++ MEX-Files

5-60

Debug MEX with JVM

To debug a MEX file with the JVM, first handle SIGSEGV and SIGBUS process signals.
Start MATLAB and stop at the first instruction.

+ At the Terminal prompt, compile the MEX file and start the 1ldb debugger.

% mex -g yprime.c
% matlab -DIldb

+ Start MATLAB.

(11db) process launch -s

Tell the process to continue when these process signals occur.

(11db) process handle -p true -n false -s false SIGSEGV SIGBUS

* You can set break points and execute other debugger commands.

Handling Large mxArrays

Handling Large mxArrays

In this section...

“Using the 64-Bit API” on page 5-61
“Building the Binary MEX File” on page 5-63
“Example” on page 5-63

“Caution Using Negative Values” on page 5-63

“Building Cross-Platform Applications” on page 5-64

Binary MEX files built on 64-bit platforms can handle 64-bit mxArrays. These large
data arrays can have up to 2*%-1 elements. The maximum number of elements a sparse
mxArray can have is 2*%-2.

Using the following instructions creates platform-independent binary MEX files as well.

Your system configuration can affect the performance of MATLAB. The 64-bit processor
requirement enables you to create the mxArray and access data in it. However, the
system memory, in particular the size of RAM and virtual memory, determine the speed
at which MATLAB processes the mxArray. The more memory available, the faster the
processing.

The amount of RAM also limits the amount of data you can process at one time in
MATLAB. For guidance on memory issues, see “Strategies for Efficient Use of Memory”
in the Programming Fundamentals documentation. Memory management within source
MEX files can have special considerations, as described in “Memory Management” on
page 5-65.

Using the 64-Bit API

The signatures of the API functions shown in the following table use the mwSize or
mwlndex types to work with a 64-bit mxArray. The variables you use in your source code
to call these functions must be the correct type.

mxArray Functions Using mwSize/mwindex

mxCalcSingleSubscript mxCreateSparselLogicalMatrix >
mxCalloc mxCreateStructArray
mxCopyCharacterToPtr' mxCreateStructMatrix

5-61

5 C/C++ MEX-Files

5-62

mxCopyComplex16ToPtr!
mxCopyComplex8ToPtr!
mxCopy IntegeriToPtr’
mxCopy Integer2ToPtr’
mxCopy Integer4ToPtr!
mxCopyPtrToCharacter’
mxCopyPtrToComplex16'
mxCopyPtrToComplex8'
mxCopyPtrTolntegerl’
mxCopyPtrTolnteger2’
mxCopyPtrTolnteger4’
mxCopyPtrToPtrArray’
mxCopyPtrToReal4’

mxCopyPtrToReal 8!

mxCopyReal4ToPtr!

mxCopyReal 8ToPtr!
mxCreateCellArray
mxCreateCel IMatrix
mxCreateCharArray

mxCreateCharMatrixFromStrings

mxCreateDoubleMatrix
mxCreatelLogicalArray®

mxCreatelogicalMatrix®
mxCreateNumericArray
mxCreateNumericMatrix
mxCreateSparse

'Fortran function only.

mxGetCell
mxGetDimensions
mxGetElementSize
mxGetField
mxGetFieldByNumber
mxGetlr

mxGetJc

mxGetM

mxGetN
mxGetNumberOfDimensions
mxGetNumberOfElements
mxGetNzmax
mxGetProperty
mxGetString

mxMalloc

mxReal loc

mxSetCell
mxSetDimensions
mxSetField
mxSetFieldByNumber
mxSetlr

mxSetJc

mxSetM

mxSetN

mxSetNzmax
mxSetProperty

Handling Large mxArrays

2C function only.

Functions in this API use the mwlndex and mwSize types.

Building the Binary MEX File

Use the mex build script option —-largeArrayDims with the 64-bit API.

Example

The example, arraySize.c in matlabroot/extern/examples/mex, shows memory
requirements of large mxArrays. To see the example, open the file in MATLAB Editor.

This function requires one positive scalar numeric input, which it uses to create a square
matrix. It checks the size of the input to make sure that your system can theoretically
create a matrix of this size. If the input is valid, it displays the size of the mxArray in
kilobytes.

Build this MEX file.

mex -largeArrayDims arraySize.c
Run the MEX file.

arraySize(2710)

Dimensions: 1024 x 1024
Size of array in kilobytes: 1024

If your system does not have enough memory to create the array, MATLAB displays an
Out of memory error.

You can experiment with this function to test the performance and limits of handling
large arrays on your system.

Caution Using Negative Values
When using the 64-bit API, mwSize and mwlndex are equivalent to size_t in C/C++.

This type is unsigned, unlike Int, which is the type used in the 32-bit API. Be careful
not to pass any negative values to functions that take mwSize or mwlndex arguments.

5-63

5 C/C++ MEX-Files

Do not cast negative int values to mwSize or mwIndex; the returned value cannot be
predicted. Instead, change your code to avoid using negative values.

Building Cross-Platform Applications

If you develop programs that can run on both 32- and 64-bit architectures, pay attention
to the upper limit of values for mwSize and mwlndex. The 32-bit application reads these
values and assigns them to variables declared as int in C/C++. Be careful to avoid
assigning a large mwSize or mwlndex value to an int or other variable that might be too
small.

5-64

Memory Management

Memory Management

In this section...

“Automatic Cleanup of Temporary Arrays” on page 5-65

“Example” on page 5-66

“Persistent Arrays” on page 5-66

Automatic Cleanup of Temporary Arrays

When a MEX file returns control to MATLAB, it returns the results of its computations
in the output arguments—the mxArrays contained in the left-side arguments plhs[].
These arrays must have a temporary scope, so do not pass arrays created with the
mexMakeArrayPersistent function in plhs. MATLAB destroys any mxArray created
by the MEX file that is not in plhs. MATLAB also frees any memory that was allocated
in the MEX file using the mxCal loc, mxMal loc, or mxReal loc functions.

MathWorks recommends that MEX-file functions destroy their own temporary arrays
and free their own dynamically allocated memory. It is more efficient to perform this
cleanup in the source MEX-file than to rely on the automatic mechanism. However,
there are several circumstances in which the MEX file does not reach its normal return
statement.

The normal return is not reached if:

*+ MATLAB calls mexErrMsgTxt.

+ MATLAB calls mexCal IMATLAB and the function being called creates an error.
(A source MEX file can trap such errors by using the mexCal IMATLABWithTrap
function, but not all MEX files necessarily need to trap errors.)

* The user interrupts the MEX file execution using Ctrl+C.

* The binary MEX file runs out of memory. The MATLAB out-of-memory handler
terminates the MEX file.

For the first two cases, a MEX file programmer can ensure safe cleanup of temporary
arrays and memory before returning, but not in the last two cases. The automatic
cleanup mechanism is necessary to prevent memory leaks in those cases.

You must use the MATLAB-provided functions, such as mxCal loc and mxFree, to
manage memory. Do not use the standard C library counterparts; doing so can produce
unexpected results, including program termination.

5-65

5 C/C++ MEX-Files

5-66

Example

This example shows how to allocate memory for variables in a MEX file. For example, if
the first input to your function (prhs[0]) is a string, in order to manipulate the string,
create a buffer buf of size buflen. The following statements declare these variables:

char *buf;
int buflen;

The size of the buffer depends the number of dimensions of your input array and the size
of the data in the array. This statement calculates the size of buflen:

buflen = mxGetN(prhs[0])*sizeof(mxChar)+1;

Next, allocate memory for buf:

buf = mxMalloc(buflen);

At the end of the program, if you do not return buf as a plhs output parameter, then
free its memory as follows:

mxFree(buf) ;

Before exiting the MEX file, destroy any temporary arrays and free any dynamically
allocated memory, except if such an mxArray is returned in the output argument list,
returned by mexGetVariablePtr, or used to create a structure. Also, never delete input
arguments.

Use mxFree to free memory allocated by the mxCal loc, mxMal loc, or mxReal loc
functions. Use mxDestroyArray to free memory allocated by the mxCreate* functions.

Persistent Arrays

You can exempt an array, or a piece of memory, from the MATLAB automatic cleanup by
calling mexMakeArrayPersistent or mexMakeMemoryPersistent. However, if a MEX
file creates such persistent objects, there is a danger that a memory leak could occur

if the MEX file is cleared before the persistent object is properly destroyed. To prevent
memory leaks, use the mexAtEXit function to register a function to free the memory for
objects created using these functions.

For example, here is a source MEX file that creates a persistent array and properly
disposes of it.

Memory Management

#include "mex.h"

static int initialized = 0;
static mxArray *persistent_array_ ptr = NULL;

void cleanup(void) {
mexPrintf("'"MEX file is terminating, destroying array\n');
mxDestroyArray(persistent_array_ptr);

}

void mexFunction(int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[])

{
if (Jinitialized) {
mexPrintfF("'"MEX file initializing, creating array\n");
/* Create persistent array and register its cleanup. */
persistent_array_ptr = mxCreateDoubleMatrix(1l, 1, mxREAL);
mexMakeArrayPersistent(persistent_array_ptr);
mexAtExit(cleanup);
initialized = 1;
/* Set the data of the array to some interesting value. */
*mxGetPr(persistent_array_ptr) = 1.0;
} else {
mexPrintf("'"MEX file executing; value of first array element is %g\n",
*mxGetPr(persistent_array_ptr));
}
}
See Also

mexAtExit | mexMakeArrayPersistent | mxCalloc | mxFree

More About
. “Memory Allocation”
. “Memory Management Issues” on page 4-67

5-67

5 C/C++ MEX-Files

Handling Large File I/O

5-68

In this section...

“Prerequisites to Using 64-Bit I/0” on page 5-68

“Specifying Constant Literal Values” on page 5-70

“Opening a File” on page 5-70

“Printing Formatted Messages” on page 5-71

“Replacing Fseek and ftell with 64-Bit Functions” on page 5-71
“Determining the Size of an Open File” on page 5-72

“Determining the Size of a Closed File” on page 5-73

Prerequisites to Using 64-Bit 1/O

MATLAB supports the use of 64-bit file I/O operations in your MEX file programs. You
can read and write data to files that are up to and greater than 2 GB (2 **! bytes) in size.
Some operating systems or compilers do not support files larger than 2 GB. The following
topics describe how to use 64-bit file I/O in your MEX file programs.

+ “Header File” on page 5-68

* “Type Declarations” on page 5-68

* “Functions” on page 5-69
Header File

Header file 1064 _h defines many of the types and functions required for 64-bit file I/O.
The statement to include this file must be the first #include statement in your source
file and must also precede any system header include statements:

#include "i1064.h"
#include "mex.h"

Type Declarations

To declare variables used in 64-bit file I/O, use the following types.

MEX Type Description POSIX
fpos_ T Declares a 64-bit Int type fpos_t
for setFilePos() and

Handling Large File 1/O

MEX Type Description POSIX
getFilePos(). Defined in
1064 _h.

inté4_T, uint64_T Declares 64-bit signed and long, long

unsigned integer types. Defined in
tmwtypes.h.

structStat

Declares a structure to hold the
size of a file. Defined in 1064 ._h.

struct stat

FMT64

Used in mexPrintf to specify
length within a format specifier
such as %d. See example in the
section “Printing Formatted
Messages” on page 5-71. FMT64
is defined in tmwtypes.h.

%lld

LL, LLU

Suffixes for literal Int constant 64-
bit values (C Standard ISO*/IEC
9899:1999(E) Section 6.4.4.1). Used
only on UNIX systems.

LL, LLU

Functions

Use the following functions for 64-bit file I/O. All are defined in the header file 1064 .h.

Function Description POSIX

fileno() Gets a file descriptor from a file Ffileno()
pointer

fopen() Opens the file and obtains the file |fopen()
pointer

getFileFstat() Gets the file size of a given file fstat()
pointer

getFilePos() Gets the file position for the next I/ |fgetpos()
0)

getFileStat() Gets the file size of a given file stat()
name

setFilePos() Sets the file position for the next I/0 | fsetpos()

5-69

5 C/C++ MEX-Files

5-70

Specifying Constant Literal Values

To assign signed and unsigned 64-bit integer literal values, use type definitions int64_T
and uinté4_T.

On UNIX systems, to assign a literal value to an integer variable where the value to be
assigned is greater than 2 .1 signed, you must suffix the value with LL. If the value is

greater than 2 .1 unsigned, then use LLU as the suffix. These suffixes are not valid on
Microsoft Windows systems.

Note: The LL and LLU suffixes are not required for hardcoded (literal) values less than 2
G (2 31—1), even if they are assigned to a 64-bit int type.

The following example declares a 64-bit integer variable initialized with a large literal
int value, and two 64-bit integer variables:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
const mxArray *prhs[])

{

#i1T defined(_MSC_VER) || defined(__ BORLANDC_) /* Windows */
inté4 T large_offset_example = 9000222000;

#else /* UNIX */
inté4 T large_offset_example = 9000222000LL;

#endif

inté4_T offset = 0;

inté4_T position = 0;

Opening a File

To open a file for reading or writing, use the C/C++ fopen function as you normally
would. As long as you have included 1064 .h at the start of your program, fopen works
correctly for large files. No changes at all are required for fread, fwrite, fprintf,
fscanf, and fclose.

The following statements open an existing file for reading and updating in binary mode.

fp = fopen(filename, "r+b");
if (NULL == fp)

Handling Large File 1/O

{

/* File does not exist. Create new file for writing
* in binary mode.
*/
fp = fopen(Filename, "wb™);
ifT (NULL == fp)
{

sprintf(str, "Failed to open/create test file “%s"",
Ffilename);

mexErrMsgTxt(str);

return;

}

else

{
mexPrintf("'New test file "%s" created\n",filename);
3

s

else mexPrintf("Existing test file "%s" opened\n",filename);

Printing Formatted Messages

You cannot print 64-bit integers using the %d conversion specifier. Instead, use FMT64
to specify the appropriate format for your platform. FMT64 is defined in the header file
tmwtypes.h. The following example shows how to print a message showing the size of a
large file:

inté4_T large_offset_example = 9000222000LL;

mexPrintf("'Example large file size: %" FMT64 "d bytes.\n",
large_offset_example);

Replacing fseek and Ftel I with 64-Bit Functions

The ANSI C fseek and ftell functions are not 64-bit file I/O capable on most
platforms. The functions setFilePos and getFilePos, however, are defined as the
corresponding POSIX"” fsetpos and fgetpos (or Fsetpos64 and Fgetpos64) as
required by your platform/OS. These functions are 64-bit file I/O capable on all platforms.

The following example shows how to use setFilePos instead of fseek, and
getFilePos instead of ftell. The example uses getFileFstat to find the size of the
file. It then uses setFilePos to seek to the end of the file to prepare for adding data at
the end of the file.

5-71

5 C/C++ MEX-Files

5-72

Note: Although the offset parameter to setFilePos and getFilePos is really a
pointer to a signed 64-bit integer, int64_T, it must be cast to an fpos_T*. The fpos_T
type is defined in 1064 .h as the appropriate fpos64_t or fpos_t, as required by your
platform OS.

getFileFstat(fileno(fp), &statbuf);
fileSize = statbuf.st_size;
offset = fileSize;

setFilePos(fp, (fpos_T*) &offset);
getFilePos(fp, (fpos_T*) &position);

Unlike fseek, setFilePos supports only absolute seeking relative to the beginning of
the file. If you want to do a relative seek, first call getFileFstat to obtain the file size.
Then convert the relative offset to an absolute offset that you can pass to setFilePos.

Determining the Size of an Open File

To get the size of an open file:

* Refresh the record of the file size stored in memory using getFilePos and
setFilePos.

+ Retrieve the size of the file using getFileFstat.
Refreshing the File Size Record

Before attempting to retrieve the size of an open file, first refresh the record of the file
size residing in memory. If you skip this step on a file that is opened for writing, the file
size returned might be incorrect or 0.

To refresh the file size record, seek to any offset in the file using setFilePos. If you do
not want to change the position of the file pointer, you can seek to the current position in
the file. This example obtains the current offset from the start of the file. It then seeks to
the current position to update the file size without moving the file pointer.

getFilePos(fp, (fpos_T*) &position);
setFilePos(fp, (fpos_T*) &position);

Handling Large File 1/O

Getting the File Size

The getFileFstat function takes a file descriptor input argument. Use Fileno
function to get the file pointer of the open file. getFi leFstat returns the size of that file
in bytes in the st_size field of a structStat structure.

structStat statbuf;
inté4 T fileSize = 0;

if (0 == getFileFstat(fileno(fp), &statbuf))
{

fileSize = statbuf.st_size;
mexPrintf('File size is %" FMT64 "d bytes\n", fileSize);

}

Determining the Size of a Closed File

The getFileStat function takes the file name of a closed file as an input argument.
getFileStat returns the size of the file in bytes in the st_size field of a structStat
structure.

structStat statbuf;
inté4 T fileSize = 0;

if (0 == getFileStat(filename, &statbuf))
{

fileSize = stathuf.st_size;
mexPrintf("File size is %" FMT64 "d bytes\n", fileSize);

}

5-73

5 C/C++ MEX-Files

Install MinGW-wé64 Compiler

5-74

You can use the MinGW-w64 version 4.9.2 compiler from TDM-GCC to build MEX files
and standalone MATLAB engine and MAT-file applications.

Installing Compiler from Add-Ons Menu

To install the MinGW compiler, open the installer from MATLAB Add-Ons menu. On
the Home tab, in the Environment section, click the Add-Ons icon. Under Refine by
Type, select Features, or search for MinGW. Follow the prompts to add the compiler.

Note: To install the MATLAB-supported version of MinGW-w64, you must clear the
check box highlighted in the following figure.

| wmoccsenp i

Wizard Action
Choose which action you want the setup wizard to perform. i

e ~Previous Installations
C:\TDM-GCC-64 =]

: Create a new TDM-GCC installation

Manage

: Manage an existing TDM-GCC installation

Remove

: Remove a TDM-GCC installation

files on the TDM-GCC server

Cancel |

Install MinGW-wé4 Compiler

For more information, see “Support Package Installation” on page 17-2.

Building yprime . c Example

You can test the MinGW compiler by building the yprime.c example. Copy the source
file to a writable folder.

copyfile(fullfile(matlabroot, "extern”, "examples”, "mex", "yprime.c"),".","f")

If you only have the MinGW compiler installed on your system, the mex command
automatically chooses MinGW. Go to the next step. However, if you have multiple C or C
++ compilers, use mex -setup to choose MinGW.

mex -setup

Build the MEX file.
mex yprime.c

MATLAB displays a “Building with” message showing what compiler was used to build
the MEX file.

Run the function.

yprime(1,1:4)

For more information, see “Troubleshooting and Limitations Compiling C/C++ MEX Files
with MinGW-w64” on page 5-77.

MinGW Installation Folder Cannot Contain Space

Do not install MinGW in a location with spaces in the path name. For example, do not
use:

C:\Program Files\TDM-GCC-64

Instead, use:

C:\TDM-GCC-64

Updating MEX Files to Use MinGW Compiler

If you have MEX source files built with a different MATLAB-supported compiler, you
might need to modify the code in order to build with the MinGW compiler. For example:

5-75

5 C/C++ MEX-Files

5-76

+ Library (. lib) files generated by Microsoft Visual Studio are not compatible with
MinGW.

* Object cleanup is not possible when an exception is thrown using the
mexErrMsgldAndTxt function from C++ MEX files, resulting in memory leak.

* An uncaught exception in C++ MEX files compiled with MinGW causes MATLAB to
crash.

+ MEX files with variables containing large amounts of data cannot be compiled, as the
compiler runs out of memory.

More About

. “Support Package Installation” on page 17-2

. “Troubleshooting and Limitations Compiling C/C++ MEX Files with MinGW-w64”
on page 5-77

External Websites
. Supported and Compatible Compilers

http://www.mathworks.com/support/compilers/current_release/

Troubleshooting and Limitations Compiling C/C++ MEX Files with MinGW-wé4

Troubleshooting and Limitations Compiling C/C++ MEX Files with
MinGW-wé4

In this section...

“Do Not Link to Library Files Compiled with Non-MinGW Compilers” on page 5-77
“MinGW Compiler Not Setup for Use with MEX” on page 5-77

“MinGW Installation Folder Cannot Contain Space” on page 5-78

“MEX Command Does not Choose MinGW” on page 5-78

“Manually Configure MinGW for MATLAB” on page 5-78

“Potential Memory Leak Inside C++ MEX Files on Using MEX Exceptions” on page
5-79

“Unhandled Explicit Exceptions in C++ MEX Files Unexpectedly Terminate MATLAB”
on page 5-80

“Out of Memory Error for Variables Containing Large Amounts of Data” on page
5-81

Do Not Link to Library Files Compiled with Non-MinGW Compilers

If you use the MinGW compiler to build a MEX file that links to a library compiled with a
non-MinGW compiler, such as Microsoft Visual Studio, the file will not run in MATLAB.
Library (. 1ib) files generated by different compilers are not compatible with each other.

You can generate a new library file using the dl1 1tool utility from MinGW.

MinGW Compiler Not Setup for Use with MEX

If you installed the MinGW compiler but MATLAB does not recognize it, the compiler
might not be the supported version.

To install the MATLAB-supported version of MinGW-w64, you must clear the Check
for updated files on the TDM-GCC server check box. This check box appears during
TDM-GCC Setup when you are asked to Choose which action you want the setup
wizard to perform. For information about installing MinGW, see “Installing Compiler
from Add-Ons Menu” on page 5-74.

5-77

5 C/C++ MEX-Files

5-78

MinGW Installation Folder Cannot Contain Space

Do not install MinGW in a location with spaces in the path name. For example, do not
use:

C:\Program Files\TDM-GCC-64

Instead, use:

C:\TDM-GCC-64

MEX Command Does not Choose MinGW

If you only have the MinGW compiler installed on your system, the mex command
automatically chooses MinGW for both C and C++ MEX files. If you have multiple C or C
++ compilers, use mex -setup to choose MinGW for both C and, if required, C++ MEX
files.

mex -setup
mex -setup cpp

If you only type mex -setup choosing MinGW, when you compile a C++ file, mex might
choose a different compiler.

Manually Configure MinGW for MATLAB

MATLAB detects the MinGW compiler by reading an environment variable,
MW_MINGW64_LOC. When you install MinGW from the MATLAB Add-Ons menu,
MATLAB sets this variable.

If necessary, you can set this variable globally, if you have Windows administrative
privileges, using the Windows Control Panel. Alternatively, set the variable every time
you open MATLAB.

Note: Verify you have installed MinGW-w64 version 4.9.2 before setting the environment
variable.

Set variable using Windows Control Panel

To set the environment variable on Windows 7:

Troubleshooting and Limitations Compiling C/C++ MEX Files with MinGW-wé4

Make sure you have administrative privileges.
Select Computer from the Start menu.

Choose System properties from the context menu.
Click Advanced system settings > Advanced tab.
Click Environment Variables.

Under System variables, select New.

In the New System Variable dialog box, type MW_MINGW64_LOC in the Variable
name field.

N O O WON —

8 Inthe Variable value field, type the location of the MinGW-w64 compiler
installation, for example, C:\TDM-GCC-64.

9 Click Ok to close the dialog boxes, then close the Control Panel dialog box.
Set variable for MATLAB session

To set the environment variable in MATLAB, type:

setenv("MW_MINGW64_LOC*,folder)

where folder is the installation directory, for example, "C:\TDM-GCC-64". You must
set the variable every time you run MATLAB.

Potential Memory Leak Inside C++ MEX Files on Using MEX Exceptions

Error handling in C++ MEX files compiled with the MinGW-w64 compiler is not
consistent with MATLAB error handling. If a C++ MEX file contains a class, using the
mexErrMsgldAndTxt function to throw a MEX exception can cause a memory leak for
objects created for the class.

For example, the following C++ MEX function contains class MyClass.

#include "mex.h"

class MyClass {
public:

MyClass() {
mexPrintf(*'Constructor called");

}
~MyClass() {
mexPrintf(*'Destructor called™);

5-79

5 C/C++ MEX-Files

5-80

}:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{
MyClass X;

if (nrhs 1= 0) {
mexErrMsgldAndTxt(""MATLAB:cppfeature: inval idNumlnputs",
"No input arguments allowed.™);

}
}

The MEX function creates object X from MyClass, then checks the number of input
arguments. If the MEX function calls mexErrMsgldAndTxt, the MATLAB error
handling does not free memory for object X, thus creating a memory leak.

Unhandled Explicit Exceptions in C++ MEX Files Unexpectedly Terminate
MATLAB

If a function in a C++ MEX file throws an explicit exception which is not caught inside
the MEX file with a catch statement, then the exception causes MATLAB to terminate
instead of propagating the error to the MATLAB command line.

#include "mex.h"
class error {}; // Throw an exception of this class

class MyClass

{
public:
MyClass(){
mexPrintf(*'Constructor called.");
}
~MyClass({
mexPrintf(*'Destructor called.");
}
}:

void doErrorChecking(const MyClass& obj)
{

// Do error checking
throw error();

Troubleshooting and Limitations Compiling C/C++ MEX Files with MinGW-wé4

}
void createMyClass()
{
MyClass myobj ;
doErrorChecking(myobj);
}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{
}

The MEX function calls createMyClass, which creates an object of class MyClass and
calls function doErrorChecking. Function doErrorChecking throws an exception

of type error. This exception, however, is not caught inside the MEX file and causes
MATLAB to crash.

createMyClass();

This behavior also occurs for classes inheriting from the class std: :exception.

Work around

Catch the exception in the MEX function:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

try{
createMyClass();
}

catch(error e){
// Error handling

}
}

Out of Memory Error for Variables Containing Large Amounts of Data

The TDM-GCC MinGW 4.9.2 compiler cannot allocate memory for variables in MEX files
that contain large amounts of data. The compiler displays an error message like:

out of memory allocating XXXXXX bytes

See Also
mexErrMsgldAndTxt

5-81

Fortran MEX-Files

* “Components of Fortran MEX File” on page 6-2
+ “MATLAB Fortran API Libraries” on page 6-5

+ “Data Flow in Fortran MEX Files” on page 6-8

+ “User Messages” on page 6-11

+ “Error Handling” on page 6-12

* “Build Fortran MEX File” on page 6-13

* “Create Fortran Source MEX File” on page 6-14
+ “Set Up Fortran Examples” on page 6-19

+ “Pass Scalar Values” on page 6-20

+ “Pass Strings” on page 6-21

+ “Pass Arrays of Strings” on page 6-22

+ “Pass Matrices” on page 6-23

* “Pass Integers” on page 6-24

* “Pass Multiple Inputs or Outputs” on page 6-25
+ “Handle Complex Data” on page 6-26

* “Dynamically Allocate Memory” on page 6-27

+ “Handle Sparse Matrices” on page 6-28

+ “Call MATLAB Functions from Fortran MEX Files” on page 6-29
* “Debug Fortran Source MEX-Files” on page 6-31
+ “Handling Large mxArrays” on page 6-34

+ “Memory Management” on page 6-37

+ “MATLAB Supports Fortran 77” on page 6-38

6 Fortran MEX-Files

Components of Fortran MEX File

6-2

In this section...

“mexFunction Gateway Routine” on page 6-2

“Naming the MEX File” on page 6-2

“Difference Between . Ff and .F Files” on page 6-2
“Required Parameters” on page 6-3

“Managing Input and Output Parameters” on page 6-3
“Validating Inputs” on page 6-4

“Computational Routine” on page 6-4

mexFunction Gateway Routine

The gateway routine is the entry point to the MEX file. It is through this routine that
MATLAB accesses the rest of the routines in your MEX files. The name of the gateway
routine is mexFunction. It takes the place of the main program in your source code.

Naming the MEX File

The name of the source file containing mexFunction is the name of your MEX file, and,
hence, the name of the function you call in MATLAB. Name your Fortran source file with
an uppercase .F file extension.

The file extension of the binary MEX file is platform-dependent. You find the file
extension using the mexext function, which returns the value for the current machine.

Difference Between . ¥ and .F Files

To ensure your Fortran MEX file is platform independent, use an uppercase .F file
extension.

Fortran compilers assume source files using a lowercase . F file extension have been
preprocessed. On most platforms, mex makes sure that the file is preprocessed regardless
of the file extension. However, on Apple Macintosh platforms, mex cannot force
preprocessing.

Components of Fortran MEX File

Required Parameters

The Fortran signature for mexfunction is:

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
integer nlhs, nrhs
mwpointer plhs(*), prhs(®)

Place this subroutine after your computational routine and any other subroutines in your
source file.

The following table describes the parameters for mexFunction.

Parameter Description

prhs Array of right-side input arguments.

plhs Array of left-side output arguments.

nrhs Number of right-side arguments, or the size of the prhs array.
nlhs Number of left-side arguments, or the size of the plhs array.

Declare prhs and plhs as type mwPointer, which means they point to MATLAB arrays.
They are vectors that contain pointers to the arguments of the MEX file.

You can think of the name prhs as representing the “parameters, right-hand side,” that
1s, the input parameters. Likewise, plhs represents the “parameters, left side,” or output
parameters.

Managing Input and Output Parameters

Input parameters (found in the prhs array) are read-only; do not modify them in your
MEX file. Changing data in an input parameter can produce undesired side effects.

You also must take care when using an input parameter to create output data or any
data used locally in your MEX file. If you want to copy an input array into an output
array, for example plhs(1), call the mxDuplicateArray function to make of copy of the
input array. For example:

plhs(1) = mxDuplicateArray(prhs(1))

For more information, see the troubleshooting topic “Incorrectly Constructing a Cell or
Structure mxArray” on page 4-68.

6-3

6 Fortran MEX-Files

Validating Inputs

For a list of functions to validate inputs to your subroutines, see the Matrix Library
category, “Validate Data”. The mxIsClass function is a general-purpose way to test an
mxArray.

Computational Routine

The computational routine contains the code for performing the computations you
want implemented in the binary MEX file. Although not required, consider writing
the gateway routine, mexFunction, to call a computational routine. To validate input
parameters and to convert them into the types required by the computational routine,
use the mexFunction code as a wrapper.

If you write separate gateway and computational routines, you can combine them
into one source file or into separate files. If you use separate files, the file containing
mexFunction must be the first source file listed in the mex command.

See Also

mexext | mexFunction | mwPointer | mxDuplicateArray | mxIsClass

MATLAB Fortran API Libraries

MATLAB Fortran API Libraries

In this section...

“Matrix Library” on page 6-5
“MEX Library” on page 6-5

“Preprocessor Macros” on page 6-5

“Using the Fortran %val Construct” on page 6-6

The Matrix Library and the MEX Library describe functions you can use in your gateway
and computational routines that interact with MATLAB programs and the data in the
MATLAB workspace. These libraries are part of the MATLAB C/C++ and Fortran API
Reference library.

To use these functions, include the Fintrf header, which declares the entry point and
interface routines. Put this statement in your source file:

#include "fintrf.h"

Matrix Library

Use Fortran Matrix Library functions to pass mxArray, the type MATLAB uses to store
arrays, to and from MEX files. For examples using these functions, see matlabroot/
extern/examples/mx.

MEX Library

Use MEX Library functions to perform operations in the MATLAB environment. For
examples using these functions, see matlabroot/extern/examples/mex.

Unlike MATLAB functions, MEX file functions do not have their own variable
workspace. MEX file functions operate in the caller workspace. To evaluate a string,
use mexEvalString. To get and put variables into the caller workspace, use the
mexGetVariable and mexPutVariable functions.

Preprocessor Macros

The Matrix and MEX libraries use the MATLAB preprocessor macros mvSize and
mwIndex for cross-platform flexibility. mwSize represents size values, such as array

6-5

6 Fortran MEX-Files

dimensions and number of elements. mwlndex represents index values, such as indices
into arrays.

MATLAB has an extra preprocessor macro for Fortran files, mwPointer. MATLAB uses
a unique data type, the mxArray. Because you cannot create a data type in Fortran,
MATLAB passes a special identifier, created by the mwPointer preprocessor macro, to a
Fortran program. This is how you get information about an mxArray in a native Fortran
data type. For example, you can find out the size of the mxArray, determine whether

it is a string, and look at the contents of the array. Use mwPointer to build platform-
independent code.

The Fortran preprocessor converts mvPointer to integer*4 when building binary MEX
files on 32-bit platforms and to integer*8 when building on 64-bit platforms.

Note: Declaring a pointer to be the incorrect size might cause your program to crash.

Using the Fortran %val Construct

The Fortran %val (arg) construct specifies that an argument, arg, is to be passed by
value, instead of by reference. Most, but not all, Fortran compilers support the %val
construct.

If your compiler does not support the %val construct, copy the array values
into a temporary true Fortran array using the mxCopy* routines (for example,
mxCopyPtrToReal8).

%val Construct Example

If your compiler supports the %val construct, you can use routines that point directly

to the data (that is, the pointer returned by mxGetPr or mxGetP1i). You can use %val to
pass the contents of this pointer to a subroutine, where it is declared as a Fortran double-
precision matrix.

For example, consider a gateway routine that calls its computational routine, yprime,
by:

call yprime(%val(yp), %val(t), %val(y))

If your Fortran compiler does not support the %val construct, you would replace the call
to the computational subroutine with:

MATLAB Fortran API Libraries

C Copy array pointers to local arrays.
call mxCopyPtrToReal8(t, tr, 1)
call mxCopyPtrToReal8(y, yr, 4)
C
C Call the computational subroutine.
call yprime(ypr, tr, yr)
C
C Copy local array to output array pointer.
call mxCopyReal8ToPtr(ypr, yp, 4)

You must also add the following declaration line to the top of the gateway routine:
real*8 ypr(4), tr, yr(4)

If you use mxCopyPtrToReal8 or any of the other mxCopy* routines, the size of the
arrays declared in the Fortran gateway routine must be greater than or equal to the size
of the inputs to the MEX file coming in from MATLAB. Otherwise, mxCopyPtrToReal8
does not work correctly.

See Also
“Fortran Matrix Library API” | “MEX Library API” | mwlndex | mwPointer | mwSize
| mxArray

6-7

6 Fortran MEX-Files

Data Flow in Fortran MEX Files

6-8

In this section...

“Showing Data Input and Output” on page 6-8

“Gateway Routine Data Flow Diagram” on page 6-9

Showing Data Input and Output

Suppose your MEX-file myFunction has two input arguments and one output argument.
The MATLAB syntax is [X] = myFunction(Y, Z). To call myFunction from
MATLAB, type:

X = myFunction(Y, Z);

The MATLAB interpreter calls mexFunction, the gateway routine to myFunction, with
the following arguments:

nlhs =1

nrhs = 2

plhs > & > @

prhs > @ >
9 -

Your input is prhs, a two-element array (nrhs = 2). The first element is a pointer to an
mxArray named Y and the second element is a pointer to an mxArray named Z.

Your output is plhs, a one-element array (nlhs = 1) where the single element is a nul'l
pointer. The parameter plhs points at nothing because the output X is not created until
the subroutine executes.

The gateway routine creates the output array and sets a pointer to it in plhs[0]. If
the routine does not assign a value to plhs[0] but you assign an output value to the
function when you call it, MATLAB generates an error.

Data Flow in Fortran MEX Files

Note: It is possible to return an output value even if nlhs = 0, which corresponds to
returning the result in the ans variable.

Gateway Routine Data Flow Diagram

The following MEX Cycle diagram shows how inputs enter a MEX-file, what functions
the gateway routine performs, and how outputs return to MATLAB.

In this example, the syntax of the MEX-file funcis [C, D] = func(A,B). In the
figure, a call to Func tells MATLAB to pass variables A and B to your MEX-file. C and D
are left unassigned.

The gateway routine uses the mxCreate* functions to create the MATLAB arrays for
your output arguments. It sets plhs[0] and plhs[1] to the pointers to the newly
created MATLAB arrays. It uses the mxGet* functions to extract your data from your
input arguments prhs[0] and prhs[1]. Finally, it calls your computational routine,
passing the input and output data pointers as function parameters.

MATLAB assigns plhs[0] to C and plhs[1] to D.

6-9

6 Fortran MEX-Files

6-10

MATLAB

Acall to
MEX-file func:

[C,D]=func(A,B)

Inputs

integer B

B = prhs(2)

tells MATLAB to
pass variables A and
B to your MEX-file.
C and D are left
unassigned.

MATLAB

On return from
MEX-file func:

[C,D]=func(A,B)

toCand plhs(2) is
assigned to D.

—

Fortran MEX Cycle

v

integer A
A = prhs(1) —

func.F

subroutine mexFunction(
nlhs, plhs, nrhs, prhs)
integer plhs(*), prhs(*),nlhs, nrhs

In the gateway routine:

e Use the mxCreate functions to create
the MATLAB arrays for your output
arguments. Set plhs(1),(2),...
to the pointers to the newly created
MATLAB arrays.

Use the mxGet functions to extract
your data from prhs (1), (2),... .

Call your Fortran subroutine passing
the input and output data pointers as
function parameters using %val.

integer D
D = plhs(2)

plhs(1) is assigned ¢ |

integer C
= plhs(1)

Outputs

User Messages

User Messages

To print a string in the MATLAB Command Window, use the mexPrintf function.
To print error and warning information in the Command Window, use the
mexErrMsgldAndTxt and mexWarnMsgldAndTxt functions.

For example, the following code snippet displays an error message.

parameter(maxbuf = 100)
character*100 input_buf

if (status = mxGetString(prhs(l), input_buf, maxbuf) .ne. 0) then
call mexErrMsgldAndTxt (*MATLAB:myfunc:readError"®,
+ "Error reading string.")
endif

See Also

mexErrMsgldAndTxt | mexPrintf | mexWarnMsgldAndTxt

6-11

6 Fortran MEX-Files

Error Handling

6-12

The mexErrMsgldAndTxt function prints error information and terminates your binary
MEX file. For an example, see the following code in matlabroot/extern/examples/
mx/mxcreatecel lmatrixf._F

C Check for proper number of input and output arguments
if (nrhs _1t. 1) then
call mexErrMsgldAndTxt("MATLAB:mxcreatecellmatrixf:minrhs”®,
+ "One iInput argument required.")
end if

The mexWarnMsg IdAndTxt function prints information, but does not terminate the MEX

file. For an example, see the following code in matlabroot/extern/examples/mx/
mxgetepsf.F.

C Check for equality within eps
do 20 j=1,elements
if ((@bs(First(J) - second(j)))-gt.(abs(second(jJ)*eps))) then
call mexWarnMsgldAndTxt(

+ "MATLAB:mxgetepsf:NotEqual ",

+ "Inputs are not the same within eps.")
go to 21

end if

20 continue

See Also
mexErrMsgldAndTxt | mexWarnMsgldAndTxt

Related Examples
. mxcreatecellmatrixf.F

. mxgetepsf.F

Build Fortran MEX File

Build Fortran MEX File

This example shows how to build the example MEX file, timestwo. Use this example to
verify the build configuration for your system.

To build a code example, first copy the file to a writable folder, such as c:\work, on your
path:

copyfile(fullfile(matlabroot, "extern”, "examples”, "refbook”, "timestwo.F"),".", ")
Use the mex function to build the MEX file.

mex timestwo.F

This command creates the file timestwo.ext, where ext is the value returned by the
mexext function.

The timestwo function takes a scalar input and doubles it. Call timestwo as if it were a
MATLAB function.

timestwo(4)

ans =
8

See Also

mex | mexext

More About
. “Handling Large mxArrays” on page 5-61
. “Upgrade MEX-Files to Use 64-Bit API” on page 4-36

6-13

6 Fortran MEX-Files

Create Fortran Source MEX File

This example shows how to write a MEX file to call a Fortran subroutine, timestwo, in
MATLAB using a MATLAB matrix.

timestwo multiplies an n-dimensional array, X_input, by 2, and returns the results in
array, y_output.

subroutine timestwo(y_output, X_input)
real*8 x_input, y output

y_output = 2.0 * x_input
return
end

Create Source File

Open MATLAB Editor, create a file, and document the MEX file with the following

information.

C

C timestwo.f

C Computational function that takes a scalar and doubles it.
C This is a MEX file for MATLAB.

C

Add the Fortran header file, Fintrf.h, containing the MATLAB API function
declarations.

#include "fintrf.h"

Save the file on your MATLAB path, for example, in c:\work, and name it timestwo.F.
The name of your MEX file is timestwo.

Create Gateway Routine

MATLAB uses the gateway routine, mexfunction, as the entry point to a Fortran
subroutine. Add the following mexFunction code.

C Gateway routine
subroutine mexFunction(nlhs, plhs, nrhs, prhs)

C Declarations

6-14

Create Fortran Source MEX File

C Statements

return
end

Add the following statement to your mexfunction subroutine to force you to declare all
variables.

implicit none
Explicit type declaration is necessary for 64-bit arrays.
Declare mexfunction Arguments

To declare mxArray variables, use the MATLAB type, mwPointer. Add this code after
the Declarations statement.

C mexFunction arguments:
mwPointer plhs(*), prhs(*)
integer nlhs, nrhs

Declare Functions and Local Variables

+ Declare the symbolic names and types of MATLAB API functions used in this MEX
file.

C Function declarations:
mwPointer mxGetPr
mwPointer mxCreateDoubleMatrix
integer mxIsNumeric
mwPointer mxGetM, mxGetN

To determine the type of a function, refer to the MATLAB API function reference
documentation. For example, see the documentation for mxGetPr.

* Declare local variables for the mexfunction arguments.

C Pointers to input/output mxArrays:
mwPointer x_ptr, y _ptr
* Declare matrix variables.
C Array information:

mwPointer mrows, ncols
mwSize size

6-15

6 Fortran MEX-Files

Verify MEX File Input and Output Arguments

Verify the number of MEX file input and output arguments using the nrhs and nlhs
arguments. Add these statements to the mexfunction code block.

C Check for proper number of arguments.
if(nrhs _.ne. 1) then

call mexErrMsgldAndTxt ("MATLAB:timestwo:nlnput”,

+ "One input required.”)

elseif(nlhs .gt. 1) then
call mexErrMsgldAndTxt ("MATLAB:timestwo:nOutput”®,

+ "Too many output arguments.”®)

endif

Verify the input argument type using the prhs argument.
C Check that the input is a number.
if(nxIsNumeric(prhs(1)) .eq. 0) then
call mexErrMsgldAndTxt ("MATLAB:timestwo:NonNumeric”®,
+ "Input must be a number.")
endif
Create Computational Routine

Add the timestwo code. This subroutine is your computational routine, the source code
that performs the functionality you want to use in MATLAB.

C Computational routine

subroutine timestwo(y_output, x_input)
real*8 x_input, y output

y_output = 2.0 * x_input
return
end

A computational routine is optional. Alternatively, you can place the code within the
mexfunction function block.

Declare Variables for Computational Routine

Put the following variable declarations in mexFunction.

C Arguments for computational routine:

6-16

Create Fortran Source MEX File

real*8 x_iInput, y output
Read Input Array
To point to the input matrix data, use the mxGetPr function.
x_ptr = mxGetPr(prhs(1))
To create a Fortran array, Xx_input, use the mxCopyPtrToReal8 function.
C Get the size of the input array.
mrows = mxGetM(prhs(1))
ncols = mxGetN(prhs(1))

size = mrows*ncols

C Create Fortran array from the input argument.
call mxCopyPtrToReal8(x_ptr,x_input,size)

Prepare Output Data
To create the output argument, plhs(1), use the mxCreateDoubleMatrix function.

C Create matrix for the return argument.
plhs(1) = mxCreateDoubleMatrix(mrows,ncols,0)

Use the mxGetPr function to assign the y ptr argument to plhs(1).
y_ptr = mxGetPr(plhs(1))

Perform Calculation

Pass the arguments to timestwo.

C Call the computational subroutine.
call timestwo(y_output, x_input)

Copy Results to Output Argument

C Load the data into y_ptr, which is the output to MATLAB.
call mxCopyReal8ToPtr(y_output,y ptr,size)

View Complete Source File

Compare your source file with timestwo.F, located in the matlabroot/extern/
examples/refbook folder. Open the file in the editor.

6-17

6 Fortran MEX-Files

Build Binary MEX File

At the MATLAB command prompt, build the binary MEX file.
mex timestwo.F

Test the MEX File

X = 99;
y = timestwo(x)
y =
198
See Also

mexfunction | mwPointer | mvSize | mxCreateDoubleMatrix | mxGetM | mxGetN
| mxGetPr | mxIsNumeric

Related Examples

. timestwo.F

6-18

Set Up Fortran Examples

Set Up Fortran Examples

The “Fortran Matrix Library API” provides a set of Fortran routines that handle the
types supported by MATLAB. For each data type, there is a specific set of functions that
you can use for data manipulation.

Source code for Fortran examples is located in the matlabroot/extern/examples/
refbook folder of your MATLAB installation. To build an example, first copy the file to a
writable folder, such as c:\work, on your path:

copyfile(fullfile(matlabroot, "extern”, "examples”®, "refbook™, " filename.F"),".","f")
where filename is the name of the example.

Make sure that you have a Fortran compiler installed. Then, at the MATLAB command
prompt, type:

mex filename.F

where filename is the name of the example.

This section looks at source code for the examples. Unless otherwise specified, the term
"MEX file” refers to a source file.

For a list of MEX example files available with MATLAB, see “Table of MEX File Source
Code Files” on page 5-24.

6-19

6 Fortran MEX-Files

Pass Scalar Values

6-20

Here is a Fortran computational routine that takes a scalar and doubles it.

subroutine timestwo(y, X)
real*8 x, y

y =2.0* x
return
end

To see the same function written in the MEX file format (€timestwo.F), open the file in
MATLAB Editor.

To build this example, at the command prompt type:
mex timestwo.F

This command creates the binary MEX file called timestwo with an extension
corresponding to the machine type on which you are running. You can now call
timestwo like a MATLAB function:

X = 2;
y = timestwo(Xx)
y =

4

Pass Strings

Pass Strings

Passing strings from MATLAB to a Fortran MEX file is straightforward. The program
revord.F accepts a string and returns the characters in reverse order. To see the
example revord.F, open the file in MATLAB Editor.

After checking for the correct number of inputs, the gateway routine mexFunction
verifies that the input was a row vector string. It then finds the size of the string and
places the string into a Fortran character array. For character strings, it is not necessary
to copy the data into a Fortran character array using mxCopyPtrToCharacter.
(mxCopyPtrToCharacter is a convenience function for working with MAT-files.)

To build this example, at the command prompt type:

mex revord.F

Type:

x = "hello world”;
y = revord(x)

y =

dlrow olleh

6-21

6 Fortran MEX-Files

Pass Arrays of Strings

Passing arrays of strings adds a complication to the example “Pass Strings” on page 6-21.
Because MATLAB stores elements of a matrix by column instead of by row, the size of
the string array must be correctly defined in the Fortran MEX file. The key point is that
the row and column sizes as defined in MATLAB must be reversed in the Fortran MEX
file. So, when returning to MATLAB, the output matrix must be transposed.

This example places a string array/character matrix into MATLAB as output arguments
rather than placing it directly into the workspace.

To build this example, at the command prompt type:
mex passstr.F

Type:

passstr

to create the 5-by-15 mystring matrix. You need to do some further manipulation.

The original string matrix is 5-by-15. Because of the way MATLAB reads and orients
elements in matrices, the size of the matrix must be defined as M=15 and N=5 in the MEX
file. After the matrix is put into MATLAB, the matrix must be transposed. The program
passstr.F illustrates how to pass a character matrix. To see the code passstr.F, open
the file in MATLAB Editor.

Type:
passstr
ans =

MATLAB
The Scientific
Computing
Environment

by TMW, Inc.

6-22

Pass Matrices

Pass Matrices

In MATLAB, you can pass matrices into and out of MEX files written in Fortran. You can
manipulate the MATLAB arrays by using mxGetPr and mxGetP1i to assign pointers to
the real and imaginary parts of the data stored in the MATLAB arrays. You can create
new MATLAB arrays from within your MEX file by using mxCreateDoubleMatrix.

The example matsq.F takes a real 2-by-3 matrix and squares each element. To see the
source code, open the file in MATLAB Editor.

After performing error checking to ensure that the correct number of inputs and outputs
was assigned to the gateway subroutine and to verify the input was in fact a numeric
matrix, matsq.F creates a matrix. The matrix is copied to a Fortran matrix using
mxCopyPtrToReal8. Now the computational subroutine can be called, and the return
argument is placed into y_pr, the pointer to the output, using mxCopyReal8ToPtr.

To build this example, at the command prompt type:

mex matsq.F

For a 2-by-3 real matrix, type:

x =112 3; 45 6];
y = matsq(x)
y =
1 4 9
16 25 36
See Also

mxCreateDoubleMatrix | mxGetPi | mxGetPr

6-23

6 Fortran MEX-Files

Pass Integers

6-24

The example matsqint8.F accepts a matrix of MATLAB type int8 and squares each
element. To see the source code, open the file in MATLAB Editor. Data of type int8, a
signed 8-bit integer, is equivalent to Fortran type integer*1, a signed 1-byte integer. To
copy values between MATLAB and Fortran arrays, use the mxCopyPtrTolntegerl and
mxCopy IntegerlToPtr functions.

To build this example, at the command prompt type:

mex matsqint8.F

Type:
B = int8([1 2; 3 4; -5 -6]);
y = matsqint8(B)
y =
1 4
9 16
25 36

For information about using other integer data types, consult your Fortran compiler
manual.

See Also
mxCopy IntegerlToPtr | mxCopyPtrTolntegerl

Pass Multiple Inputs or Outputs

Pass Multiple Inputs or Outputs

The plhs and prhs parameters (see “Components of Fortran MEX File” on page 6-2) are
vectors containing pointers to the left side (output) variables and right-hand side (input)
variables. plhs(1) contains a pointer to the first left side argument, plhs(2) contains a
pointer to the second left side argument, and so on. Likewise, prhs(1) contains a pointer
to the first right-hand side argument, prhs(2) points to the second, and so on.

The example xtimesy.F multiplies an input scalar times an input scalar or matrix. To
see the source code, open the file in MATLAB Editor.

As this example shows, creating MEX file gateways that handle multiple inputs and
outputs is straightforward. Keep track of which indices of the vectors prhs and plhs
correspond to which input and output arguments of your function. In this example, the
input variable X corresponds to prhs(1) and the input variable y to prhs(2).

To build this example, at the command prompt type:

mex xtimesy.F

For an input scalar X and a real 3-by-3 matrix, type:

X = 3;

y = ones(3);

z = xtimesy(X, Yy)

Z =
3 3 3
3 3 3
3 3 3

6-25

6 Fortran MEX-Files

Handle Complex Data

MATLAB stores complex double-precision data as two vectors of numbers—one vector
contains the real data and the other contains the imaginary data. The functions
mxCopyPtrToComplex16 and mxCopyComplex16ToPtr copy MATLAB data to a native
complex*16 Fortran array.

The example convec.F takes two complex vectors (of length 3) and convolves them. To
see the source code, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex convec.F

Enter the following at the command prompt:

x=[8-1i, 4 + 2§, 7 - 3i];

y = [8 - 6i, 12 + 16i, 40 - 42i];
Type:

z = convec(X, Y)

z =

1.0e+02 *
Columns 1 through 4

0.1800 - 0.2600i1 0.9600 + 0.2800i 1.3200 - 1.4400i
3.7600 - 0.1200i

Collumn 5
1.5400 - 4.1400i

which agrees with the results the built-in MATLAB function conv.m produces.

6-26

Dynamically Allocate Memory

Dynamically Allocate Memory

To allocate memory dynamically in a Fortran MEX file, use %val. (See “Using the
Fortran %val Construct” on page 6-6.) The example dbImat.F takes an input matrix
of real data and doubles each of its elements. To see the source code, open the file in
MATLAB Editor. compute . F is the subroutine dbImat calls to double the input matrix.
(Open the file in MATLAB Editor.)

To build this example, at the command prompt type:

mex dblmat.F compute.F

For the 2-by-3 matrix, type:

x =112 3; 45 6];
y = dblmat(x)
y =

2 4 6

Note: The dbImat.F example, as well as ful I'tosparse.F and sincall .F, are split
into two parts, the gateway and the computational subroutine, because of restrictions in
some compilers.

6-27

6 Fortran MEX-Files

Handle Sparse Matrices

6-28

MATLAB provides a set of functions that allow you to create and manipulate sparse
matrices. There are special parameters associated with sparse matrices, namely 1r, jc,
and nzmax. For information on how to use these parameters and how MATLAB stores
sparse matrices in general, see “Sparse Matrices” on page 4-11.

Note: Sparse array indexing is zero-based, not one-based.

The ful Itosparse.F example illustrates how to populate a sparse matrix. To see

the source code, open the file in MATLAB Editor. loadsparse.F is the subroutine

ful ltosparse calls to fill the mxArray with the sparse data. (Open the file in MATLAB
Editor.)

To build this example, at the command prompt type:

mex Ffulltosparse.F loadsparse.F

At the command prompt, type:

full = eye(b)

full =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

MATLAB creates a full, 5-by-5 identity matrix. Using ful I tosparse on the full matrix
produces the corresponding sparse matrix:

spar = fulltosparse(full)

spar =
a.n
2.2)
G.3)
4.4)
(G.5)

PR RRR

Call MATLAB Functions from Fortran MEX Files

Call MATLAB Functions from Fortran MEX Files

You can call MATLAB functions, operators, user-defined functions, and other

binary MEX files from within your Fortran source code by using the API function
mexCal IMATLAB. The sincal l .F example creates an mxArray, passes various pointers
to a local function to acquire data, and calls mexCal IMATLAB to calculate the sine
function and plot the results. To see the source code, open the file in MATLAB Editor.
fill.F is the subroutine sincall calls to fill the mxArray with data. (Open the file in
MATLAB Editor.)

It is possible to use mexCal IMATLAB (or any other API routine) from within your
computational Fortran subroutine. You can only call most MATLAB functions with
double-precision data. Some functions that perform computations, such as eig, do not
work correctly with data that is not double precision.

To build this example, at the command prompt type:

mex sincall.F fill_F

Running this example:

sincall

displays the results:

v Mques Hn 1 [_1r]x=]
Le Lo = ez
RIS ' ' ' '
-

] ‘I.’ N

| S . 1
.r‘l \

- : I
.| '-__.

2 .-" 4

]]
;. I-\.

nf i

3 i
.r.
4 - i
l'.
. K -.\-
-) e
_0F . r -
. — Ve
1 . Bl Rl | Il HI &l

6-29

6 Fortran MEX-Files

Note: You can generate an object of type mXUNKNOWN_CLASS using mexCal IMATLAB. See
the following example.

This function returns two variables but only assigns one of them a value:

function [a,b]=foo[c]
a=2*c;

If you then call foo using mexCal IMATLAB, the unassigned output variable is now of
type mxUNKNOWN_CLASS.

6-30

Debug Fortran Source MEX-Files

Debug Fortran Source MEX-Files

In this section...

“Notes on Debugging” on page 6-31
“Debugging on Microsoft Windows Platforms” on page 6-31

“Debugging on Linux Platforms” on page 6-31

Notes on Debugging

The examples show how to debug timestwo.F, found in your matlabroot/extern/
examples/refbook folder.

Binary MEX files built with the —g option do not execute on other computers because
they rely on files that are not distributed with MATLAB software. For more information
on isolating problems with MEX files, see “Troubleshoot MEX Files”.

Debugging on Microsoft Windows Platforms

For MEX files compiled with any version of the Intel® Visual Fortran compiler, you
can use the debugging tools found in your version of Microsoft Visual Studio. Refer to
the “Creating C/C++ Language MEX Files” topic “Debugging on Microsoft Windows
Platforms” on page 5-52 for instructions on using this debugger.

Debugging on Linux Platforms

The MATLAB supported Fortran compiler g95 has a —-g option for building binary MEX
files with debug information. Such files can be used with gdb, the GNU Debugger. This
section describes using gdb.

GNU Debugger gdb

In this example, the MATLAB command prompt >> is shown in front of MATLAB
commands, and Iinux> represents a Linux prompt; your system might show a different
prompt. The debugger prompt is <gdb>.

1 To compile the source MEX file, type:

6-31

6 Fortran MEX-Files

6-32

linux> mex -g timestwo.F

At the Linux prompt, start the gdb debugger using the matlab -D option:

linux> matlab -Dgdb

Start MATLAB without the Java Virtual Machine (JVM) by using the -nojvm
startup flag:

<gdb> run -nojvm

In MATLAB, enable debugging with the dbmex function and run your binary MEX
file:

>> dbmex on

>> y = timestwo(4)

You are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

Note: The compiler might alter the function name. For example, it might append
an underscore. To determine how this symbol appears in a given MEX file, use the
Linux command nm. For example:

linux> nm timestwo.mexa64 | grep -i mexfunction

The operating system responds with something like:

0000091c T mexfunction_

Use mexFunction in the breakpoint statement. Be sure to use the correct case.

<gdb> break mexfunction_
<gdb> continue

Once you hit one of your breakpoints, you can make full use of any commands the
debugger provides to examine variables, display memory, or inspect registers.

To proceed from a breakpoint, type continue:

<gdb> continue

Debug Fortran Source MEX-Files

7 After stopping at the last breakpoint, type:
<gdb> continue
timestwo finishes and MATLAB displays:
y =

8
8 From the MATLAB prompt you can return control to the debugger by typing:

>> dbmex stop

Or, if you are finished running MATLAB, type:

>> quit

9 When you are finished with the debugger, type:
<gdb> quit
You return to the Linux prompt.

Refer to the documentation provided with your debugger for more information on its use.

More About

. “Fortran Source Files”

6-33

6 Fortran MEX-Files

Handling Large mxArrays

6-34

In this section...

“Using the 64-Bit API” on page 6-34
“Building the Binary MEX File” on page 6-36
“Caution Using Negative Values” on page 6-36

“Building Cross-Platform Applications” on page 6-36

Binary MEX-files built on 64-bit platforms can handle 64-bit mxArrays. These large
data arrays can have up to 2*°~1 elements. The maximum number of elements a sparse
mxArray can have is 2*%-2.

Using the following instructions creates platform-independent binary MEX-files as well.

Your system configuration can affect the performance of MATLAB. The 64-bit processor
requirement enables you to create the mxArray and access data in it. However, the
system memory, in particular the size of RAM and virtual memory, determine the speed
at which MATLAB processes the mxArray. The more memory available, the faster the
processing.

The amount of RAM also limits the amount of data you can process at one time in
MATLAB. For guidance on memory issues, see “Strategies for Efficient Use of Memory”.
Memory management within source MEX-files can have special considerations, as
described in “Memory Management” on page 5-65.

Using the 64-Bit API

The signatures of the API functions shown in the following table use the mwSize or
mwlndex types to work with a 64-bit mxArray. The variables you use in your source code
to call these functions must be the correct type.

mxArray Functions Using mwSize/mwindex

mxCalcSingleSubscript mxCreateSparselLogicalMatrix >
mxCalloc mxCreateStructArray
mxCopyCharacterToPtr' mxCreateStructMatrix

Handling Large mxArrays

mxCopyComplex16ToPtr!
mxCopyComplex8ToPtr!
mxCopy IntegeriToPtr’
mxCopy Integer2ToPtr’
mxCopy Integer4ToPtr!
mxCopyPtrToCharacter’
mxCopyPtrToComplex16'
mxCopyPtrToComplex8'
mxCopyPtrTolntegerl’
mxCopyPtrTolnteger2’
mxCopyPtrTolnteger4’
mxCopyPtrToPtrArray’
mxCopyPtrToReal4’

mxCopyPtrToReal 8!

mxCopyReal4ToPtr!

mxCopyReal 8ToPtr!
mxCreateCellArray

mxCreateCel IMatrix
mxCreateCharArray
mxCreateCharMatrixFromStrings
mxCreateDoubleMatrix

mxCreatelLogicalArray®

mxCreatelogicalMatrix®
mxCreateNumericArray
mxCreateNumericMatrix
mxCreateSparse

'Fortran function only.

mxGetCell
mxGetDimensions
mxGetElementSize
mxGetField
mxGetFieldByNumber
mxGetlr

mxGetJc

mxGetM

mxGetN
mxGetNumberOfDimensions
mxGetNumberOfElements
mxGetNzmax
mxGetProperty
mxGetString

mxMalloc

mxReal loc

mxSetCell
mxSetDimensions
mxSetField
mxSetFieldByNumber
mxSetlr

mxSetJc

mxSetM

mxSetN

mxSetNzmax
mxSetProperty

6-35

6 Fortran MEX-Files

6-36

2C function only.

Functions in this API use the mwIndex, mwSize, and mvPointer preprocessor macros.

Building the Binary MEX File

Use the mex build script option —-largeArrayDims with the 64-bit API.

Caution Using Negative Values

When using the 64-bit API, mwSize and mwlndex are equivalent to INTEGER*8 in
Fortran. This type is unsigned, unlike INTEGER*4, which is the type used in the 32-

bit API. Be careful not to pass any negative values to functions that take mwSize or
mwlndex arguments. Do not cast negative INTEGER*4 values to mwSize or mvIndex; the
returned value cannot be predicted. Instead, change your code to avoid using negative
values.

Building Cross-Platform Applications

If you develop cross-platform applications (programs that can run on both 32- and 64-
bit architectures), pay attention to the upper limit of values you use for mvSize and
mwlndex. The 32-bit application reads these values and assigns them to variables
declared as INTEGER*4 in Fortran. Be careful to avoid assigning a large mwSize or
mwlndex value to an INTEGER*4 or other variable that might be too small.

Memory Management

Memory Management

When a MEX file returns control to MATLAB, it returns the results of its computations
in the output arguments—the mxArrays contained in the left-side arguments plhs[].
These arrays must have a temporary scope, so do not pass arrays created with the
mexMakeArrayPersistent function in plhs. MATLAB destroys any mxArray created
by the MEX file that is not in plhs. MATLAB also frees any memory that was allocated
in the MEX file using the mxCal loc, mxMal loc, or mxReal loc functions.

Any misconstructed arrays left over at the end of a binary MEX file execution have the
potential to cause memory errors.

MathWorks recommends that MEX-file functions destroy their own temporary arrays
and free their own dynamically allocated memory. It is more efficient to perform

this cleanup in the source MEX-file than to rely on the automatic mechanism. For
more information on memory management techniques, see the sections “Memory
Management” on page 5-65 in Creating C/C++ Language MEX Files and “Memory
Management Issues” on page 4-67.

6-37

6 Fortran MEX-Files

MATLAB Supports Fortran 77

MATLAB supports MEX files written in Fortran 77. When troubleshooting MEX files
written in other versions of Fortran, refer to the Fortran Language Reference Manual,
http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/ docs/lrm/dflrm.htm.
This manual describes features for different versions of Fortran.

For example, the length of the following statement is less than 72 characters.

mwPointer mxGetN, mxSetM, mxSetN, mxCreateStructMatrix, mxGetM

However, when MATLAB expands the preprocessor macro, mwPointer, the length of the
statement exceeds the limit supported by Fortran 77.

6-38

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/docs/lrm/dflrm.htm

7

Calling MATLAB Engine from C/C++
and Fortran Programs

* “Introducing MATLAB Engine API for C/C++ and Fortran” on page 7-2
+ “Callbacks in Applications” on page 7-4

+ “Call MATLAB Functions from C/C++ Applications” on page 7-5

+ “Call MATLAB Functions from Fortran Applications” on page 7-7

+ “Attach to Existing MATLAB Sessions” on page 7-9

* “Build Windows Engine Application” on page 7-11

* “Run Windows Engine Application” on page 7-13

+ “Set Run-Time Library Path on Windows Systems” on page 7-14

* “Register MATLAB as a COM Server” on page 7-16

* “Build Linux Engine Application” on page 7-17

* “Run Linux Engine Application” on page 7-18

+ “Set Run-Time Library Path on Mac and Linux Systems” on page 7-19
* “Build Engine Applications with IDE” on page 7-21

+ “Can't Start MATLAB Engine” on page 7-24

+ “Debug MATLAB Functions Used in Engine Applications” on page 7-25
* “Multithreaded Applications” on page 7-26

+ “User Input Not Supported” on page 7-27

+ “Getting Started” on page 7-28

7 Calling MATLAB Engine from C/C++ and Fortran Programs

Introducing MATLAB Engine API for C/C++ and Fortran

7-2

The MATLAB C/C++ and Fortran engine library contains routines that allow you to call
MATLAB from your own programs, using MATLAB as a computation engine. Using the
MATLAB engine requires an installed version of MATLAB; you cannot run the MATLAB
engine on a machine that only has the MATLAB Runtime.

Engine programs are standalone programs. These programs communicate with a
separate MATLAB process via pipes, on UNIX systems, and through a Microsoft
Component Object Model (COM) interface, on Microsoft Windows systems. MATLAB
provides a library of functions that allows you to start and end the MATLAB process,
send data to and from MATLAB, and send commands to be processed in MATLAB.

Some of the things you can do with the MATLAB engine are:

+ Call a math routine, for example, to invert an array or to compute an FFT from
your own program. When employed in this manner, MATLAB is a powerful and
programmable mathematical subroutine library.

+ Build an entire system for a specific task. For example, the front end (user interface)
is programmed in C/C++ and the back end (analysis) is programmed in MATLAB.

The MATLAB engine operates by running in the background as a separate process from
your own program. Some advantages are:

* On UNIX systems, the engine can run on your machine, or on any other UNIX
machine on your network, including machines of a different architecture. This
configuration allows you to implement a user interface on your workstation and
perform the computations on a faster machine located elsewhere on your network. For
more information, see the engOpen reference page.

+ Instead of requiring your program to link to the entire MATLAB program (a
substantial amount of code), it links to a smaller engine library.

The MATLAB engine cannot read MAT-files in a format based on HDF5. These MAT-
files save data using the -v7 .3 option of the save function or are opened using the w7.3
mode argument to the C or Fortran matOpen function.

Note: To run MATLAB engine on the UNIX platform, you must have the C shell csh
installed at /bin/csh.

Introducing MATLAB Engine API for C/C++ and Fortran

Communicating with MATLAB Software

On UNIX systems, the engine library communicates with the engine using pipes, and,
if needed, rsh for remote execution. On Microsoft Windows systems, the engine library
communicates with the engine using a Component Object Model (COM) interface.

More About

. “MATLAB COM Integration” on page 11-2
. “MATLAB Engine for Python”

7-3

7 Calling MATLAB Engine from C/C++ and Fortran Programs

Callbacks in Applications

7-4

If you have a user interface that executes many callbacks through the MATLAB engine,
force these callbacks to be evaluated in the context of the base workspace. Use evalin to
specify the base workspace for evaluating the callback expression. For example:

engEvalString(ep, "evalin("base”, expression)')

Specifying the base workspace ensures MATLAB processes the callback correctly and
returns results for that call.

This advice does not apply to computational applications that do not execute callbacks.

See Also

engEvalString | evalin

Call MATLAB Functions from C/C++ Applications

Call MATLAB Functions from C/C++ Applications

The program engdemo.c, in the matlabroot/extern/examples/eng_mat folder,
illustrates how to call the engine functions from a standalone C program. For the
Microsoft Windows version of this program, see engwindemo.c.

To see engdemo. c, open this file in MATLAB Editor.
To see the Windows version engwindemo. c, open this file.

There is a C++ version of engdemo in the matlabroot\extern\examples\eng mat
folder. To see engdemo . cpp, open this file.

The first part of this program starts MATLAB and sends it data. MATLAB analyzes the
data and plots the results.

Flz Wowa Fo: [

Ll
i

4
Tk ©

The program continues with:

Press Return to continue

Pressing Return continues the program:

Done for Part 1I.

Enter a MATLAB command to evaluate. This command should
create a variable X. This program will then determine
what kind of variable you created.

For example: X = 1:5

7-5

7 Calling MATLAB Engine from C/C++ and Fortran Programs
d g d

Entering X = 17.5 continues the program execution.
X =17.5
X =
17.5000
Retrieving X. ..
X is class double

Done!

Finally, the program frees memory, closes the MATLAB engine, and exits.

Related Examples
. “Build Windows Engine Application” on page 7-11
. “Build Linux Engine Application” on page 7-17

More About
. “Build Engine Applications with IDE” on page 7-21

7-6

Call MATLAB Functions from Fortran Applications

Call MATLAB Functions from Fortran Applications

The program fengdemo.F, in the matlabroot/extern/examples/eng_mat folder,
illustrates how to call the engine functions from a standalone Fortran program. To see
the code, open this file.

Executing this program starts MATLAB, sends it data, and plots the results.

P . TR Y

The program continues with:

Type O <return> to Exit
Type 1 <return> to continue

Entering 1 at the prompt continues the program execution:

1

MATLAB computed the following distances:
time(s) distance(m)

-00
-00
-00
-00
-00
-00
-00
-00
-00

©CO~NOOUTDN WNPE

-4.90
-19.6
-44_1
-78.4
-123.
-176.
-240.
-314.
-397.

7 Calling MATLAB Engine from C/C++ and Fortran Programs
d g d

10.0 -490.

Finally, the program frees memory, closes the MATLAB engine, and exits.

7-8

Attach to Existing MATLAB Sessions

Attach to Existing MATLAB Sessions

This example shows how to attach an engine program to a MATLAB session that is
already running.

On a Windows platform, start MATLAB with —automation in the command line. When
you call engOpen, it connects to this existing session. You should only call engOpen once,
because any engOpen calls now connect t