Maria Zilfi, Elok and Istiawan, Deden and Ngatimin, - and Zaenah, - and Nahdluddin, - (2021) Penentuan Pusat Awal Klaster Algoritma K-Means Untuk Pengelompokan Kabupaten/Kota Di Jawa Timur Berdasarkan Tingkat Kemiskinan. Journal Applied Statistics and Data Mining, 2 (1). pp. 1-11. ISSN 2721-0332
Full text not available from this repository.Abstract
Kemiskinan merupakan masalah klasik yang umum dan bersifat multidimensional serta sering dialami oleh berbagai negara didunia. Kemiskinan dipandang sebagai ketidakmampuan dari segi ekonomi untuk memenuhi kebutuhan dasar yaitu makanan dan bukan makanan yang mana diukur dari sisi pengeluaran. Kemiskinan menjadi masalah fenomenal yang mana dialami oleh berbagai negara. Indonesia sendiri merupakan salah satu negara yang mengalami masalah kemiskinan. Negara Indonesia memiliki ribuan pulau, dan pulau dengan angka kemiskinan tertinggi adalah Pulau Jawa. Sedangkan Jawa Timur merupakan provinsi dengan jumlah penduduk miskin tertinggi di Pulau Jawa dengan total penduduk miskin sebesar 4.617,01 ribu jiwa, selain itu Jawa Timur juga memiliki kesenjangan sosial yang tinggi. Dalam hal ini mempelajari masalah kemiskinan sangatlah penting, dengan tujuan membantu pemerintah menentukan arah kebijakan dalam menanggulangi kemiskinan. Untuk menunjang keberhasilan pelaksanaan program pembangunan terutama yang bersangkutan dengan penanggulangan kemiskinan di Provinsi Jawa Timur diperlukan suatu penelitian yang dapat mengelompokkan kabupaten/kota yang mempunyai ciri-ciri atau karakteristik kemiskinan yang hampir sama atau homogen. Sehingga pada penelitian ini, peneliti menggunakan metode GK Algorithm dalam mengatasi kekurangan pada metode K-Means dalam pemetaan kabupaten/kota di Jawa Timur berdasarkan tingkat kemiskinan. Dimana jenis data yang digunakan adalah data sekunder yang diambil dari BPS Provinsi Jawa Timur pada tahun 2016 yang diunduh pada website https://jatim.bps.go.id/. Dengan variabel yang digunakan adalah angka harapan hidup, angka kematian bayi, angka harapan lama sekolah, angka melek huruf, fasilitas BAB tidak ada jamban, sumber penerangan listrik, sumber air tidak dilindungi, bahan bakar memasak non gas, dan rata-rata luas lantai. Kemudian data dianalisis dengan menggunakan beberapa tahap yaitu: analisa permasalahan, pengumpulan data, metode usulan, dan eksperimen pengujian. Setelah dianalisis kemudian diperoleh kesimpulan bahwa kemiskinan di Jawa Timur terbentuk menjadi 3 klaster dan didapatkan bahwa GK-Algorithm lebih baik daripada algoritma K-Means.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Kemiskinan, GK-Algorithm, Pengelompokan, K-Means |
Subjects: | H Social Sciences > HA Statistics |
Divisions: | Faculty of Engineering, Science and Mathematics > School of Mathematics |
Depositing User: | Unnamed user with email [email protected] |
Date Deposited: | 30 Oct 2024 01:23 |
Last Modified: | 30 Oct 2024 01:23 |
URI: | https://repository.itesa.ac.id/id/eprint/367 |